当前位置:文档之家› 数论与高中竞赛数学

数论与高中竞赛数学

数论与高中竞赛数学
数论与高中竞赛数学

数论与高中竞赛数学

1引言

数论是研究数的规律,特别是整数性质的数学分支.初等数论是数论的一个最古老的分支.它以算术方法为主要研究方法,主要内容有整数的整除理论、不定方程、同余式等.古希腊毕达哥拉斯是初等数论的先驱.他与他的学派致力于一些特殊整数(如亲和数、完全数、多边形数)及特殊不定方程的研究.公元前4世纪,欧几里德的《几何原本》通过102个命题,初步建立了整数的整除理论.他关于“素数有无穷多个”的证明,被认为是数学证明的典范.公元3世纪,丢番图研究了若干不定方程,并分别设计巧妙解法,故后人称不定方程为丢番图方程.17世纪以来,P.de 费马、L.欧拉、C.F.高斯等人的工作大大丰富和发展了初等数论的内容.中国古代对初等数论的研究有着光辉的成就,《周髀算经》、《孙子算经》、《张邱建算经》、《数书九章》等古文献上都有记载.孙子定理比欧洲早500年,西方常称此定理为中国剩余定理,秦九韶的大衍求一术也驰名世界.初等数论不仅是研究纯数学的基础,也是许多学科的重要工具.它的应用是多方面的,如计算机科学、组合数学、密码学、信息论等.如公开密钥体制的提出是数论在密码学中的重要应用.

初等数论是竞赛数学中最重要的一部分,本论文也主要是写初等数论在高中数学竞赛中的应用。在1991年,IMO 在中国举行,国际上戏称那一年为数论年,因为6道IMO 试题中有5道与数论有关.数论的魅力在于它可以适合小孩到老头,只要有算术基础的人均可以研究数论――在前几年还盛传广东的一位农民数学爱好者证明了哥德巴赫猜想.当然,这一谣言最终被澄清了.可是这也说明了数论问题适合于任何人去研究.

2高中数学竞赛中常用的初等数论知识及相关例题

2.1 整除性理论

2.1.1 整数的整除性

整除性理论是初等数论的基础.在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,经过了千年的发展,数论的整除理论更加完善.在高中竞赛中的应用一般涉及到其基础部分,主要包括带余除法,辗转相除法,最大公约数,最小公倍数,算术定理.

数论的基础理论虽然有些繁琐,但具体解决起问题来却总给人一种耳目一新的感觉,并且用到很多数学解题基本方法和思路,在此引用几个竞赛题,讨论其解题的方法和思路.

例1 求满足3

)(c b a abc ++=的所有三位数abc . (1988年上海市竞赛试题)

解 由于999100≤≤abc ,则999)(1003

≤++≤c b a ,从而95≤++≤c b a ;

当5=++c b a 时,33)521(1255++≠=;

当6=++c b a 时,33)612(2166++≠=;

当7=++c b a 时,33)343(3437++≠=;

当8=++c b a 时,33)215(5128++==;

当9=++c b a 时,33)927(7299++≠=;

这道题其实应用的是最基本的理论知识,而且应用的方法也是最为简单的列举法,然而怎么利用知识把所要列举的答案最小范围找出来就需要动动脑筋了,而且这道题就是没有对奥数进行过深入学习的学生也是有能力做出来的,体现出数学的竞赛是从基础出发,锻炼能力为主的. 例2 证明:

10010

2000个 被1001整除. 证明

]110)10()10)[(110(1)10(110100136653666336673200102000+-+-+=+=+=

所以)1001(1103

=+整除

100102000个 . 这道题只是用了个简单的因式分解,但能够想到这么高次的因式分解就需要多练习多思考了. 例3 证明不存在正整数n ,使122+n ,132+n ,162

+n 都是完全平方数.

证明 假设存在这样的正整数n ,使122+n ,132+n ,162+n 都是完全平方数,那么)16)(13)(12(222+++n n n 也必定是完全平方数.

