当前位置:文档之家› 配电网的内部过电压防护

配电网的内部过电压防护

配电网的内部过电压防护
配电网的内部过电压防护

配电网的内部过电压防护

Xia Zhen-Fei1

Longyuan Inner Mongolia Wind Power Co., Ltd. , Inner Mongolia

Hohhot 010080;

摘要:配电网通常是指63kV及以下的电压等级,直接向广大用户馈电的电力网。配电网的过电压问题与高压、超高压电网是有区别的。在内部过电压方面,要注意特有的内部过电压问题,以及与高压电网相比,易发生的断线引起的谐振过电压问题。这些过电压问题严重地威胁着电气设备的绝缘和电网的安全性。因此,只有系统地分析这些过电压问题的形成过程及其影响因素,才能合理有效地采取防护措施,保证电网安全可靠运行。

关键字:配电网;过电压;内部过电压;防护措施

Abstract: Distribution network usually refers to the 63 kV and under voltage levels, and directly feeds to the broad masses of users of the network. Compared with the high voltage and ultrahigh voltage power grid, the overvoltage problems are different. At the internal overvoltage aspects ,we should pay attention to special overvoltage problems, as well as compared with high voltage power grid, being vulnerable to break causes resonance overvoltage. These overvoltage problems seriously threaten the electrical equipment insulation. Only the system analyses the formation process of the overvoltage and the influencing factors, and can it reasonably take protective measures to ensure the safe operation of the power grid.

Key words:distribution network; overvoltage; internal overvoltage; protective measures

0引言

配电网具有设备多和分布广的特点,它直接担负着向广大用户供电的任务。如配电网中发生过电压事故,不但会影响用户用电,而且还可能威胁人身安全。电力系统的工作可靠性是和过电压的大小密切相关的。如果发生了过电压,可能会造成电力系统绝缘或保护设备损坏。一般来说,过电压分为外部过电压和内部过电压,内部过电压包括操作过电压,谐振过电压和工频过电压。下面作介绍,

并提出相应的防护措施。

1 配电网操作过电压

在电力系统中,常用的储能元件是电感和电容元件。操作过电压是指,当工作状态由于操作事故而发生变化时,将发生振荡过程,在这个过渡的过程中,由于电感中的磁场能会在某一瞬间转化为电容中的电场能,从而产生几倍于电源额定电压的过电压。操作过电压一般会在几ms至几十ms后就会消失的。

形成操作过电压主要取决于电力系统的本身属性。因此,这种过电压的幅值大小一般与其电源额定电压成正比关系。过电压的幅值大小主要是由高相电压幅值的倍数来表示。操作过电压的幅值与电气设备的本身属性,以及系统本身的结构参数、运行操作和故障类型等因素都有着关系,因此,它是随机的。在不接地的电力系统中,操作过电压主要分为弧光接地过电压,开断感性负载引起的过电压和投切容性负载引起的过电压等]1[。

目前,城市与农村的电网改造已经在我国大范围的推广。特别是网络的结构参数以及运行参数,它们都发生了变化。其主要表现在线路中的电容电流增大,电缆线路增多,配变容量增大,输电线路的条数增加,每条线路的负荷电流减小,以致一部分线路在低峰时段,成为了空载运行的线路和空载运行的配变。

1.1 分闸空载线路过电压

切空线是电力系统中常有的操作。在开断过程中,若断路器发生重燃,使线路积累了电荷,并引起电磁振荡,会出现过电压。这种过电压不止幅值高,且持续时间长,可达0.5~1个工频周期以上,是220kV及以下电网确定操作绝缘水平的依据。

限制空载线路分闸过电压的措施:

(1)、提高断路器的灭弧性能,特别是提高切断小电流或者是电容电流的性能,减少电弧重燃的可能性;

(2)、在线路末端和电缆分支箱中加装避雷器降低过电压的倍数。

1.2 合闸空载线路过电压

空载运行的线路引起的合闸过电压是决定超高压电网绝缘水平的重要因素。空载线路的合闸过电压有两种形式:一是具有计划的合闸运行,合闸后,在线路上,各节点电压由初始零值变到工频稳态电压值,这个工频稳态值主要取决于电容效应,这个过程出现了振荡过电压。另一种是重合闸运行,由于残余电压的存

在,三相重合闸引起的过电压要比计划性合闸运行下的过电压更为严重]2[。

1.3 空载变压器分闸过电压

在电力系统运行中,常有电感性负载的分闸操作,在这些操作过程中可能会出现幅值较高的过电压。

在电力系统中,感性负载主要是空载运行的配变和电源变压器。当切断感性负载时,就会引起内部过电压,这其中缘由主要取决于开关的截流,正是因为分段开关的这种作用,使得线路电感上储存的磁场能转变为线路电容中储存的电场能,从而产生分空变过电压。尤其对中性点不接地的空载配变被切断时,所产生的过电压要到达4~7倍的高电压。

因为切断空载运行的配变引起的过电压频率高,能量小,较易限制。因此其常采用的限制措施为,投入运行能够防止引起大气压过电压的避雷器,一般情况下它是不允许退出运行的。

1.4 间歇性接地过电压

在中性点非接地的系统中,当发生单相接地短路时,经常会有电弧出现。因为系统中电容和电感的存在,使得一部分输电线路之间发生振荡的情况。只有当过振荡零点和工频稳态零点时,电弧才可能达到瞬时熄弧。当故障相的电压升高时,电弧又将重新燃起,这样就会在各相中发生内部过电压。目前,我国电力行业的标准——DL\T620一1997“交流电气装置的过电压保护和绝缘配台”中规定:3~lO kV的系统是不允许直接和发电机连接的,而是由架空线构成的。当发生单相接地短路时,其电容电流大于10A,并且又需要在接地短路下运行时,中性点需要通过消弧线圈进行接地。当单相接地短路发生时,特别容易转变成为两相接地故障和三相接地故障]3[。

在中性点非接地系统中,由弧光接地引起的过电压事故发生的概率高,事故持续发生的时间长,引起的内部过电压的幅值倍数达3.5倍。由于其电容电流过大,以致电弧不能熄弧。

根据运行的经验可以得到:弧光接地过电压和其他谐振过电压都会可能得ZnO避雷器被击穿而损坏。

限制由弧光接地引起的过电压的措施主要是在中性点上采用消弧线圈接地的方式。在中性点上采用消弧线圈接地,能够实现故障的快速切除,过电压持续时间得到缩短.从而达到弧光接地过电压得到抑制的目的,这样就避免了事故扩

大发生。同时,与中性点经小电流接地相比,经消弧线圈接地时,当发生单相接地短路时,电弧电流将大大减小,而且还不会出现不稳定的过电压。总的来说,运行的优势是明显的。

1.5 解列过电压

在多电源供电系统中,由于某种原因(如线路发生接地故障)而失去稳定时,线路两侧电源的电动势将产生相对摆动(失步)。为了避免事故扩大而将系统解列,则可能会在单端的空载线路上出现解列过电压。

2 配电网工频过电压

工频过电压是形成操作过电压的基础,工频过电压发生振荡后能够产生操作过电压。工频过电压幅值越大,操作过电压就越大。由于避雷器的额定电压取决于工频过电压,所以工频过电压的幅值越大,则避雷器的额定电压就越大,其相应的残压值也就越大。因此,工频过电压也就决定了配电网的操作水平和雷电绝缘水平]4[。

常见的几种重要的工频过电压有:空载线路电容效应引用的电压升高;不对称短路时正常相上的工频电压升高;甩负荷引起发电机加速而产生的电压升高等。

2.1 电容效应

线路上的电容效应是指在电源电动势的作用下,在电感元件和电容元件的串联回路中,当线路上的电容值高于电感值时,线路上的容性电流在电感上产生的电压将会抬高电容上的电压的一种现象。

