当前位置:文档之家› 曲线与方程,圆的方程doc

曲线与方程,圆的方程doc

曲线与方程,圆的方程doc
曲线与方程,圆的方程doc

曲线与方程、圆的方程

1.曲线C 的方程为:f(x,y)=0?曲线C 上任意一点P (x 0,y 0)的坐标满足方程f(x,y)=0,即f (x 0,y 0)=0;且以f(x,y)=0的任意一组解(x 0,y 0)为坐标的点P (x 0,y 0)在曲线C 上。

依据该定义:已知点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐标满足曲线方程。求动点P(x,y)的轨迹方程即求点P 的坐标(x,y)满足的方程(等式)。求动点轨迹方程的步骤:①建系,写(设)出相关点的坐标、线的方程,动点坐标一般设为(x,y),②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标都是方程的解,且以方程的解为坐标的点都满足条件。

[举例1] 方程04)1(22=-+-+y x y x 所表示的曲线是: ( )

A B C D

解析:原方程等价于:???≥+=--4

0122y x y x ,或422=+y x ; 其中当01=--y x 需422-+y x 有意义,等式才成立,即42

2≥+y x ,此时它表示直线01=--y x 上不在圆42

2=+y x 内的部分,这是极易出错的一个环节。选D 。

[举例2] 已知点A (-1,0),B (2,0),动点M 满足2∠MAB=∠MBA ,求点M 的轨迹方程。 解析:如何体现动点M 满足的条件2∠MAB=∠MBA

是解决本题的关键。用动点M 的坐标体现2∠MAB=∠MBA 的最佳载体是直线MA 、MB 的斜率。

设M (x ,y ),∠MAB=α,则∠MBA=2α,它们是直线 MA 、MB 的倾角还是倾角的补角,与点M 在x 轴的上方 还是下方有关;以下讨论:

① 若点M 在x 轴的上方, ,0),90,0(00>∈y α

此时,直线MA 的倾角为α,MB 的倾角为π-2α, ,2

)2tan(,1tan -=-+==∴x y x y k MA απα (2090≠α)

,2tan )2tan(ααπ-=- ,)1(112222+-+?

=--∴x y x y

x y

得: 132

2

=-y x ,∵1,>∴>x MB MA . 当2090=α时, α=450

,MAB ?为等腰直角三角形,此时点M 的坐标为(2,3),它满足上述方程. ②当点M 在x 轴的下方时, y <0,同理可得点M 的轨迹方程为)1(132

2

≥=-x y x , ③当点M 在线段AB 上时,也满足2∠MAB=∠MBA,此时y=0(-1<x<2). 综上所求点的轨迹方程为)21(0)1(132

2

<<-=≥=-x y x y x 或.

[巩固1]右图的曲线是以原点为圆心,1为半径的圆的一部分,

则它的方程是

A .(2

1y x -+)·(21x y -+)=0

B .(21y x --)·(21x y --)=0

C .(21y x -+)·(21x y --)=0

D .(21y x --)·(21x y -+)=0

[巩固2]已知点R (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足·PM =,2PM +3=,当点P 移动时,求M 点的轨迹方程。

[迁移]正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 是棱AB 的中点,点P 是平面ABCD 上的一动点,且点P 到直线A 1D 1的距离两倍的平方比到点M 的距离的平方大4,则点P 的轨迹为: A .圆 B .椭圆 C .双曲线 D .抛物线

2.圆的标准方程刻画了圆的位置特点(圆心与半径),圆的一般方程反映了圆的代数特点(二元二次方程Ax 2+By 2+Cxy+Dx+Ey+F=0?A=B ≠0,C=0,且D 2+E 2-4AF>0)。判断点P (x 0,y 0)与⊙M :(x-a)2+(y-b)2= r 2的位置关系,用|PM|与r 的大小,即:|PM|>r ?(x 0-a)2+(y 0-b)2> r 2?P 在⊙M 外;|PM|