而 1113636)16)(13)(12(2

46222+++=+++n n n n n n

2462393636)36(n n n n n ++=+ 169123636)136(234623+++++=++n n n n n n n

所以

<+23)36(n n )6)(19)(12(1222+++n n n <23)136(++n n

与)16)(13)(12(2

22+++n n n 为完全平方数矛盾,所以122+n ,132+n ,162+n 不是完全平方数

此题利用反证法,是高中最常见的方法之一.

2.1.2 整数的奇偶性

人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性.比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等.利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索.在竞赛数学中,和其相关的习题更是数不胜数.我们一起来看两道例题.

例4 能否找到10个奇数,使得它们的倒数和等于1.

解 不能.

设10个奇数为10987654321,,,,,,,,,a a a a a a a a a a ,则

10

21921103110321021111a a a a a a a a a a a a a a a ??????+???+???=???++. 上式左端分数的分子是10个奇数之和,是偶数;分母是10个奇数之积,是奇数;显然分数不等于1.所以,不存在10个奇数,使它们倒数和等于1.

例5 如果a ,b 之积是奇数,那么一定不存在两个整数d c ,使得2

222d c b a =++.

证明 若a ,b 之积是奇数,则a ,b 都是奇数.因而22b a +一定是4的倍数加2.不防设 22b a +=24+k

如果2222d c b a =++成立,则有242

2+=-k c d .即 ))((2422c d c d c d k -+=-=+

由于c d +与c d -的奇偶性相同,当c d +与c d -同为奇数时,则))((c d c d -+为14+k 型,当c d +与c d -同为偶数时,则))((c d c d -+为k 4型,无论如何不等于24+k

所以当a ,b 之积是奇数时,一定不存在两个整数d c ,使得

2222d c b a =++

2.1.3 素数

在对数的整除性研究的更入的同时,人们发现了更加有趣的一组数:素数.和它相关的有许多有趣的定理,大多在中学都会涉及到,只不过没有形成系统.下面我们再来看一下,有关素数的竞赛应用.

例6 已知1)(20012002+-=x x x f ,证明:对于任意的正整数m ,都有

)),((),(,m f f m f m ))),(((m f f f 两两互素.(2002年克罗地亚竞赛试题)

证明 设))))(((()( x f f f x p n =(其中f 出现n 次).由1)1(,1)0(==f f ,故对于N n ∈?有1)0(=n p ,则)(x p k 是含有0次项1)0(=k p 的多项式.因此,)(m p n 除以1>m 的余数为1.设整数1>d 可整除)(m p k 和)(m p l k +,又)(m p l k +=))((m p p k l ,则当))((m p p k l 除以)(m p k 时余数为1,即)(m p l k +=?Q )(m p k +1.所以1|d ,矛盾!

从而可知)),((),(,m f f m f m ))),(((m f f f 两两互素.

例7 我们知道9123=+有1个质因子,且12|332+;

19351312332?==+有2个质因子,且|33122

3+; …

如此下去,我们可以猜想:,*N k ∈ 12

3+k 至少有k 个质因子,且|31+k 123+k

.试证明之. (2006年山东省第二届夏令营试题)

证明 令k a =123+k ,则k a =k k b 13+,即要证k b 是整数且有1-k 个质因子.下用数学归纳法证明k b 是整数.

1=k 时,结论显然;

假设k n =时,成立;

当k n =+1时,因为=+1k a (k a -1)3+1=k a 3-3k a 2

+3k a ; 因为|31+k k a ,所以|32+k 1+k a ,即1+k b 是整数.

下证1+k b 至少有k 个质因子.

=+1k a 23+k 1+k b =k a 3-3k a 2+3k a =(13+k k b )3-3(13+k k b )2+3(13+k k b ).

因为1+k b =k b (1331212+-++k k k k b b ),令=k c 1331212+-++k k k k b b ,则1+k b =k b k c

由于(k c ,3)=1,所以(k c ,k b )=1,从而k c 必有异于k b 质因子的质因子,

所以1+k b 至少有k 个质因子.

2.2不定方程

所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理数、整数或正整数等等)的方程或方程组.不定方程也称为丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一.不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为

密切的联系.不定方程的重要性在数学竞赛中也得到了充分的体现,每年世界各地的数学竞赛吉,不定方程都占有一席之地;另外它也是培养学生思维能力的好材料,数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性也解决问题.