2.2 不对称接地引起的工频过电压

当线路中发生不对称接地时,可能使键全相的工频电压有所升高。统计表明,单相接地是主要的故障形式,所引起的电压升高一般最为严重,仍是选择避雷器额定电压的主要依据。

3 配电网谐振过电压

在电力系统中,存在着很多电感元件和电容元件,主要的电感元件有变压器,电抗器,互感器,消弧线圈,发电机和输电线路等,而主要的电容是线路对地和相间电容,并联电容器组提供的电容,串联电容器组提供的电容以及高压设备上的杂散电容。当电力系统发生操作故障或者发生短路故障时,这些电感元件和电

容元件要形成振荡的回路,在电源电动势的作用下,会发生谐振的情况,从而导致谐振过电压在电力系统中发生。与操作过电压相比,谐振过电压的持续时间要相对较长些,有可能到谐振的条件被破坏后,接着才进行不稳定运行。其次,谐振过电压的幅值很大,理论值是无穷大的]5[。

3.1 线性谐振

发生线性谐振的回路是由不带铁芯的电感元件或励磁特性接近线性的带铁芯的电感元件和电容元件构成的.在具有正弦信号的电源电动势作用下,当系统的谐振频率与电源的额定频率相等或相接近时,将会发生线性谐振。在消弧线圈中产生的线性谐振是类似于弧光接地过电压。对于接消弧线圈的系统,只要让消弧线圈处于脱谐度不大的工作状态,或者是事故时断路器处于非全相运行状态,使得容抗大于感抗,谐振条件不满足,线性谐振过电压就不会发生。

3.2 非线性的铁磁谐振过电压

在电力系统中,发生铁磁谐振过电压往往是由于线路的折断,断路器发生非全相的运行等工作状态,并且这些都属于谐振过电压。若系统中发生中性点移动、负载变压器的相位方向发生反转、电流的大小突增、绕组铁芯中发出响声、电流流过导线时发出微弱的电晕声等现象时,很大程度上发生了传递过电压。发生非全相动作时,可以组成各式各样的谐振回路。由空载或轻载运行的负荷变压器的电感和消弧线圈的电感为谐振回路提供电感参数。回路的电容是由线路对地或相间电容以及绕组的杂散电容等提供。在不同的参数条件下,可能会出现基频谐振、分频谐振以及高频谐振的现象。

当发生的是基频谐振时,将会产生三相对地的不平衡电压,将可能会出现两相降低、一相升高,或者是一相降低、两相升高,或者是三相升高的情况。在变压器的负载侧,由于三相绕组的负序电压是主要的部分,以致三相的相序出现反倾的现象。实践证明,有可能产生高次谐波。谐振过电压的理论幅值一般到无穷大。

当发生分频谐振时,频率值是工频的二分之一倍,互感器的励磁阻抗变为原值的二分之一,以致铁芯中的励磁电流增幅很大,互感器出现过度饱和的现象,这样过电压的幅值倍数被限制到了2倍以下,这样就不可能出现危险的情况了。

谐振过电压事故在各种电压的电网中都会产生,在不少电网中曾严重地影响安全运行。谐振过电压的持续时间长,一般可达十分之几秒以上,甚至长期存

在。但是运行经验表明,只要能够正确掌握这种过电压的规律。认真做好预防工作,这种事故是完全可以避免的。

对中性点不直接接地系统中的分频谐振过电压,提出了以下几点措施:

(1)、采用励磁特性优良,铁芯不易饱和的电压互感器。电容式的电压互感器可考虑采用。

(2)、对中性点经消弧线圈接地的10-35千伏系统,做到合理补偿,正确布置,避免出现孤立运行的情况。

(3)、选用分频继电器。当发生谐振时,利用分频继电器将电压互感器的二次侧开口三角经电阻短接。

(4)、电压互感器的二次开口三角形处串联接入500W的白炽灯或分频继电器,并加装消谐器。

(5)、对于10千伏及以下的用电户,电压互感器的中性点应采用不接地的方式。

(6)、采用零序互感器的接线方案。具体情况是:将三台单相电压互感器的一次侧接成星形接线,其中性点经一台零序互感器接地,而对于单相电压互感器的二次开口三角处不做任何处理。这种方法可以达到消除三次谐波的目的。

(7)、一般情况下,中性点需采用经消弧线圈接地的方式。

(8)、在电压互感器的一次侧的中性点上串以10—20 千欧电阻后再接地。

为了解决非线性的铁磁谐振问题,需要从改善电压互感器的励磁特性出发,尽快生产处励磁特性好的电压互感器,为保证电力系统安全运行创造有利的条件。

4 结论

上述是配电网中存在的内部过电压问题,本文对其做了简单的介绍。分别叙述了几种配电网中特有的内部过电压情况,并对相应的问题提出了几种防护措施,以保证电网能够安全可靠地运行。

参考文献

[1] 鲁铁成.电力系统过电压[M].北京:中国水利水电电力出版社,2009:23-29.

[2] 方瑜. 配电网过电压[M].北京:水利电力出版社,1994:35-46.

[3] 平绍勋. 电力系统内部过电压保护及实例分析[M].北京:中国电力出版社,

2006:25-36.

[4] 周泽存. 高电压技术[M].北京:中国电力出版社,2007:106-121.

[5] 陈维贤.内部过电压基础[M].北京:电力工业出版社,1981:37-42.

110KV变电站设计,110kv,35kv,10kv,三个电压等级

第1章原始资料及其分析 绪论 电力工业是国民经济的一项基础工业和国民经济发展的先行工业,它是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,它为国民经济的其他各部门快速、稳定发展提供足够的动力,其发展水平是反映国家经济发展水平的重要标志。 由于电能在工业及国民经济的重要性,电能的输送和分配是电能应用于这些领域不可缺少的组成部分。所以输送和分配电能是十分重要的一环。变电站使电厂或上级电站经过调整后的电能输送给下级负荷,是电能输送的核心部分。其功能运行情况、容量大小直接影响下级负荷的供电,进而影响工业生产及生活用电。若变电站系统中某一环节发生故障,系统保护环节将动作。可能造成停电等事故,给生产生活带来很大不利。因此,变电站在整个电力系统中对于保护供电的可靠性、灵敏性等指标十分重要。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。这就要求变电所的一次部分经济合理,二次部分安全可靠,只有这样变电所才能正常的运行工作,为国民经济服务。 变电站是汇集电源、升降电压和分配电力场所,是联系发电厂和用户的中间环节。变电站有升压变电站和降压变电站两大类。升压变电站通常是发电厂升压站部分,紧靠发电厂,降压变电站通常远离发电厂而靠近负荷中心。这里所设计得就是110KV降压变电站。它通常有高压配电室、变压器室、低压配电室等组成。 变电站内的高压配电室、变压器室、低压配电室等都装设有各种保护装置,这些保护装置是根据下级负荷的短路、最大负荷等情况来整定配置的,因此,在发生类似故障是可根据具体情况由系统自动做出判断应跳闸保护,并且,现在的跳闸保护整定时间已经很短,在故障解除后,系统内的自动重合闸装置会迅速和闸恢复供电。这对于保护下级各负荷是十分有利的。这样不仅保护了各负荷设备的安全有利于延长使用寿命,降低设备投资,而且提高了供电的可靠性,这对于提高工农业生产效率是十分有效的。工业产品的效率提高也就意味着产品成本的降低,市场竞争力增大,进而可以使企业效益提高,为国民经济的发展做出更大的贡献。生活用电等领域的供电可靠性,可以提高人民生活质量,改善生活条件等。可见,变电站的设计是工业效率提高及国民经济发展的必然条件。 原始资料 待建变电站是该地区农网改造的重要部分,预计使用3台变压器,初期一次性投产两台变压器,预留一台变压器的发展空间。 电压等级 变电站的电压等级分别为110kV、35kV、10kV。 110kV :2回 35kV :5回(其中一回备用) 10kV :12回(其中四回备用) 变电站位置示意图:

探讨配电网低电压原因与综合治理措施

探讨配电网低电压原因与综合治理措施 发表时间:2018-08-20T15:30:25.420Z 来源:《基层建设》2018年第21期作者:李永生关健赵洪喜夏炎任佳诗张春凡[导读] 摘要:配电网低电压不仅影响用户正常用电,而且危及电力系统及供用电设备的安全运行,所以整治低电压具有重要的现实意义。 国网辽宁省电力有限公司绥中县供电分公司 125200 摘要:配电网低电压不仅影响用户正常用电,而且危及电力系统及供用电设备的安全运行,所以整治低电压具有重要的现实意义。因此,本文对配电网低电压产生原因及综合治理措施进行分析。 关键词:配电网;低电压;原因;综合治理措施在电力系统中,保证电能质量的三个指标是电压、频率和波形,其中电压是保证电能质量的主要指标,只有保证电压在规定的范围之内,才能保证最基本的电能使用,因此需要根据配电网的特点、用电负荷的性质等,分析造成配电网低电压的原因,保证各项设备的正常运行,给用户提供电压合格的电能。 1低电压的概述 所谓低电压,指的是与国家标准规定的电压下限值相比,用户计量装置处的电压值较低,也就是20kV及以下三相供电用户的计量装置处电压值不超过标称电压7%,220V的单相供电用户的计量装置电压值不超过标称电压10%,对于持续时间大于1h的低电压用户需纳为重点治理对象。低电压主要有长期低电压与季节性低电压。长期低电压指的是用户的全天候低电压持续3个月,或是日负荷的高峰低电压持续超过6个月的低电压现象;而季节性低电压指的是夏季、冬季,春灌秋收以及逢年过节时产生的存在周期规律的低电压现象。 2低电压产生的原因 2.1配电设备功能不完善 配电变压器容量不足、导线线径小,不满足现有负荷需求。主要是因为农网一期、二期改造时标准不高、规划不到位,随着农村生活水平的提高,大量的家用电器如电暖器、电磁炉、空调器、电冰箱等投入使用,造成配电变压器容量和导线载流量严重不足,导致台区低电压。10kV中压配电线路和台区低压线路供电半径大。因为在电阻率及导线线径不变的情况下,电压降与线路长度成正比,所以线路长度过长导致线路末端电压偏低。 2.2三相负荷不平衡 主要是由于设备管理单位不认真统计台区总体范围内的供电用户和负荷情况,不合理分配三相负荷,造成配电变压器低压侧三相电流不平衡,引起低电压现象。农村配电网处于电力系统的最末端,无功电源不足,农网负荷本身又大量消耗无功,随着城乡居民生活条件的改善,农村用电负荷迅速增大,农网无功需求及相应的损耗也随之上升,造成农网无功补偿更显不足。 2.3运维管理不到位 农网供电低压侧多采用三相四线制接线方式,一些农电管理人员由于责任心不强,往往直接从两边相接引接户线供电,中间相被忽略,导致三相负荷不平衡,引起一相电压偏高而另两相电压偏低;或者随着台区负荷的无序增长,工作人员又缺乏对负荷平衡情况进行监测,原本相间平衡的负荷,也会变得不平衡。对配电变压器容量承载能力管控不到位。由于没有合理地根据负荷实际情况及时调整配电变压器容量或落实新增布点增容,导致配电变压器容量不足引起低电压。未充分利用配电变压器的调压功能。当设备承载能力满足,因负荷分布不均匀引起低电压现象时,未能及时利用配电变压器调压分接开关调整功能解决负荷偏相引起的低电压问题。 3低压电综合治理措施 3.1低压线路改造 对因配电台区低压线路线径小导致的低电压,采取改造低压线路,增大导线线径的方式,解决因导线承载能力不足引起的低电压。对因负荷波动较大造成过载的配电台区,可采用增大配电变压器容量或更换抗过载能力较强配电变压器的方式进行改造。对因季节性负荷波动较大造成过载的配电台区,可用选用宽幅调压配电变压器、可调容配电变压器的方式进行改造。对单相配电变压器,原则上10kV线路先由单相改为三相接线,再更换为三相配电变压器,低压线路由两线改为三相四线。柱上配电变压器宜设于低压负荷中心,三相配电变压器容量不宜超过400kVA,低压出线不宜超过4回。当原有配电变压器容量不足,增容需求超出上述限值时,可增设配电变压器或转移低压负荷,不宜单纯更换大容量配电变压器。 3.2新增布点增容改造 对低压线路供电半径大,长期存在过载现象的配电台区,应优先采用新增布点方式进行改造,按“小容量、密布点、短半径”的原则配置,应尽量靠近负荷中心,缩短低压供电半径,提高供电承载能力。对县域农村供电半径大于500m的低电压台区,宜选择分割台区供电,增加配电变压器布点,缩短供电半径的方式进行改造,使配电变压器布点一次到位,同时给未来负荷增长预留一定空间。对低电压台区中配电变压器容量不足、低压线路和接户线存在环境状况差、线径小及老化严重等问题的台区,宜进行整体改造,彻底解决问题。 3.3无功补偿装置改造 无功补偿配置应按照“电源补偿、电网补偿、用户补偿相结合,分散就地补偿与变电站(开关站)集中补偿相结合”的原则,实现分层和分区的无功平衡。一是根据线路负荷及首、末端电压时段性、季节性变化规律,优化AVC(自动电压控制)和VQC(电压无功控制)控制策略,调整电压控制上限值和下限值。对未实现区域无功电压优化控制的区域,应加装AVC系统,并逐步接入具备“四遥”功能的变电站。对近期无法实现AVC控制的变电站,宜加装VQC装置。不满足调压要求的无载调压主变压器更换为有载调压主变压器,并加强母线电压和功率因数人工监控。二是优化配电变压器无功集中补偿能力。 3.4强化设备运维管理 强化设备运维管理,开展三相负荷不平衡调整。通过定期开展配电变压器负荷实时监测,检查三相负荷电流和电压值,记录设备运行数据,及时对三相负荷不平衡的配电变压器进行调整,使其负荷分布均匀、合理,避免因负荷不平衡引起的低电压现象。充分发挥配电变压器自身的分接开关挡位调压能力。分接开关挡位调整主要针对受季节性负荷变化影响造成的配电变压器低压侧出口电压波动问题,可结合负荷预测,在春节、农忙、度夏(冬)等用电高峰期来临前,对配电变压器分接开关挡位进行调整,并在高峰期过后及时回调,防止因配电变压器分接开关挡位设置不合理造成用户电压质量不合格。 3.5建立健全配电网低电压监测网络

配网低电压治理技术原则(试行)

配网“低电压”治理技术原则 (试行) 为加强配网“低电压”治理工作,提高治理针对性和有效性,为实施运维管控和相关基建、技改、大修等项目立项、审查提供依据,根据国家、行业和公司有关制度标准,特制定本原则。 第一章总体原则 1.1坚持多措并举、统筹治理,深入分析“低电压”产生原因,按照“先管理、后工程”、“一台区、一方案”的要求,综合管理、基建、技改、大修等多种手段,科学制定治理方案。 1.2加强与电网发展规划和地区发展规划衔接,根据电网规划落实进度、城区或村镇搬迁情况及“低电压”程度,区分轻重缓急优化项目立项,提高治理有效性,防止低效、无效投入。 1.3加强治理工程标准化管理,全面应用公司配网典型设计、标准物料、通用造价、标准工艺等标准化建设成果,推广先进适用技术,提高技术措施的先进性和规性。 1.4落实资产全寿命周期管理要求,推动低电压治理中退役设备再使用工作,探索退役配电变压器跨省调剂使用的有效途径,避免设备大拆大换。 第二章电压采集及统计