[举例1]一圆经过A (4,2),B (-1,3)两点,且在两坐标轴上的四个截距之和为2,则圆

的方程为 。

解析:研究圆在坐标轴上的截距,宜用一般方程(因为与圆心、半径没有直接联系),设圆

的方程为x 2+y 2+Dx+Ey+F=0,∵圆过点A 、B ,∴4D+2E+F+20=0 ①,-D+3E+F+10=0 ②,

圆在x 轴上的截距即圆与x 轴交点的横坐标,当y=0时,x 2+Dx+F=0,x 1+x 2=-D

圆在y 轴上的截距即圆与y 轴交点的纵坐标,当x=0时,y 2+Ey+F=0,y 1+y 2=-E

由题意知:-D-E=2 ③,解①②③得D=-2,E=0,F=-12。

[举例2]若存在实数k 使得直线l :kx-y-k+2=0与圆C :x 2+2ax+y 2-a+2=0无公共点,则实数

a 的取值范围是: 。

解析:本题看似直线远的位置关系问题,其实不然。注意到直线l 对任意的实数k 恒过定点

M (1,2),要存在实数k 使得直线l 与⊙C 相离,当且仅当M 点在圆外;方程x 2+2ax+y 2-a+2=0

变形为:(x+a)2+y 2= a 2+a -2, M 点在⊙C 外?(1+a)2+4>a 2+a -2>0,解得:-71. 注:本题中a 2+a -2>0是极易疏漏的一个潜在要求。

[巩固1]过点A (3,-2),B (2,1)且圆心在直线x-2y-3=0上的圆的方程是 。

[巩固2]已知定点M(x 0,y 0)在第一象限,过M 点的两圆与坐标轴相切,它们的半径分别为r 1, r 2,则r 1r 2= 。

[迁移] 关于曲线42

:1C x y +=给出下列说法:①关于直线0y =对称;②关于直线0x =对称;③关于点(0,0)对称;④关于直线y x =对称;⑤是封闭图形,面积小于π;⑥是封闭图形,面积大于π;则其中正确说法的序号是

3.涉及直线与圆的位置关系的问题,宜用圆心到直线的距离d 来研究。d =r (r 为圆的半径)?直线与圆相切;

过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程为x 0x+y 0y=r 2;过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点A 、B 连线的直线方程为x 0x+y 0y=r 2。过⊙A 外一点P 作圆的切线PQ (Q 为切点),则|PQ|=22||r PA -。d

2=0的交点的圆系方程:F Ey Dx y x ++++2

2+λ(A x +B y +C )=0 。d >r ?直线与圆相离,圆周上的点到直线距离的最小值为d -r ,最大值为d +r 。

[举例1] 从直线x -y+3=0上的点向圆1)2()2(2

2=+++y x 引切线,则切线长的最小值是 A.223 B.214 C.423 D. 2

23-1 解析:圆1)2()2(22=+++y x 的圆心A (-2,-2),直线x -y+3=0上任一点P ,过引圆的

切线PQ (Q 为切点),则|PQ|=1||2

-PA ,当且仅当|PA|最小时|PQ|最小,易见|PA|的最

小值即A 到直线x -y+3=0的距离,为

223,此时|PQ|=214,选B 。 [举例2] 能够使得圆222410x y x y +-++=上恰有两个点到直线20x y c ++=距离等于

1的c 的一个值为:A .2 C .3 D .

解析:本题如果设圆上一点的坐标,用点到直线的距离公式得到一个方程,进而研究方程解的个数,将是非常麻烦的。注意到圆心M (1,-2),半径r =2,结合图形容易知道,当且仅当M 到直线l :20x y c ++=的距离d ∈(1,3)时,⊙M 上恰有两个点到直线l 的距离等于1,由d =5|

|c ∈(1,3)得:)53,5()5,53(?--∈c ,选C 。

[巩固1] 若直线(1+a)x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为 ( )

(A )1,-1 (B )2,-2 (C )1 (D )-1

[巩固2]直线l 1:y=kx +1与圆C :x 2+y 2+2kx+2my=0的两个交点A 、B 关于直线l 2:x+y=0对称,则?= 。

[迁移]实数x ,y 满足24,012222--=+--+x y y x y x 则

的取值范围为 ( )