例8 求不定方程2510737=+y x 的整数解.

解 先求110737=+y x 的一组特解,为此对37,107运用辗转相除法:

33372107+?=,433137+?=, 18433+?=

将上述过程回填,得:

378)372107(9378339)3337(93749374843748331?-?-?=?-?=-?-=?-=?--=?-=9107)26(3737261079?+-?=?-?=

由此可知,9,2611=-=y x 是方程110737=+y x 的一组特解,

于是650)26(250-=-?=x ,2259250=?=y 是方程2510737=+y x 的一组特解,因此原方程的一切整数解为:?

??-=+-= 37225107650t y t x . 此题考察的是对定理的应用,只要掌握一定的技巧,这类问题可轻松解出.

例9 求证:边长为整数的直角三角形的面积不可能是完全平方数.

证明 假设结论不成立,在所有的面积为平方数勾股三角形中选取一个面积最小的,设其边长为z y x <<,则

xy 21是平方数,则必有1),(=y x . 因为222z y x =+,故存在整数b a b a ,,0>>中一奇一偶,1),(=b a ,使得(不妨设y 是偶数)2222,2,b a z ab y b a x +==-=. 由于

ab b a b a xy ))((21+-=是完全平方数,而知ab b a b a ,,+-两两互素,故它们是平方数,即2222,,,v b a u b a q b p a =-=+==,

所以2222q v u =-即22))((q v u v u =-+.

因为v u ,是奇数,易知2),(=-+v u v u ,于是v u -与v u +中有一个是22r ,另一个是2)2(s ,而2224s r q =;

另一方面,2222,,,v b a u b a q b p a =-=+==得])()[(4

1)(2122222v u v u v u a p -++=+==

444224])2()2[(41s r s r +=+=.

所以,以p s r ,2,22为边的三角形都是直角三角形,其面积等于222)(22

1rs s r =?是平方数, 但是xy ab b a b q rs 21)(44)(2222

=-<==,于是构造出了一个面积更小的勾股三角形,矛盾! 此题是一个较为综合的题目,不止考察不定方程的内容,需要对数论基础知识有深入的撑握. 例10 在直角坐标平面上,以()0,199为圆心,以199为半径的圆周上的整点的个数为多少个? 解:设),(y x A 为圆O 上任一整点,则其方程为:2

22199)199(=-+x y

显然)0,389(),199,199(),199,199(),0,0(-为方程的4组解.

但当199,0±≠y 时,1)199,(=y (因为199是质数),此时,|199|,,199x y -是一组勾股数,故199可表示为两个正整数的平方和,即22199n m +=.

因为3494199+?=,可设12,2+==l n k m ,则1)(414441992222+++=+++=l l k l l k

这与199为34+d 型的质数矛盾!因而圆O 上只有四个整点()()()()0,389,199,199,199,199,0,0-.

2.3同余式

同余式性质应用非常广泛,在处理某些整除性、进位制、对整数分类、解不定方程等方面的问题中有着不可替代的功能,与之密切相关的的数论定理有欧拉定理、费尔马定理和中国剩余定理.

下面我们看一下同余式在数学竞赛解题中的应用.

例11 数100!的十进位制表示中,未尾连续地有多少位全是零?

解 命题等价于100!最多可以被10的多少次方整除.因为5210?=因而100!中2的指数大于5的指数,所以100!中5的指数就是所需求出的零的位数. 由24420510051002=+=??

????+??????=α即可知100!的未尾连续地有24位全是数码零. 从小学就开始出的数“零”的题,到了高中更为复杂了一些,然而用同余理论可以解出. 例12 设101010=a ,计算某星期一后的第a 天是星期几?

解;星期几的问题是被7除求余数的问题.由于)7(mod 310≡,于是)7(mod 231022≡≡,

)7(m od 163231033-≡≡?≡≡,因而)7(m od 1106≡.

为了把指数a 的指数1010写成r q +6的形式,还需取6为模来计算10

10.为此我们有

)6(mod 410≡,进而有)6(mod 441022≡≡,)6(mod 441033≡≡,依次类推,有)6(m od 41010≡,所以)6(m od 461010+≡q ,

从而)7(m od 4310110)10(10444646≡≡?≡?≡≡+q q q a

这样,星期一后的第a 天将是星期五.