2.1配网用户电压原则上应通过符合电压监测仪使用技术条件的电压采集装置自动采集,在其布点未实现低压用户全覆盖的情况下,可通过配变终端、智能电表等监测手段采集。 2.2“低电压”指用户计量装置处电压值低于国家标准所规定的电压下限值,即20千伏及以下三相供电用户的计量装置处电压值低于标称电压的7%,220伏单相供电用户的计量装置处电压值低于标称电压的10%,其中持续时间超过1小时的“低电压”用户应纳入重点治理围。 2.3“低电压”主要包括长期和季节性“低电压”。长期“低电压”指用户全天候“低电压”持续三个月或日负荷高峰“低电压”持续六个月以上的“低电压”现象;季节性“低电压”是指度夏度冬、春灌秋收、逢年过节、烤茶制烟等时段出现具有周期规律的“低电压”现象。 2.4为加强配网用户电压全围监测,应建立完善基于营配贯通的电压自动采集分析相关信息系统,扩大电压监测覆盖面,强化重点时段对中压线路首末端、配变台区首末端及重点用户的电压采集分析,为开展“低电压”运维管控及工程治理创造条件。 第三章治理策略 3.1“低电压”治理应根据变电站母线电压、中低压线路供电半径及负载水平、配变台区出口电压、配变容量及负载水平、配变低压三相负荷不平衡度、“低电压”用户数、低压用户最低电压值、电压越下限累计小时数等综合分析问题

超高压电网内过电压的特点分析示范文本

超高压电网内过电压的特点分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

超高压电网内过电压的特点分析示范文 本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 在超高压电网中,送电线路往往很长,因此线路的 “电感——电容”效应显著增大,它导致空载线路末端工 频电压的严重升高,而且在这个基础上会引起幅值很高的 空线拉、合闸过电压。为解决这一问题,此时需要在线路 上装设并联电抗器,以补偿线路电容电流的作用,达到限 制工频电压升高的目的。并联电抗器的无功功率PL对空线 电容无功功率Pc的比值(PL/Pc)叫补偿度。通常补偿度 选在66~100%。 并联电抗器L的存在是超高压电网最突出的特点,它 使得一系列内过电压问题变得与一般电网不同。

首先,对切空线过电压来说,L的存在大有好处。在没有L时,断路器断弧后空线将保持直流电压(严重时其值等于相电压),而电源电压按工频变化,所以在过了半个周波后,断路器断口所受电压可达2Uxp,断口可能重燃,于是引起过电压。在有L时,如果补偿度是100%,这意味着当断路器断弧后,空线电容与并联电抗器L的自振频率恰为工频,因此在断口两侧的电压变化都是工频的,所以断口上的恢复电压将为0,这样断路器就不会重燃。可见,即使断路器的灭弧能力较差,此时也不会发生重燃,于是就不会产生切空线过电压了。对补偿度为80%或66%的电抗器来说,空线自振频率为工频的90%或80%,此时断路器所受恢复电压上升速度比无电抗器时要缓慢得多,分析表明,过0.1秒或0.5秒以后,断口电压才达到最大值。在这段时间内,去游离作用加强,断口中的介质耐压能够得

直流输电中的过电压及其防护

直流输电中的过电压及其防护 摘要: 直流输电系统和其他电力系统一样,容易受到自然因素的影响而产生各种故障,这些故障的产生与存在严重影响着输电系统的功率,因此需要在线路运行中做好保护措施,保证直流输电系统的正常运行。现阐述输电中的过电压及其防护。 关键词:直流输电,过电压,线路保护 一、高压直流输电系统简介 直流输电技术从20 世纪50 年代在电力系统中得到应用以来,在远距离大容量输电、海底电缆和地下电缆输电以及电力系统联网方面显示出了明显的优点,应用直流输电技术可以提高电力系统的经济指标、技术性能、运行可靠性和调度灵活性等。特别是在20 世纪80 年代以后,大功率电力电子技术及微机控制技术的发展进一步促进了直流输电技术的应用和发展,目前世界上已有60 多项直流输电工程投入运行。 简单的说高压直流输电系统是由整流站、逆变站和直流线路三部分构成,从结构上看就是一个交流—直流—交流形式的电力电子整流电路。高压直流输电技术也是电力电子技术应用于电力系统领域中最早,最成熟的技术。 直流输电系统工作时由交流系统送出的交流功率经由换流器送至整流器把交流功率变换为直流功率,再经由直流输电线路将直流功率传送到逆变站中,通过逆变器把直流转换成交流功率,输送到受电端即交流输电系统。换流站是整流站和逆变站的统称,换流站内设有整流器或逆变器其功能是实现交流电力与直流电力之间的变换。 二、直流输电系统中的过电压 为了说明直流输电系统过电压保护与交流系统的不同之处,需要对直流输电系统内各种可能的过电压进行简单的介绍,由此说明配置各种避雷器的必要性。为了方便,这里把直流系统按空间位置分成三个区域进行分析,即:换流站交流侧、换流站直流侧和直流线路。1.来自换流站交流侧的过电压 (1)暂时过电压 暂时过电压是指持续时间为数个周波到数百个周波的过电压。除直接作用在设备,尤其是避雷器上引起避雷器能量要求上升外,还作为其他故障存在的起始条件,将引起操作过电压上升。在换流站交流母线上产生的暂时过电压主要有以下三种类型。 1)甩负荷过电压。当换流站的无功负荷发生较大改变时,根据网络的强弱,将产生程度不同的电压变化。 2)变压器投入时引起的饱和过电压。换流站内一般装设有大量的滤波器和容性无功补偿设备,与系统感性阻抗在低次谐波频率下可能发生谐振,在变压器投入时引起的励磁涌流在交流母线上产生较高的谐波电压,叠加到基波电压上,造成长时间的饱和过电压。 3)清除故障引起的饱和过电压。在换流站交流母线附近发生单相或三相短路,使得交流母线电压降低到零。在故障期间,换流变压器磁通将保持在故障前的水平;故障清除时,

国内电网电压等级划分

国内电网电压等级划分 局民用电是220V,工业用电是380V,为什么同样是变电站出来的电,到了用户端就不同呢?高压与低压有什么不同呢? 工业用电与居民用电 工业用电其实就是我们经常提到的三相交流电(由三个频率相同、电势振幅相等、相位差互差 120 °角的交流电路组成的电力系统),而民用电采用的是单相220V对居民供电。 三相交流电可以使电机转动,当三相交流电流通入三相定子绕组后,在定子腔内便产生一个旋转磁场。转动前静止不动的转子导体在旋转磁场作用下,相当于转子导体相对地切割磁场的磁力线,从而在转子导体中产生了感应电流(电磁感应原理)。这些带感应电流的转子导体在磁场中便会发生运动,因此工业用电都是三相交流电。 民用电的火线与零线之间电压为220V ,工业用电则是各相线间电压380V ,相地之间电压220V。民用电其实就是三相之中的一相。电厂到居民变电站都是3相5线,变电站的作用之一就是把电分成很多个1相3线给居民使用。 高压与低压的分界线 根据GB/T 2900.50-2008中定义2.1规定,高[电]压通常指高于1000V(不含)的电压等级,低[电]压指用于配电的交流电力系统中1000V及以下的电压等级;国际上公认的高低压电器的分界线交流电压则是1000V(直流则为1500V)。 在工业上也有另外一种说法,电压为380V或以上的称之为高压电,因此我们习惯上所说的220V、380V都是低压,高于这个电压都是高压;再之前的电业规程中规定分界线为250V,虽然新的《电业安全工作规程》已经出台,但很多地方执行的还是以前的标准。 高压电器的通俗分类 1、所谓的高压、超高压、特高压并无本质区别(随着电压增高,绝缘要求、安全要求会有不同),只是人们的叫法不同而已,其分界线也是约定俗成,并无明确规定。 2、电网就是指整个供配电系统,包括发电厂,变电站,线路,用电侧。