A .),34

[+∞ B .]34

,0[ C .]34,(--∞ D .)0,34[- 4.判断两圆的位置关系用圆心距与它们半径和、差的大小。⊙M 、⊙N 的半径分别为1r 、2r , |MN|>1r +2r ?外离,|MN|=1r +2r ?外切,|1r -2r |<|MN|<1r +2r ?相交,此时,若⊙M :

011122=++++F y E x D y x ,⊙N :022222=++++F y E x D y x ,过两圆交点的圆(系)的方程为:11122F y E x D y x +++++λ(22222F y E x D y x ++++)=0(⊙N 除外)。 特别地:当λ= -1时,该方程表示两圆的公共弦。连心线垂直平分公共弦。|MN|=|1r -2r |?内切,|MN|<|1r -2r |?内含。

[举例1]已知两圆O 1:x 2+y 2=16,O 2:(x-1)2+(y+2)2=9,两圆公共弦交直线O 1O 2于M 点,则O 1分有向线段MO 2所成的比λ= ( )

A .56

B .65

C .-56

D .-6

5

解析:直线O 1 O 2:y= -2x ,两圆公共弦:x-2y=6,于是有:M (

56,5

12-),有定比分点坐标公式不难得到λ的值,选C 。 [举例2] 若,}1)2(|),{(},16|),{(2

222B B A a y x y x B y x y x A =-≤-+=≤+= 且 则a 的取值范围是 ( ) A .1≤a B .5≥a C .51≤≤a D .5≤a

解析:集合A 、B 分别表示两个圆面(a=1时集B 表示一个点),A ∩B=B ?B ?A ,即两圆内含;有两圆圆心分别为原点和(0,2),半径分别为4和1-a ,于是有:2≤4-1-a ,解得:51≤≤a ,选C 。

[巩固1]圆心在直线034,034,042222=--+=--+=--y y x x y x y x 且经过两圆上的交点的圆的方程为

( ) A .032622=-+-+y x y x

B .032622=-+++y x y x

C .032622=---+y x y x

D .03262

2=--++y x y x [巩固2]若圆(x -a )2+(y -b )2=6始终平分圆x 2+y 2+2x +2y -3=0的周长,则动点M (a ,b )的轨迹

A.a 2+b 2-2a -2b +1=0

B.a 2+b 2+2a +2b +1=0

C.a 2+b 2-2a +2b +1=0

D.a 2+b 2+2a -2b +1=0

[迁移]与圆2x +2y x 2-=0外切且与y 轴相切的动圆圆心的轨迹方程为 。

5.圆的参数方程的本质是sin 2θ+ cos 2θ=1。参数方程的重要用途是设圆上一点的坐标时,可以减少一个变量,或者说坐标本身就已经体现出点在圆上的特点了,而无需再借助圆的方程来体现横纵坐标之间的关系。

[举例]已知圆1)1(22=-+y x 上任意一点P(x 、y)都使不等式x+y+m ≥0成立,则m 的取值范围是:A .[),12+∞- B (]0,∞- C (+∞,2) D ),21[+∞- ( ) 解析:不等式x+y+m ≥0恒成立?m ≥ -(x+y )恒成立,以下求-(x+y )的最大值: 记x= cos θ、y=1+ sin θ,-(x+y )= -( cos θ+1+ sin θ)= -1-2sin(θ+

4π)≤-1+2,选A 。 [巩固1] θθ

θcos 2sin )(+=f 的最大值为 。

[巩固2]在⊿ABC 中,已知

4

3cos cos ==b a A B ,c=10,P 是⊿ABC 的内切圆上一点,则PA 2+PB 2 +PC 2的最大值为 [迁移]动点P ,Q 坐标分别为()()

p Q cos sin sin cos αααα,,,31--+,(α是参数),

则|PQ |的最大值与最小值的和为 .