从解题过程看,本题被渐渐转化为较简单的问题.

同余式中还有一些定理在竞赛数学的解题中有重要的应用如费马小定理,例3就是一个很好的例子.

例13 设c b a ,,是直角三角形的三边长.如果c b a ,,是整数,求证:abc 可以被30整除. 证明 不妨设c 是直角三角形的斜边长,则222b a c +=.

若 2 a ,2 b ,2 c ,则)2(m od 011222≡+≡+=b a c ,又因为)2(mod 12

≡c 矛盾!所以2|abc .

若3 a ,3 b ,3 c ,因为)3(m od 1)13(2≡±k ,则)3(mod 21122≡+≡+b a ,又)3(mod 12≡c ,矛盾!从而3|abc .

若 5 a ,5 b ,5 c ,因为)5(m od 1)15(2≡±k ,)5(m od 1)25(2

-≡±k ,

所以222±≡+b a 或()5m od 0与)5(mod 12±≡c 矛盾!从而5|abc . 又()15,3,2=,所以30|abc .

另外中国剩余定理也是同余式里一个重要的内容,下面就中国剩余定理的应用举例:

例14 证明:对于任意给定的正整数n ,均有连续n 个正整数,其中每一个都有大于1的平方因子.

证明 由于素数有无穷多个,故我们可以取n 个互不相同的素数n p p p ,,,21 ,而考虑同余组 n i p i x ,,2,1),(m od 2 =-≡ .

因为22221,,,n p p p 显然是两两互素的,故由中国剩余定理知,上述同余组有正整数解.于是,连续n 个数n x x x +++,,2,1 分别被平方数22221,,,n p p p 整除.

这道例题的解法体现了中国剩余定理的一个基本功效,它常常能将“找连续n 个正整数具有某种性质”的问题转化为“找n 个两两互素的数具有某种性质”,而后者往往是比较容易解决的.

另外此题若不直接使用素数,也中以采用下面的变异方法:由费尔马数)0(122≥+=k F k

k 两两

互素,故将①中的2i p 转化为2i F ),,2,1(n i =后,相应的同余式也有解,同样可以导出证明. 3 总结

数论是研究数的规律,特别是整数性质的数学分支.它是竞赛数学中最重要的一部分,通过对高中竞赛数学中的相关题型进行分类讲解与练习,可以使中学生夯实基础知识,发展逻辑思维能力,领悟数学思维思想,培养创新意识.

在高中竞赛数学中出现的数论问题多种多样,且新题型随着竞赛数学的发展不断涌现,但经过研究总结发现,虽然题型不断变化,应用的解题方法却都是数论的基础理论知识,所以要想很好的掌握高中竞赛数学的解题技巧就要对基础知识进行深入的掌握,进行大量的练习,并不断学习新的理论知识.

参考文献

[1] 严士健.初等数论第3版[M].北京:高等教育出版社,2003

[2] 降同群,陈传理.竞赛数学解题研究第二版[M].北京:高等教育出版社,2006

[3] 余红兵.数学竞赛中的数论问题数学奥林匹克小丛书高中卷[M].南京: 华东师范大学出版社2005

[4] (加)盖伊(Guy ,R.K.)著,张明尧译.数论中未解决的问题[M].北京:科学出版,2003 [5] 冷岗松,沈文选,唐立华等.奥林匹克数学中的代数问题[M].长沙:湖南师范大学出版社, 2004

[6] 叶军著. 数学奥林匹克教程[M]. 长沙:湖南师范大学出版社, 2005

[7] 虞金龙. 高中数学竞赛2000题[M]. 杭州:浙江大学出版社,2006

[8] Art Quaife.Unsolved problems in elementary number theory.Journal of Automated Reasoning,1991,7,2