农村配电网低电压产生的原因及治理措施

农村配电网低电压产生的原因及治理措施 发表时间:2017-05-04T11:52:46.590Z 来源:《基层建设》2017年3期作者:武兆敏孙成范赵君明 [导读] 必须对农村电网进行治理,本文阐述农村电网低电压出现原因及相应的解决方式。 国网山东省电力公司禹城市供电公司山东德州 251200 摘要:随着农村经济的发展和家电下乡政策的深入,各种大功率的家用电器出现在农民家庭之中,农村用电量迅速的增长,电网的用电压力也不断的增加,进而出现了"低电压"的问题,在一定程度上影响着新农村的建设,因此,必须对农村电网进行治理,本文阐述农村电网低电压出现原因及相应的解决方式。 关键词:农村电网;低电压;发生原因;综合处理措施 引言 随着经济的发展,我国农村电网的全覆盖,满足了农民生产和生活的需要。随着家电下乡政策的不断深入,各种大功率的家用电器出现在农民的家庭之中,农村用电与以往相比有了很大的改变,农民用电量迅速攀升,电网的用电压力也急剧增加,“卡脖子”、“过负荷”等显现突出,少数地区“低电压”的问题较为严峻,严重的影响了农村的发展。农村电网“低电压”严重影响农民的生活质量,制约农村经济的发展和社会主义新农村的建设。根据农村电网“低电压”进行分析,并提出具体的治理方案。 1、配网低电压产生的原因 1.1从农村配网线路角度 现行培养低电压问题产生的主要归结于配网线路问题,其自身供电半径过长极易造成电压出现不平稳的情况。因配电网线路产生的低电压问题具体表现在两方面:第一,农村配网线路随农村整体建设规模的扩大而逐渐延伸,若在线路建设中未及时改造配网线路,将出现配网电能损耗问题。第二,变压器在配电网中的设置不够合理,且供电线路的设置主要以单向放射形式为主,或用电负荷中心难以保证10kV线路作用的发挥,这些因素都将导致线路末端电压出现持续降低的现象。若低电压问题较为严重,将使电力系统整体难以正常运行 1.2从配电网负荷角度 社会主义新农村建设过程中逐渐引入更多的惠农政策,如典型的“家电下乡”等,其直接使农村电气设备在数量上逐渐增多,需要更多的用电需求量以保证电气设备的正常使用。同时,农村建设中逐渐改变以往完全以农业经济为主的形式,如养殖业或工业等各方面,这些都使配电网负荷压力进一步增加。因此,配电变压器在用电负荷作用下将表现出过载、重载电现象,直接导致低压线路电压过低 1.3从无功功率补偿角度 传统农村弄点格局多停留在照明系统方面,而当前农村发展中如冰箱、空调或家电等方面逐渐引入其中,这些电气设备往往以感性负荷为主,对无功功率的要求较高。大多农村地区配网变压器往往难以对这些设备进行无功功率补偿,即使部分区域不断引进如电容器等设备,但普及率较低,因此线路在进行大量无功功率输送过程中将使自身对电压逐渐降低。除此之外,现行对用电负荷的管理工作仍表现较为薄弱,如对装接容量的考虑,一旦其高于配变台区标准容量便可能出现低电压问题。 2、农村低电压治理研究 2.1变电站的完善 大多农村变电站中半径超出15km的10kV线路占总线路的50%以上,很容易出现低电压问题,对此现状可结合实际电网规划要求进行变电站电源点增设工作,使变电站的运行更为可靠。具体实践中为使主网供电能力得以提升,可通过110kV变电站的构建来实现,针对其中的10kV线路,若供电半径大于30km可构建下供应的公用配变,这种方式可使用电负荷压力过大问题得以解决。同时要求对过长的线路半径进行缩短,通过促进供电能力的提升保证电压质量。借助GPRS、配变数据上传、TTU、智能电表、移动式电压监测仪、LED显示等技术,建立健全“低电压”监测网络,完善监测手段。开展变电站、配变和低压用户电压联调管理。借助GPRS技术,实现低电压用户电压信息反馈,参与变电站、配变调压和无功投切判据,建立联调机制,完善调压手段。 2.2加强线路设备 改造根据“容量小,分布密,半径短和绝缘化”这一原则来对农村配电变压器进行改造,同时创建更多的配电变压器来缩小低压线路的供电半径。对不同情况的线路进行改造可以采取不同的方法,其一,通过增加配电变压器的布点或增大容量来改造那些一直存在负荷过载问题的台区以及部分低压线路,提升半径大于510米并且电压过低的低压线路的电压质量。值得注意的是,布点后的老变压器需根据最优供电半径进行优化调整。其二,通过增大导线的线径以及将一定负荷调整到附近台区的方法来改造低压线路中线径较小和负荷过载的配电台区 2.3做好无功功率补偿工作 大多农村地区无论在变电站或10kV线路等方面都难以起到补偿无功功率的作用,是造成低电压问题的主要原因。对此现状首先对于变电站可采取相应的优化补偿措施,具体操作中可进行无功补偿容量的优化配置,结合负荷特点选择集中、分散等补偿方式,这样可达到优化分布无功潮流的目标。同时在10kV线路补偿方面,可引入相应的无功补偿装置,如电容器等。除此之外,农村地区公用配变往往也是产生低电压问题的来源,可结合公用配变功率与负荷情况进行无功补偿装置的设置。 2.4注重调压能力的提升 调压能力的上升主要集中在线路与变电站方面。其中对于10kV线路,可将自动调压器设置其中,可有效解决低电压问题。而在变电站方面,若电网建设规划中涉及变电站构建内容,应保证变电站在变压器使用方面选择有载调压变压器。若不存在变电站规划内容,对于运行年限较长的变电站可通过技术措施进行主变的改造或更换,选择有载调压主变 2.5降低配电变压器三相负荷不平衡度 配电变压器三相负载的不平衡,导致中心点的电压位置发生变化,最终负载相对轻的一相反而电压偏高,而负载相对重的一相电压却偏低。所以为了降低配电变压器三相负荷的不平衡度,首先要建立无功电源设备的运行制度,着重对线路设备的负荷管理,以及农村对侧用电的需求管理。3.4加强柱上变压器负荷管理要加强对柱上变压器的负荷管理,不仅是做好季节性负荷的日测工作,还要分析那些通过负荷测录仪器测量出来的每一时刻的电流以及电压数据,计算电量,无功电源,有功电源和负载率等相关数据,并且及时的应用这些数据。尤其要重点分析那些超负荷的柱上变压器。从而确保不会出现老化的低压电网和柱上变压器从而影响到电网的运行质量,保证低压电网的