答案

1.[巩固1] D,[巩固2]y 2=4x (x>0),[迁移]在平面ABCD 上建立平面直角坐标系,选C 。

2、[巩固1] (x-1)2+(y+1)2= 5,[巩固2]∵点M 在第一象限,∴过点M 与两坐标轴相切的圆的方程可设为:(x -r)2+(y -r)2= r 2 , ∵圆过M(x 0,y 0)点,∴(x 0-r)2+(y 0-r)2= r 2,整理得: r 2-2(x 0+y 0)r+ x 02+y 02=0,由题意知r 1,r 2为该方程的两根,故r 1r 2= x 02+y 02。[迁移]在曲线C 上任取一点M(x 0,y 0),x 04+y 02=1, ∵|x 0|≤1, ∴x 04≤x 02, ∴x 02+y 02 ≥x 04+y 02=1,即点M 在圆 x 2+y 2=1外,选①②③⑥;

3、[巩固1]D ,[巩固2]-1,[迁移]A ;

4、[巩固1]A ,[巩固2] 圆x 2+y 2+2x +2y -3=0的圆心A (-1,-1),半径为5,⊙M 始终平分⊙A 的周长即

两圆的公共弦是⊙A 的直径,A 在直线:2(a+1)+2(b+1)y-(a 2+b 2)+3=0上,将a 点坐标代入即得,选B ;[迁移] x y 42=)0(>x 和0=y )0(

(word完整版)高中数学必修二直线与方程及圆与方程测试题.docx

一选择题(共 55 分,每题 5 分) 1. 已知直线经过点 A(0,4)和点 B ( 1, 2),则直线 AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点 ( 1,3) 且平行于直线 x 2 y 3 0 的直线方程为( ) A . x 2y 7 0 B . 2x y 1 0 C . x 2y 5 0 D . 2x y 5 0 3. 在同一直角坐标系中,表示直线 y ax 与 y x a 正确的是( ) y y y y O x O x O x O x A B C D 4.若直线 x+ay+2=0 和 2x+3y+1=0 互相垂直,则 a=( ) A . 2 B . 2 C . 3 3 3 3 2 D . ( 2 5.过 (x , y )和 (x , y )两点的直线的方程是 ) 1 1 2 2 A. y y 1 x x 1 y 2 y 1 x 2 x 1 B. y y 1 x x 1 y 2 y 1 x 1 x 2 C.( y 2 y 1 )( x x 1) (x 2 x 1 )( y y 1) 0 D.( x 2 x 1)( x x 1) ( y 2 y 1 )( y y 1 ) 0 6、若图中的直线 L 1 、 L 2、 L 3 的斜率分别为 K 1、K 2、 K 3 则( ) A 、 K ﹤ K ﹤ K L 3 1 2 3 L B 、 K ﹤ K ﹤ K 2 1 3 C 、 K 3﹤ K 2﹤ K 1 o x D 、 K 1﹤K 3﹤ K 2 L 1 7、直线 2x+3y-5=0 关于直线 y=x 对称的直线方程为( ) A 、 3x+2y-5=0 B 、 2x-3y-5=0 C 、 3x+2y+5=0 D 、 3x-2y-5=0 8、与直线 2x+3y-6=0 关于点 (1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0

三角函数诱导公式、万能公式、和差化积公式、倍角公式等公式总结及其推导

三角函数诱导公式: 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n?(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 三角函数诱导公式- 其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα?cotα=1 sinα?cscα=1 cosα?secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ?tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ?tanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα

高中数学圆的方程典型例题总结归纳(极力推荐)

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(2 2 . ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 解:∵点()42, P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422 =++-k k 解得4 3 = k