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

小学奥数数论专题

名校真题测试卷10 (数论篇一) 1、(05年人大附中考题)有_____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2、(05年101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数 是_____。 3 (05年首师附中考题) 1 21+ 202 2121 + 50513131313 21212121212121 =________。 4 (04年人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 (02年人大附中考题) 下列数不是八进制数的是( ) A、125 B、126 C、127 D、128 【附答案】 1 【解】:6 2 【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。 3 【解】:周期性数字,每个数约分后为1 21 + 2 21 + 5 21 + 13 21 =1 4 【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。 5 【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。 第十讲小升初专项训练数论篇(一) 一、小升初考试热点及命题方向 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。 二、考点预测 的小升初考试将继续以填空和大题形式考查数论,命题的方向可能偏向小题考察单方面的知识点,大题

小学数学基本功比赛试题

德州市第四届小学数学教师基本功比赛专业知识测试试题 (满分:100分时间:120分钟) 一、选择题(单选或多选,2×10=20分) 题号 1 2 3 4 5 6 7 8 9 10 答案 1.数学教学活动是师生积极参与,()的过程. A.交往互动B.共同发展C.交往互动、共同发展 2.标准中使用了“经历、体验、探索”等行为动词表述() A.过程目标B.结果目标C.课程目标 3.义务教育阶段的数学课程是培养公民素质的基础课程,具有() A.基础性B.发展性C.普及型 4.老年人活动中心麻将馆门口的拐角处放着一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的,如图所示,其中可看见7个面,而11个面是看不到的,则看不见的面其点数总和是() A.21 B.22 C.41 D.44 5.已知正方形ABCD的边长是6分米,CE是DE的2倍,则阴影部分的面积为()A.12 B.8 C.6 D.4 6.在一个40名学生的班级中选举班长,选举结果是: 下面扇形图显示了这些结果的是()7.有一条围粮的席子,长5米,宽2.5米,把它围成一个筒状的粮食囤.围法有两种: 第一种围法:围成周长2.5米,高5米的粮囤;第二种围法:围成周长5米,高2.5米的粮囤.下列说法正确的是(). A.第一种围法的容积大,盛粮多 B.第二种围法的容积大,盛粮多 C.因是同一条席子围成的粮囤,所以两种围法围成的粮囤盛的粮一样多 D.无法判断哪种围法围成的粮囤盛的粮多 8.如图所示,是一间民房,房上是一根烟囱,房子的旁边是一个仓库,房子的后面是一条河.明明同学站在河中行驶的游轮上从旁边经过(图中箭头表示游轮行驶方向),看到如图2所示的5幅图,依据游轮行驶的路线,映入明明眼帘的先后顺序是(). A.③①②④⑤B.⑤①②④③C.①②④⑤③D.⑤④②①③ 9.小王8∶30从家出门去参观房展,家里的闹钟也指向8∶30,房展结束,他12∶00准时回到家,发现家里的闹钟才11∶46,那么,再过几分钟此闹钟才能指到12点整() A.13分钟B.14分钟 C.15分钟D.16分钟 10.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图中给出了“河图”的部分点图,请你推算出P处所对应的点图是(). 题号一二21 22 23 24 25 26 总分答案 张强刘莉李浩赵红20票10票4票6票8图 图2 第4题图A B C D F E 第5题图

历年全国高中数学联赛试题及答案

历年全国高中数学联赛试题及答案 1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题。 2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效,考试时不 能使用计算器。 参考公式:二次函数图象的顶点坐标是。 温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”。 卷Ⅰ(选择题) 一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.2的相反数是(▲) A.-2 B.2 C.- D. 2.下列计算正确的是(▲)A.B.9 =3 C.3-1= -3 D.2 +3= 5 3.据交通运输部统计,2013年春运期间,全国道路、水路、民航、铁路运送旅客总量超过了3400000000人次,该数用科学记数法可表示为(▲) A.B.C. D. 4.如图是由个相同的正方体搭成的几何体,则其俯视图是(▲) 5.使分式无意义的的值是(▲) A. B. C. D. 6.如图,已知,若, ,则等于(▲) A.B.C.D. 7.市委、市政府打算在2015年底前,完成国家森林城市创建.这是小明随机抽取我市10个小区所得到的绿化率情况,结果如下表: 小区绿化率(%) 20 25 30 32 小区个数 2 4 3 1 则关于这10个小区的绿化率情况,下列说法错误的是(▲) A.中位数是25% B.众数是25% C.极差是13% D.平均数是26.2% 8.将一个半径为R,圆心角为90°的扇形围成一个圆锥的侧面(无重叠),设圆锥底面半径为r,则R与r的关系正确的是(▲) A.R=8r B.R=6r C.R=4r D.R=2r 9.甲、乙两车分别从相距的两地同时出发,它们离A地的路程随时间变化的图象如图所示,则下列结论不正确的是( ▲) A.甲车的平均速度为; B.乙车行驶小时到达地,稍作停留后返回地; C.经小时后,两车在途中相遇; D.乙车返回地的平均速度比去地的平均速度小。 10.如图,为等边三角形,点的坐标为,过点作直线交于点,交于,点在反比例函数<的图象上,若和(即图中两阴影部分)的面积相等,则值为(▲)A.B.C.D. 卷Ⅱ(非选择题) 二、填空题(本大题有6小题,每题4分,共24分) 11.分解因式:= ▲。 12.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个