各种过电压保护器比较分析

1过电压防护问题 1.1过电压防护的背景 建国初期我国中压电网主要由架空线路和油电缆构成,空气绝缘与油绝缘具有可恢复性,3~4倍的内部过电压对绝缘构不成威胁,所以当时的中压电网只需要对高幅值的雷电过电压采取限制措施,不需要考虑内部过电压的防护问题。采取的具体措施是在相与地之间各安装一只普通的阀式避雷器,用于防护雷电造成的高幅值的相对地过电压。 到了上世纪90年代以后,我国中压电网大量采用真空断路器取代了原有的少油断路器。真空断路器相比少油断路器的免维护、寿命长、运行可靠。但由于真空灭弧室的超强的灭弧能力,往往在电弧过零点之前就被强行截断。真空断路器截流时电感储存的磁能与杂散电容储存的电能之间相互转换的振荡过程,使得操作过电压频繁发生。 企业中压配电网越来越多的由电缆线路取代了架空线路,与架空线路的可恢复性绝缘不同,交联聚乙烯电缆的固体化绝缘是不可恢复的,绝缘击穿具有累积效应。3~5倍的内部过电压会在绝缘介质内部产生局部放电,产生细微的破坏,反复多次的内部过电压就会造成绝缘的累积破坏,导致固体绝缘的运行寿命会明显缩短。 1.2普通避雷器不能限制内部过电压 电网的内部过电压一般在相电压的3—4倍之间,多数在3.5倍左右。过去采用的阀式避雷器是按照躲过电网内部过电压设计的,例如: 工频放电电压U(动作电压)=1.1×3.5×(1.15Ue/3) 按照这样原则设计的参数,普通避雷器在电网内部过电压下是不放电的。另一方面,包括操作过电压、弧光接地过电压在内的电网内部过电压是发生在相与相之间的,而普通避雷器是接在相与地之间的。所以,普通避雷器不能限制电网的内部过电压。 在电缆线路与真空断路器大量使用的大背景下,我国中压配电线路的绝缘越来越多的受到系统内部过电压的威胁,过去的阀式避雷器和普通的氧化锌避雷器已无法满足系统内部过电压与雷电过电压的双重防护要求。由于能不过电压不能有效限制,导致交联聚乙烯电缆一般在投运5~8年后事故率明显上升。 1.3无间隙氧化锌避雷器分析 单只无间隙氧化锌避雷器其核心器件是氧化锌非线性电阻,或者叫氧化锌阀片。单只结构,安装于相与地之间。的设计初衷是针对架空线路不需要考虑其内部操作过电压的绝缘危

配电网电压控制方案的探讨

平煤电网电压控制方案的探讨 平煤电务厂电力调度室:张洪跃 摘要:平煤电网供电半径的不断延伸,容量的不断增加,配电网终端系统,无功过剩也会影响线路传输的安全稳定性,导致系统的输送容量下降,给电网运行调度带来不利的影响。而系统无功不足时,一方面会降低电网电压,另一方面,电网中传送的无功功率还增加了电能传输时的网络损耗,加大了电网的运行成本。为此,实现无功的分层、分区就地平衡是降低网损的主要原则和重要手段。 关键词:配电网电压质量控制方案 随着平煤电网容量的不断增加,对于配电网终端系统,无功过剩时一方面会提高系统运行电压,导致运行中的用电设备的运行电压超出额定工况,缩短设备的使用寿命;另一方面,无功过剩也会影响线路传输的安全稳定性,导致系统的输送容量下降,给电网运行调度带来不利的影响。而系统无功不足时,一方面会降低电网电压,另一方面,电网中传送的无功功率还增加了电能传输时的网络损耗,加大了电网的运行成本。所以,无功是影响电压质量的一个重要因素。 实现无功的分层、分区就地平衡是降低网损的主要原则和重要手段。电压和无功调节是各级变电站需要承担的重要任务。其中,电容器投切是变电站无功调节的最有效而简便的方法,变压器分接头的调节是母线电压控制的最直接手段。近几年以来,随着平煤煤电、化工、焦炭的快速发展,从而加大了对电网的改造力度,变电站综合自动化保护得到了广泛的应用,从而推出了基于微机控制技术的电压与无功综合控制装置(VQC系统)。 1现有电压无功控制的问题 目前VQC系统的实现方式多种多样,包括专用的VQC装置、利用变电站综合自动化后台或利用RTU可编程逻辑控制等方式。其控制策略为九区图控制,即根据电压和无功功率两个参数的综合分析后,判断是投切电容还是调节变压器分接头。采用VQC装置后,变电站的电压无功调节实现了自动控制,改变了过去依靠人工实现电压-无功调节的传统方式,可以满足变电站中母线电压与无功潮流的综合控制,大大地减轻了运行人员的工作负担,降低了误操作的发生,并取得了一定的运行经验,成为一种发展趋势,在变电站得到了大力的推广。但从运行的效果看来,该种方式还有很多地方值得讨论: a)容性无功是通过电容器的投切实现的,因容性功率调节不平滑而呈现阶梯性调节,故在系统运行中无法实现最佳补偿状态。电容器分组投切,使变电站无功补偿效果受电容器组分组数和每组电容器容量的制约,分组过少则电容调整梯度过大和冲击大;分组多则需增加开关、保护等附属设备及其占地面积。 b)电容器组仅提供容性无功补偿,当系统出现无功过剩时,无法实现无功就地平衡。 c)由于系统无功的变化而导致电容器的频繁投切,使得电容器充放电过程频繁,减少其使用寿命,对设备运行也带来了不可靠因素。 d)电容器的投切主要采用真空断路器实现(VSC)。其开关投切响应慢,不能进行无功负荷的快速跟踪;操作复杂,尤其不宜频繁操作。近来出现了使用晶闸管投切电容器组

配电网过电压保护问题(一)

配电网过电压保护问题(一) 乌兰察布电业局张东郝雨生 配电网由于电压等级较低,其绝缘水平也较低,所以容易遭受过电压事故,尤其是雷害事故。过电压主要有两种,一种是大气过电压,一般是雷电压;另一种是操作过电压,即一经操作而产生的过电压。下面就过电压保护中所遇到的一些问题做简要分析。一、输电线路的防雷保护问题对新建的线路,原则上应按“过电压保护设计技术规程”的规定来执行,而对一部分老旧的线路则应根据线路的先天条件,本着节约的原则采用适当的改进措施。如新建的110千伏及以上的输电线路,应全线悬挂避雷线(轻雷区除外),且其保护角应尽量做到20°-30°。对处于山区的输电线路,雷绕过避雷线而击于导线的概率要比平原地区的输电线路约高三倍。即相当于避雷线保护角增大8°,因此对于经过山区的输电线路应采取较小的保护角,对重要的线路应尽可能采用双避雷线,以减少绕击事故,保证线路的安全运行。多年来的运行经验证明,输电线路如能广泛采用自动重合闸或备用电源自动投入装置,对保证不间断供电所起的作用很大。因为线路的雷击故障往往是瞬时性的,有70-80%是可以重合成功的。 二、变电所的防雷保护 对于变电所的设备应完全处于避雷针或避雷线的保护范围之内,不留任何空白点之外,最主要的问题是认真做好具有完善的进线保护。长期的运行经验证明,进线保护段首段的管型避雷器GB,能有效地限制