高中数学知识要点-曲线与方程,圆的方程

曲线与方程、圆的方程 1.曲线C 的方程为:f(x,y)=0?曲线C 上任意一点P (x 0,y 0)的坐标满足方程f(x,y)=0,即f (x 0,y 0)=0;且以f(x,y)=0的任意一组解(x 0,y 0)为坐标的点P (x 0,y 0)在曲线C 上。 依据该定义:已知点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐标满足曲线方程。求动点P(x,y)的轨迹方程即求点P 的坐标(x,y)满足的方程(等式)。求动点轨迹方程的步骤:①建系,写(设)出相关点的坐标、线的方程,动点坐标一般设为(x,y),②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标都是方程的解,且以方程的解为坐标的点都满足条件。 [举例1] 方程04)1(22=-+-+y x y x 所表示的曲线是: ( ) A B C D 解析:原方程等价于:???≥+=--4 0122y x y x ,或422=+y x ; 其中当01=--y x 需422-+y x 有意义,等式才成立,即422≥+y x ,此时它表示直 线01=--y x 上不在圆422=+y x 内的部分,这是极易出错的一个环节。选D 。 [举例2] 已知点A (-1,0),B (2,0),动点M 满足2∠MAB=∠MBA ,求点M 的轨迹方程。 解析:如何体现动点M 满足的条件2∠MAB=∠MBA 是解决本题的关键。用动点M 的坐标体现2∠MAB=∠MBA 的最佳载体是直线MA 、MB 的斜率。 设M (x ,y ),∠MAB=α,则∠MBA=2α,它们是直线 MA 、MB 的倾角还是倾角的补角,与点M 在x 轴的上方 还是下方有关;以下讨论: ① 若点M 在x 轴的上方, ,0),90,0(00>∈y α 此时,直线MA 的倾角为α,MB 的倾角为π-2α, ,2 )2tan(,1tan -=-+==∴x y x y k MA απα (2090≠α) ,2tan )2tan(ααπ-=- ,)1(11222 2+-+?=--∴x y x y x y 得: 132 2 =-y x ,∵1,>∴>x MB MA .

直线与圆的方程单元测试卷含答案

直线与圆的方程单元测试卷 一。选择题 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B ) (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A ) (A) 11<<-a (B) 10<-

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记 一、函数、导数 1、函数的单调性 (1)设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减 函数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. *二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+- 4、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )(' =;⑥x x e e =' )(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 5、导数的运算法则 (1)' ' ' ()u v u v ±=±. (2)' ' ' ()uv u v uv =+. (3)'' '2 ()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值 7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数 分数指数幂 (1)m n a =0,,a m n N *>∈,且1n >). (2)1m n m n a a - = = (0,,a m n N * >∈,且1n >). 根式的性质 (1)当n a =;

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

直线和圆的方程测试题

西中高一(14)(15)班《直线与圆的方程》单元测试 韩世强 时间:120分钟 满分:150分 一、选择题:本大题共10小题,每小题5分,共50分. 1.在直角坐标系中,直线033=-+y x 的倾斜角是( ) A . 6 π B . 3 π C . 6 5π D . 3 2π 2.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是( ) 3.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( ) A .1 B .13- C .2 3 - D .2- 4. 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( ) A .3- B .6- C .2 3 - D .3 2 5. 圆x 2+y 2 -4x =0在点P (1,3)处的切线方程为( ) +3y -2=0 +3y -4=0 -3y +4=0 -3y +2=0 6 若圆C 与圆1)1()2(2 2=-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(2 2=++-y x B .1)1()2(2 2=-+-y x C .1)2()1(2 2=++-y x D .1)2()1(2 2 =-++y x 7.已知两圆的方程是x 2 +y 2 =1和x 2 +y 2 -6x -8y +9=0,那么这两个圆的位置关系是( ) A .相离 B .相交 C .外切 D .内切 8.过点(2,1)的直线中,被圆x 2 +y 2 -2x +4y =0截得的最长弦所在的直线方程为( ) A .3x -y -5=0 B .3x +y -7=0 C .x +3y -5=0 D .x -3y +1=0 9.若点A 是点B (1,2,3)关于x 轴对称的点,点C 是点D (2,-2,5)关于y 轴对称的点,则|AC |=( )

2016高中数学诱导公式全集总结

2016高中数学诱导公式全集总结 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα

cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-s inα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于π/2*k±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如:

圆的方程知识点总结和典型例题

圆的方程知识点总结和经典例题 1.圆的定义及方程 注意点 (1)求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程. (2)对于方程x 2 +y 2 +Dx +Ey +F =0表示圆时易忽视D 2 +E 2 -4F >0这一条件. 2.点与圆的位置关系 点M (x 0,y 0)与圆(x -a )2 +(y -b )2 =r 2 的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2 +(y 0-b )2 >r 2 . (2)若M (x 0,y 0)在圆上,则(x 0-a )2 +(y 0-b )2 =r 2 . (3)若M (x 0,y 0)在圆内,则(x 0-a )2 +(y 0-b )2 <r 2 . 3.直线与圆的位置关系 (1)直线与圆的位置关系的判断方法 设直线l :Ax +By +C =0(A 2 +B 2 ≠0), 圆:(x -a )2 +(y -b )2 =r 2(r >0), d 为圆心(a ,b )到直线l 的距离,联立直线和圆的方程,消元后得到的一元二次方程的 判别式为Δ.

相离 d >r Δ<0 2.代数法:根据直线方程与圆的方程组成的方程组解的个数来判断. 3.直线系法:若直线恒过定点,可通过判断点与圆的位置关系来判断直线与圆的位置关系,但有一定的局限性,必须是过定点的直线系. (2)过一点的圆的切线方程的求法 1.当点在圆上时,圆心与该点的连线与切线垂直,从而求得切线的斜率,用直线的点斜式方程可求得圆的切线方程. 2.若点在圆外时,过这点的切线有两条,但在用设斜率来解题时可能求出的切线只有一条,这是因为有一条过这点的切线的斜率不存在. (3)求弦长常用的三种方法 1.利用圆的半径r ,圆心到直线的距离d ,弦长l 之间的关系r 2 =d 2 +? ?? ? ?l 22 解题. 2.利用交点坐标 若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间距离公式计算弦长. 3.利用弦长公式 设直线l :y =kx +b ,与圆的两交点(x 1,y 1),(x 2,y 2),将直线方程代入圆的方程,消元后利用根与系数的关系得弦长l = 1+k 2|x 1-x 2|= 1+k 2 [ x 1+x 2 2 -4x 1x 2]. 4. 圆与圆的位置关系 (1)圆与圆位置关系的判断方法 设圆O 1:(x -a 1)2 +(y -b 1)2 =r 2 1(r 1>0), 圆O 2:(x -a 2)2 +(y -b 2)2 =r 2 2(r 2>0). 方法位置关系 几何法:圆心距d 与r 1,r 2 的关系 代数法:两圆方程联立组成方 程组的解的情况

高中数学必修二《直线与方程及圆与方程》测试题_及答案

直线方程 一选择题 1. 已知直线经过点A(0,4)和点B(1,2),则直线AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( ) A .072=+-y x B.012=-+y x C .250x y --= D .052=-+y x 3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) x y O x y O x y O x y O A B C D 4.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a =( ) A.32- B .32 C.2 3 -? D.23 5.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( ) A. 23 B .32 C .32- ?D. 2 3 - 6、若图中的直线L 1、L 2、L 3的斜率分别为K ) A 、K1﹤K 2﹤K 3 B 、K2﹤K 1﹤K 3 C、K 3﹤K 2﹤K 1 D 、K 1﹤K 3﹤K 2 7、直线2x+3y-5=0关于直线y=x A、3x+2y-5=0 B 、2x-3y-5=0 C 、3x+2y +5=0 D 、3x -2y -5=0 8、与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0 9、直线5x -2y-10=0在x 轴上的截距为a,在y 轴上的截距为b ,则( ) A.a=2,b=5; B.a =2,b =5-; C.a=2-,b=5; D.a =2-,b=5-. 10.平行直线x -y +1 = 0,x -y -1 = 0间的距离是 ?( ) A. 2 2 B.2?C .2 D.22 11、过点P(4,-1)且与直线3x-4y +6=0垂直的直线方程是( ) A 4x+3y -13=0 B 4x-3y-19=0 C 3x -4y-16=0 D 3x+4y -8=0 二填空题(共20分,每题5分) 12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __; x