高中数学竞赛数论部分

高中数学竞赛数论部分文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

初等数论简介 绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1.请看下面的例子: (1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首 届匈牙利 数学竞赛第一题) (2) ①设n Z ∈,证明2131n -是168的倍数。 ②具有什么性质的自然数n ,能使123n ++++能整除123n ???(1956年上海首 届数学竞赛第一题) (3) 证明:3231 122 n n n ++-对于任何正整数n 都是整数,且用3除时余2。(1956年 北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数 214 143 n n ++不可约简。(1956年首届国际数学奥林匹 克竞赛第一题) (5) 令(,, ,)a b g 和[,, ,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数, 试证:[][][][]()()()() 2 2 ,,,,,,,,,,a b c a b c a b b c c a a b b c c a =??(1972年美国首届奥林匹克数学竞赛第一题) 这些例子说明历来数论题在命题者心目中首当其冲。 2.再看以下统计数字: (1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。 (2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占% 。

竞赛数学教程数论专题.doc

数论 数论素有“数学皇后”的美称。由于其形式简单,意义明确,所用知识不多而又富于技巧性,千姿百态,灵活多样。有人曾说:“用以发现数学天才,在初等数学中再也没有比数论更好的课程了。”因此在理念的国内外数学竞赛中,几乎都离不开数论问题,使之成为竞赛数学的一大重要内容。 1. 基本内容 竞赛数学中的数论问题主要有: (1)整除性问题; (2)数性的判断(如奇偶性、互质性、质数、合数、完全平方数等); (3)余数问题; (4)整数的分解与分拆; (5)不定方程问题; (6)与高斯函数[]x有关的问题。 有关的基本知识: 关于奇数和偶数有如下性质: 奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数. 两个数之和是奇(偶)数,则这两个数的奇偶性相反(同). 若干个整数之和为奇数,则这些数中必有奇数,且奇数的个数为奇数个;若干个整数之和为偶数,则这些数中若有奇数,奇数的个数必为偶数个. 奇数g奇数=奇数;奇数g偶数=偶数;偶数g偶数=偶数. 若干个整数之积为奇数,则这些数必为奇数;若干个整数之积为偶数,则这些数中至少有一个偶数. 若a是整数,则a与a有相同的奇偶性;若a、b是整数,则a b -奇偶性 +与a b 相同。 关于整数的整除性: 设,, a b c是整数,则○1a a;○2若, a b b c,则a c;○3若, a b b c,则对任意整数,m n, +. 有a bm cn

若在等式11m n i i i i a b ===∑∑中,除某一项外,其余各项都能被c 整除,则这一项也能被c 整除. 若(,)1a b =,且a bc ,则a c .若(,)1a b =,且,a b b c ,则ab c . 设p 是素数,若p ab ,则p a 或p b . 关于同余: 若0(mod )a m ≡,则m a . (mod )a b m ≡?,a b 分别被m 除,余数相同. 同余具有反身性:(mod )a a m ≡、对称性:若(mod )a b m ≡,则(mod )b a m ≡、传递性:若,(mod )a b b c m ≡≡,则(mod )a c m ≡. 2. 方法评析 数论问题综合性强,以极少的知识就可生出无穷的变化。因此数论问题的方法多样,技巧性高,富于创造性和灵活性。在竞赛数学中,解决数论问题的常用方法有因式分解法、估值法、调整法、构造法、反证法、奇偶分析法等等。 2.1 因式(数)分解 例1 证明无穷数列10001,100010001,……中没有素数。 证明:设1 1000100011n n a =L 1442443个,则 4484(1)41011101010=101 n n n a --=++++-L 当n 为偶数,设2n k =, 888484101(10)1101=101101101 k k n a ---=---g 所以n a 为合数。 当n 为奇数,设2+1n k =, 42+1221221422101101101==101101101 k k k n a ++--+--+g ()()()