浸入波的幅值,并使通过母线上阀型避雷器的电流不致超过5千安。当线路断路器断开运行且带有电压时,如果未安装管型避雷器GB2,线路侧落雷时由于雷电波反射造成电压升高将使断路器的套管发生闪络。但必须指出的是GB2的外部间隙不能过小,否则容易在断路器合闸状态下也发生动作,而产生截断振荡波,将会威胁主变压器的安全,这类事故在国内外都多次发生过,应引以为戒。对进线保护简化的农村变电站,避雷器与主变压器的距离越近越好(一般最好小于5米)。三、研究解决配电网中的铁磁谐振过电压 谐振按其性质不同分线性谐振、参数谐振和铁磁谐振三种。在中性点非有效接地系统中主要有基波谐振、高频谐振和分频谐振。基波谐振时两相电压同时升高,而分频谐振也是两相电压同时升高。这种情况出现时,过电压和过电流的倍数均较高,所以往往造成电压互感器烧毁和保险丝熔断,后果比较严重,此类事故十分普遍。来源:输配电设备网根据实际运行经验,铁磁谐振的发生往往是由下列激发条件所造成的:(1)电压互感器的突然投入;(2)线路发生单相接地(包括弧光接地); (3)系统运行方式突然改变或某些电气设备投、切;(4)系统负荷发生较大的波动;(5)电网频率波动;(6)负荷不平衡变化。为了解决上述问题,我们有的放矢地进行了大量的试验研究工作,也采取了一些有效的措施,诸如:1.选用励磁特性好,在最高线电压下铁芯磁通不易饱和的电压互感器,也可考虑采用电容式电压互感。 2.对10-35千伏系统中性点经消弧线圈接地的高压电网,做到合理布

20kV配电电压等级的应用与节能减排

20kV配电电压等级的应用与节能减排 摘要:节能降耗是国家“十一五”规划纲要的目标之一,应积极将节能的新科技、新措施利用到实际中去。20kV配电电压等级已在一些国家得到应用,实践证明20kV配电网络能够有效减少线损率,节能效果明显。本文从电网远景建设规模、可靠性、电压质量、经济性和节能方面对浙江某规划区采用10kV配网模式和20kV配电模式进行规划比较,并对采用20kV 提出相关的建议。 关键词:节能减排 20kV 节约型电网 1前言 国家“十一五”规划纲要明确提出,到2010年全国单位GDP能耗和主要污染物排放总量分别比2005年降低20%和10%。这是贯彻科学发展观和建设和谐社会的重大举措,也是加快建设资源节约型、环境友好型社会的迫切需要。因此,贯彻落实科学发展、节约发展的工作思路,扎实做好节能降耗工作,是义不容辞的社会责任。目前,加强线损管理,落实降损措施,已经成为供电企业经营管理的重要内容之一。 现阶段,国际上许多国家采用了20kV等级的配电网络,理论和实践均证明在一定负荷密度的条件下,以采用相同导线输送相同功率电能,20kV供电线路的有色金属耗量可减少50%,节约建设投资约40%,降低电能损耗50%以上,可为用电容量数百kV安到几万kV 安的客户提供灵活、经济的接入方案,供电能力和供电可靠性得到提高,有效改善客户端的电压质量。2007年,根据国家电网“关于推广20kV电压等级的通知”的精神,江苏省率先在省内13个市推广2OkV电压等级试点供电项目。近几年,其他省份也在积极开展20kV的 相关工作。 与传统的10kV配电网相比,20kV配电网电压不但可以增加供电能力,有效减少变电站和线路布点密度,方便客户接入,大用户效益突出等优点,而且节能降损效益可观,环保效益突出。据测算,输送同等功率,2OkV供电线路的有色金属耗量可减少50%,节约建设投资约40%等。然而,针对于20kV配电电压等级的优越性来说,目前国内20kV电气设备生产能力并不完善,存在建设成本相对较高、运行经验少、与其他区域电网配合困难等问题,因此还未得到广泛应用。但是在发展快速、负荷密度定位高,而且存在很多新区和准新区的开发区域,局部采用20kV是存在可能的,应积极进行论证分析。在此情况下,选定浙江某城市区块,根据该区块发展的阶段和负荷水平,开展了20kV和10kV规划比较研究。

农村配电网低电压产生的原因及治理措施 王宁

农村配电网低电压产生的原因及治理措施王宁 发表时间:2017-12-28T15:19:32.407Z 来源:《建筑学研究前沿》2017年第20期作者:王宁邢瑞祥杨淑贞 [导读] 农村低电压治理已经成为供电部门提高服务质量的首要课题。 国网鹤壁供电公司河南鹤壁 458030 摘要:在城镇一体化的进程中,地方政府在进行社会主义新农村建设、提高农民生活质量和扩大农民消费水平和扩大内需的过程中,采取了很多在财政和贸易共同发展的创新性工作,其中家电下乡和家电补贴都是比较实用的方式。但是很多农村在使用上千瓦的家电设备之后,却没有更新电力承载系统用,导致农村在用电高峰期时断电、卡电、过负荷的情况时有发生,农村低电压治理已经成为供电部门提高服务质量的首要课题。 关键词:农村配电网;低电压;产生的原因;治理措施 引言 电能作为人们工作生活中必不可缺的能源,在人类社会中有着极为广泛的应用,这就给电力配电造成了严重负荷,从而进一步加剧了电力配电的困难程度。而在电力的配电过程中,电压无疑是衡量电能质量的极其关键的硬性指标,它对电力设备的工作效能发挥着至关重要的作用。因此,国家电网与社会对配电网低压问题极为关注。在对配电网低电压的有效治疗方法进行探讨前,我们必须明白配电网低电压的发生原因。 1 农村低电压存在问题分析 (1)配电变压器容量不足、导线线径小,不满足现有负荷需求。主要是因为农网一期、二期改造时标准不高、规划不到位,随着农村生活水平的提高,大量的家用电器如电暖器、电磁炉、空调器、电冰箱等投入使用,造成配电变压器容量和导线载流量严重不足,导致台区低电压。 (2)10kV中压配电线路和台区低压线路供电半径大。因为在电阻率及导线线径不变的情况下,电压降与线路长度成正比,所以线路长度过长导致线路末端电压偏低。 (3)三相负荷不平衡。主要是由于设备管理单位不认真统计台区总体范围内的供电用户和负荷情况,不合理分配三相负荷,造成配电变压器低压侧三相电流不平衡,引起低电压现象。 (4)无功补偿容量不足。农村配电网(简称农网)处于电力系统的最末端,无功电源不足,农网负荷本身又大量消耗无功,随着城乡居民生活条件的改善,农村用电负荷迅速增大,农网无功需求及相应的损耗也随之上升,造成农网无功补偿更显不足。 (5)运维管理不到位。农网供电低压侧多采用三相四线制接线方式,一些农电管理人员由于责任心不强,往往直接从两边相接引接户线供电,中间相被忽略,导致三相负荷不平衡,引起一相电压偏高而另两相电压偏低;或者随着台区负荷的无序增长,工作人员又缺乏对负荷平衡情况进行监测,原本相间平衡的负荷,也会变得不平衡。 (6)对配电变压器容量承载能力管控不到位。由于没有合理地根据负荷实际情况及时调整配电变压器容量或落实新增布点增容,导致配电变压器容量不足引起低电压。 (7)未充分利用配电变压器的调压功能。当设备承载能力满足,因负荷分布不均匀引起低电压现象时,未能及时利用配电变压器调压分接开关调整功能解决负荷偏相引起的低电压问题。 2 低电压的治理措施 2.1科学规划和建设电网,切实提升电网供电能力 遵循“统一规划、分步实施、因地制宜、适度超前”的原则,按照电网规划设计技术导则等要求,科学规划、建设各级电网,提升电网供电能力,实现高、中、低压各级电网协调发展。根据供电区域饱和负荷值,确定高中压主干线路供电半径和导线截面,满足负荷中长期发展要求,避免大拆大建和重复改造。按照“小容量、密布点、短半径”的原则,延伸10kV线路,缩短低压线路供电半径。对户均拥有配变容量偏低无法满足用电需求的,结合农网改造升级工程实施,采取增加布点、增容改造、以大换小、梯次利用等方式,提高户均拥有配变容量。特别是要加大对户均配变容量低于0.5kVA/户的台区改造力度,切实提高供电能力。在负荷密度较低、用户分布范围较广、10kV供电线路过长、用户侧供电电压偏低的偏远地区或山区,可采取加装线路调压器、应用单相配电变压器或采用35kV配电化的供电方式。 2.2加强电压质量监测,定期开展“低电压”普查和预判 充分利用电能质量在线监测系统、用电信息采集系统公变采集终端、配变智能监测终端、智能电表、电压监测等装置,开展配电台区及末端用户供电电压质量在线实时监测。定期开展配网“低电压”情况普查。选取春节、迎峰度夏、迎峰度冬期间高峰时段某个典型日的17:00~22:00时段,对超供电半径和重过载配电台区所带线路的末端用户,采取在线监测与人工手持电压仪表入户测量相结合的方式,组织开展电压情况普测,全面掌握配网“低电压”情况。 开展配网“低电压”情况预判。加强配网用电负荷实时监测,开展配网用电需求与经济社会发展相关性分析。根据用电负荷增长趋势、电源支撑、变电站容载比、线路负载率、供电半径、线径以及配电台区户均拥有配变容量等情况,分析研判变电站主变、配变和中低压供电线路在高峰负荷期间负荷承载能力,按照可能发生“低电压”情况的严重程度,分轻、重、严重三个等级开展预警。充分发挥电能质量在线监测系统的分析功能,实现“低电压”在线预警。 2.3监控技术的加强 电力企业除了在管理制度上进行提高之外,还需要从电力系统监控技术的加强上提供合理治理方案,同时结合区域内的用电规划和用户实际需求对变电站的荷载进行处理,用提高用电线路的质量和能力的角度实现低电压故障的治理。用改进用电回路的方式和迂回线路技术的角度优化配电网络,增加配电变压器的容量以及提高台区位置的使用效率,改善农村用电质量和企业供电能力。在处理用电密度过高的过程中,需要将供电路程较长的部分添加表程适中的电压调节器,增加电路末端的电压数值,有效缓解低压供电线路的承载负荷,规避单一适配器无法对多种供电半径引发用电量不足的供电弊端。监控技术也需要对供电线的无功补偿做出优化,其中包括调整变压器的接头、无功补偿电容器以及其他配置的集中无功补偿设备,延伸到整个农村电网设备的无功补偿自动化应用。针对无功效率波动情况使用不