圆知识点总结及归纳

第一讲圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x-a)2+(y-b)2=r2 展开并整理得x2+y2-2ax-2by+a2+b2-r2=0,取D=-2a,E=-2b,F=a2+b2-r2,得x2+y2+Dx+Ey+F=0. (2)将圆的一般方程x2+y2+Dx+Ey+F=0通过配方后得到的方程为:

(x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心, 1 2 D 2+ E 2-4 F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2,-E 2);③当D 2+E 2-4F <0时,方程没有实数解, 因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为 1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. 2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

方法一: 方法二: (四)圆与圆的位置关系 1 外离 2外切 3相交 4内切 5内含 (五)圆的参数方程 (六)温馨提示 1、方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是: (1)B=0;(2)A=C≠0;(3)D2+E2-4AF>0.

曲线与方程(轨迹方程)

高二数学第二章曲线与方程学案 学习目标: 1、理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 2、掌握求曲线的方程的方法及一般步骤; 学习重点:理解曲线和方程的概念,掌握求曲线的方程的方法及一般步骤; 学习难点:曲线和方程概念的理解; 学习过程: 完成教学目标1:理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 新授知识:曲线的方程与方程的曲线的概念 一般地,在直角坐标系中,如果其曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点; 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 例1、判断下列结论的正误并说明理由 (1)过点A (3,0)且垂直于x 轴的直线为x=3 ; (2)到x 轴距离为2的点的轨迹方程为y=2 ; (3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 ; 练习:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗? 2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C ,中线O AO (为原点)的 方程是0=x 吗?为什么? 3、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A.曲线C 的方程是(,)0f x y = B.方程(,)0f x y =的曲线是C C.坐标不满足方程(,)0f x y =的点都不在曲线C 上 D.坐标满足方程(,)0f x y =的点都在曲线C 上 例2、已知方程252 2=+by ax 的曲线经过点)3 5,0(A 和点)1,1(B ,求a 、b 的值。 练习:已知方程 2 2 25x y +=表示的曲线C 经过点)A m ,求m 的值。 完成教学目标2:掌握求曲线的方程的方法及一般步骤; 类型一:待定系数法求轨迹方程(设出标准方程,根据题意求出a ,b ,p ) 例1:已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O , 且0=?,||2||=,求椭圆的方程。 练习:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程; 类型二:直接法求轨迹方程(根据题目条件,直译为关于动点的几何关系,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。注意:是否应该建立适当的坐标系) 例2:已知点F(1,0),直线l:x =-1,P为平面上的动点,过点P作直线l的垂线,垂 足为点Q,且FQ FP QF QP ?=?,求动点P的轨迹C的方程; **练习:已知动点M 到定点A (1,0)与到定直线l :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?

高中数学诱导公式全集总结

2019高中数学诱导公式全集总结 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα

直线和圆的方程知识点总结讲课稿

直线和圆的方程知识 点总结

一、直线方程. 1. 直线的倾斜角 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3. ⑴两条直线平行: 1l 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=?l . ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=?⊥k k l l 4. 直线的交角: 5. 过两直线? ??=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A C By Ax d +++= . 注: 1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=. 2. 定比分点坐标分式。若点P(x,y)分有向线段1212 PP PP PP λλ=u u u r u u u r 所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λλλλ++=++=1,121 21y y y x x x 特例,中点坐标公式;重要结论,三角形重心坐标公式。 3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k 4. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 12()x x ≠

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

直线与圆的方程单元测试题含答案

《直线与圆的方程》练习题1 一、 选择题 1.方程x 2+y 2 +2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B ) (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A ) (A) 11<<-a (B) 10<-