概率统计-历届全国高中数学联赛真题专题分类汇编

概率统计 1、(2009一试8)某车站每天8 00~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为 一旅客820∶【答案】27 【解析】旅客候车的分布列为 候车时间的数学期望为10305070902723361218 ?+?+?+?+?= 2、(2010一试6)两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是 . 【答案】 12 17 3、(2012一试8)某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是.(用最简分数表示) 【答案】 61 243 【解析】用k P 表示第k 周用 A 种密码的概率,则第k 周末用A 种密码的概率为 1k P -.于是,有11(1),3k k P P k N *+=-∈,即1111()434k k P P +-=--由11P =知,14k P ? ?-???? 是首项为34,公

比为13-的等比数列.所以1131()443k k P --=-,即1311()434k k P -=-+,故761243 P = 4、(2014一试8)设D C B A ,,,是空间四个不共面的点,以 2 1 的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则B A ,可用(一条边或者若干条边组成的)空间折线连接的概率是__________. 【答案】 3 4 2221219B C D -?-=点相连,且与,中至少一点相连,这样的情况数为()() 22(3)AB AD DB 无边,也无CD 边,此时AC,CB 相连有2种情况,,相连也有2种情况, ,,,,AC CB AD DB A B 但是其中均相连的情况被重复了一次,故可用折线连接的情况数为 222+2-1=7. 483++==.644以上三类情况数的总和为329748,故A,B 可用折线连接的概率为 5、(2015一试5)在正方体中随机取三条棱,它们两两异面的概率为. 【答案】 2 55 【解析】设正方体为ABCD-EFGH ,它共有12条棱,从中任意选出3条棱的方法共有3 12C =220种. 下面考虑使3条棱两两异面的取法数,由于正方体的棱共确定3个互不平行的方向(即AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能,当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH. 由上可知,3条棱两两异面的取法数为4×2=8,故所求的概率为82 22055 =.

高中数学竞赛资料-数论部分 (1)

初等数论简介 绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1. 请看下面的例子: (1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首届匈牙利 数学竞 赛第一题) (2) ①设n Z ∈,证明213 1n -是168的倍数。 ②具有什么性质的自然数n ,能使123n ++++ 能整除123n ??? ?(1956年上海首届数学竞赛第一题) (3) 证明:3 231 122 n n n + +-对于任何正整数n 都是整数,且用3除时余2。(1956年北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数 214 143 n n ++不可约简。(1956年首届国际数学奥林匹克竞赛第一题) (5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证: [][][][]()()()() 2 2 ,,,,,,,,,,a b c a b c a b b c c a a b b c c a =??(1972年美国首届奥林匹克数学竞赛第一题) 这些例子说明历来数论题在命题者心目中首当其冲。 2.再看以下统计数字: (1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。 (2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占10.8% 。 这说明:数论题在命题者心目中总是占有一定的分量。如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。 3.请看近年来国内外重大竞赛中出现的数论题: (1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( ) A 、 0 B 、1 C 、3 D 、无穷多 (2007全国初中联赛5) (2)已知,a b 都是正整数,试问关于x 的方程()2 1 02 x abx a b -++=是否有两个整数解? 如果有,请把它们求出来;如果没有,请给出证明。 (2007全国初中联赛12)