过电压产生的危害及防止措施

编号: 中国农业大学现代远程教育 毕业论文(设计) 论文题目:过电压产生的危害及防止措施 学生 指导教师 专业 层次 批次 学号 学习中心 工作单位 年月 中国农业大学网络教育学院制

目录 摘要 (3) 前言 (4) 1过电压的基本概念 (4) 1.1过电压的定义 (4) 1.2过电压的分类 (4) 2过电压的危害 (5) 2.1雷击过电压的危害 (5) 2.2操作过电压的危害 (6) 2.3暂态过电压 (7) 3过电压的防止措施 (8) 3.1变电站倒闸操作 (8) 3.1.1切断空载线路过电压 (8) 3.1.2切断空载变压器的过电压 (9) 3.1.3电弧接地过电压 (10) 3.1.4铁磁谐振过电压 (11) 3.1.5电磁式电压互感器饱和过电压 (11) 3.2雷电 (12) 4过电压保护设备及其保护原理、作用 (13) 4.1避雷器 (13) 4.2避雷针 (14) 4.3避雷线 (14) 4.4放电间隙 (15) 结束语 (15) 参考文献 (15)

电力系统过电压是危害电力系统安全运行的主要因素之一,过电压一旦发生,往往造成电气设备损坏和大面积停电事故。过电压来自两个方面,一种是遭受雷击产生的外部过电压,另一种是操作和事故时引起的内部过电压,主要是操作过电压。过电压的数值与电力网和结构、系统容量及参数、中性点接地方式、断路器性能等有关。通常采用避雷器、避雷针、避雷线等方法限制外部过电压。而对于内部过电压,针对操作中产生过电压的形式可采取不同的控制措施,如对于谐振过电压,可采用并联电阻或改变系统运行参数的方法加以限制,对于电弧接地过电压,则产用将系统中性点直接接地的方法等,以达到保证设备安全、系统安全、人员安全的目的。 关键词:过电压危害防止限制

配电网的电压质量管理

配电网的电压质量管理 电压是电能质量的重要指标之一。电压合格率是评价电网电压质量、生产调度管理工作、制订电网规划和技术改造计划的重要依据,也是考核系统运行管理水平的重要指标之一。因此,建立完善的能反映全貌的电压监测体系,并对其监测数据加强分析工作,对供电企业的调度运行管理和规划改造工作十分重要。目前传统的电压监测手段要求每一监测点需要人员现场实时跟踪、人工打印和统计处理。而随着110 kV无人值班变电站的增加,街区开关站、配电所的大量建立,电压监测点(尤其是用户端)也随之增加,监测点分散,范围更大,倘若仍采用目前的监测手段,需要增加人力定期到各监测点收集监测数据,由此造成的误抄率高、数据失电丢失、故障处理率低等现象,将大大影响监测数据的参考价值,对电压质量管理十分不利。因此如何摆脱目前电压监测管理中人工介入,实现电压监测自动化,是我们应当探讨的问题。 一、频率偏移 频率偏移是电力系统基波频率偏离额定频率的程度,大容量负荷或发电机的投切以及控制设备不完善都有可能导致频率偏移。我国电力法规规定,大容量电力系统的频率偏移不得超过±0.2Hz。 系统频率的过大变动对用户和发电厂的不利影响主要有如下几个方面: (1)频率变化引起异步电动机转速变化,导致纺织、造纸等机械的产品质量受到影响;(2)功率降低,导致传动机械效率降低; (3)系统频率降低引起异步电机和变压器激磁电流增加,所消耗的无功功率增加,恶化了电力系统的电压水平; (4)频率的变化还可能引起系统中滤波器的失谐和电容器组发出的无功功率变化。 二、电压偏差 电压偏差是指系统各处的电压偏离其额定值的百分比,它是由于电网中用户负荷的变化或电力系统运行方式的改变,使加到用电设备的电压偏离网络的额定电压。若偏差较大时,对用户的危害很大,不仅影响用电设备的安全、经济运行,而且影响生产的产品产量与质量。对于配电网最广泛应用的电动机,当电压低于额定电压时,转距减小,转速下降,导致工厂产生次品、废品;电流增加,电机温升增加,线圈发热,加剧绝缘老化,甚至烧坏。当电压高于额定电压时,转矩增加,使联接轴和从动设备上的加速力增加,引起设备的振动、损坏;起动电流增加、在供电线路上产生较大的电压降,影响其它电气设备的运行。 对于发电机而言,电压偏差会引起无功电流的增大,对发电机转子的去磁效应增加,电压降低,过度增大激磁电流使转子绕组的温升超过容许范围,加速绝缘老化,降低电机寿命,甚至烧坏。 对照明灯具,电压对灯的光通量输出和寿命的影响很大,当加于灯泡的电压低于额定电压时,发光效率会降低,人的工作环境恶化,视力减弱;当高于额定电压时,灯泡寿命会减少、烧坏。 三、波形失真 波形失真即理想工频正弦波的稳态偏移,常用其频谱含量来描述,波形失真主要包括直流偏移高次谐波、间谐波、陷波和噪声。交流电网中如果存在直流成分,则称为直流偏移。直流偏移是由于地磁波产生的电磁干扰和电网中半整流设备的存在,直流电流流过变压器会引起变压器的直流偏磁,产生附加损耗;直流电流还会导致接地体或其它连接器的电化学腐蚀,

相关主题
文本预览
相关文档 最新文档