8.一束光线从点(1,1)A -出发,经x 轴反射到圆22 :(2)(3)1C x y -+-=上的最短路径是 ( A ) A .4 B .5 C .321- D .26 9.直线0323=-+y x 截圆x 2 +y 2 =4得的劣弧所对的圆心角是 ( C ) A 、 6π B 、4π C 、3π D 、2 π 10.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点P (x ,y )、点P ′(x ′,y ′)满足x ≤x ′且y ≥y ′,则称P 优于P ′.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 ( ) A.AB B.BC C.CD D.DA [答案] D [解析] 首先若点M 是Ω中位于直线AC 右侧的点,则过M ,作与BD 平行的直线交ADC 于一点N ,则N 优于M ,从而点Q 必不在直线AC 右侧半圆内;其次,设E 为直线AC 左侧或直线AC 上任一点,过E 作与AC 平行的直线交AD 于F .则F 优于E ,从而在AC 左侧半圆内及AC 上(A 除外)的所有点都不可能为Q ,故Q 点只能在DA 上. 二、填空题 11.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是 (13,13)- . 12.圆:0642 2 =+-+y x y x 和圆:062 2 =-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 390x y --= 13.已知点A(4,1),B(0,4),在直线L :y=3x-1上找一点P ,求使|PA|-|PB|最大时P 的坐标是 (2,5) 14.过点A (-2,0)的直线交圆x 2+y 2 =1交于P 、Q 两点,则AP →·AQ →的值为________. [答案] 3 [解析] 设PQ 的中点为M ,|OM |=d ,则|PM |=|QM |=1-d 2,|AM |=4-d 2.∴|AP →|=4-d 2 -1-d 2,|AQ →|=4-d 2+1-d 2 ,

(完整版)三角函数诱导公式总结

三角函数诱导公式与同角的三角函数 【知识点1】诱导公式及其应用 公式一: sin()-sin αα-=; cos()cos αα-= ; tan()tan αα-=- 公式二: ααπ-sin sin(=+); ααπ-cos cos(=+); ααπtan tan(=+). 公式三: ααπsin sin(=-); ααπ-cos cos(=-); ααπtan tan(-=-) 公式四: sin(2sin παα-=-); cos(2cos παα-=); tan(2tan παα-=-) 公式五: sin( 2π-α) = cos α; cos(2π -α) = sin α. 公式六: sin(2π+α) = cos α; cos(2π +α) =- sin α. 公式七: sin(32π-α)=- cos α; cos(32π -α) = -sin α. 公式八: sin(32π+α) = -cos α; cos(32 π +α) = sin α. 公式九:απαsin )2sin(=+k ; απαcos )2cos(=+k ; απαtan )2tan(=+k .(其中Z ∈k ). 方法点拨: 把α看作锐角 一、前四组诱导公式可以概括为:函数名不变,符号看象限 公式(五)到公式(八)总结为一句话:函数名改变,符号看象限(原函数所在象限) 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ +?2 k 或是απ-? 2 k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函 数名,偶数就不变

例1、求值(1)29cos( )6π= __________. (2)0tan(855)-= _______ ___. (3)16 sin()3 π-= __________. 的值。 求:已知、例)sin(2)4cos() 3sin()2cos( , 3)tan( 2απααπαπαπ-+-+--=+ 例3、 )2cos()2sin(21++-ππ【 】 A .sin2-cos2 B .cos2-sin2 C .±(sin2-cos2) D .sin2+cos2 例4、下列各式不正确的是【 】 A . sin (α+180°)=-sin α B .cos (-α+β)=-cos (α-β) C . sin (-α-360°)=-sin α D .cos (-α-β)=cos (α+β) 例5、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于【 】 A .-23 m B .-32 m C .23 m D .3 2 m 例6、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为【 】 A .5 B .-5 C .6 D .-6 例7、试判断 sin(2)cos() (9tan (5) 2αππαα παπα-+??+- ??? ··cos 为第三象限角)符号 例8、化简3 sin(3)cos()cos(4) 25 tan(3)cos()sin() 22 πααππαπαπααπ-?-?+-?+?- 例9、已知方程sin(α - 3π) = 2cos(α - 4π),求 ) sin()2 3sin(2) 2cos(5)sin(α--α-π α-π+α-π 例10、若1sin()3 πθ-= ,求 []cos() cos(2) 3 3 cos()1cos sin()cos()sin() 22 πθθππθθ θπθπθπ+-+ --?-?--+的值. 提示:先化简,再将1sin 3 θ=代入化简式即可.

相关主题
文本预览
相关文档 最新文档