数论-小学数学竞赛--因数与倍数之综合应用强化篇

因数与倍数之综合应用 【例 1】(北京市第十届“迎春杯”刊赛试题)筐里共有96个苹果,如果不一次全拿出,也不一个一个地拿;要求每次拿出的个数同样多,拿完时又正好不多不少,有种不同的拿法。 【巩固】筐里有300个桃子,如果不是一次全部拿出,也不一个一个地拿,要求每次的个数同样多,拿到最后正好不多不少,问共有多少种不同的拿法? 【例 2】现有三个正整数,它们的和是1111,这样的三个正整数的公约数中,最大的可以是多少? 【巩固】9个非零自然数的和是848,它们的最大公约数的最大值是多少? 【例 3】恰有8个约数的两位数有个。 【巩固】在1到100中,恰好有6个约数的数有多少个? 【例 4】一个数的平方有39个约数,求该数的约数个数是多少? 五年级

【巩固】一个数的立方有28个约数,求这个数的约数个数可能是几? 【例 5】把1,2,3,4,5,6,7,8,9这九个数依不同的次序排列,可以得到362880个不同的九位数,则所有这些九位数的最大公约数为。 【巩固】把1,2,3,4,5,6这六个数依不同的次序排列,可以得到720个不同的六位数,则所有这些六位数的最大公约数为。 【例 6】有3599只甲虫,依次编号为1,2,3,…,3599,开始时头都朝东。第1秒钟,编号为1的倍数的甲虫向右转90度;第2秒钟,编号为2的倍数的甲虫向右转90度;第3秒钟,编号为3的倍数的甲虫向右转90度,…,如此进行。那么,1小时后,第3599号甲虫头朝哪个方向? 【巩固】200名同学编为1至200号面向南站成一排。第1次全体同学向右转(转后所有的同学面朝西); 第2次编号为2的倍数的同学向右转;第3次编号为3的倍数的同学向右转;…;第200次编号为200的倍数的同学向右转;这时,面向东的同学有名。 〖答案〗 【例 1】10 【巩固】16 【例 2】101 【巩固】53 五年级

历年全国高中数学联赛二试几何题汇总汇总

历年全国高中数学联赛二试几何题汇总 2007 联赛二试 类似九点圆 如图,在锐角?ABC 中,AB

七年级数学竞赛讲座数论的方法与技巧(含答案详解)

数学竞赛讲座 数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。 小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得abq+r(0≤r

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)(a1+1)(a2+1)…(ak+1)。 5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x

竞赛数学中的初等数论(精华版)

《竞赛数学中的初等数论》 贾广素编著 2006-8-21

序 言 数论是竞赛数学中最重要的一部分,特别是在1991年,IMO 在中国举行,国际上戏称那一年为数论年,因为6道IMO 试题中有5道与数论有关。 数论的魅力在于它可以适合小孩到老头,只要有算术基础的人均可以研究数论――在前几年还盛传广东的一位农民数学爱好者证明了哥德巴赫猜想,当然,这一谣言最终被澄清了。可是这也说明了最难的数论问题,适合于任何人去研究。 初等数论最基础的理论在于整除,由它可以演化出许多数论定理。做数论题,其实只要整除理论即可,然而要很快地解决数论问题,则要我们多见识,以及学习大量的解题技巧。这里我们介绍一下数论中必需的一个内容:对于N r q N b a ∈?∈?,,,,满足r bq a +=,其中b r <≤0。 除了在题目上选择我们努力做到精挑细选,在内容的安排上我们也尽量做到讲解详尽,明白。相信通过对本书学习,您可以对数论有一个大致的了解。希望我们共同学习,相互交流,在学习交流中,共同提高。 编者:贾广素 2006-8-21于山东济宁

第一节 整数的p 进位制及其应用 正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制, 这是一种位值记数法。进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与 国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理 数列问题等等。在本节,我们着重介绍进位制及其广泛的应用。 基础知识 给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m --,则此数可以简记为:021a a a A m m --=(其中01≠-m a )。 由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1-m 次多项式,即 012211101010a a a a A m m m m +?++?+?=---- ,其中1,,2,1},9,,2,1,0{-=∈m i a i 且 01≠-m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m --=。在我们的日常 生活中,通常将下标10省略不写,并且连括号也不用,记作021a a a A m m --=,以后我们 所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。但是随着计算机的 普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。特别是 现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种 数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是 一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。 为了具备一般性,我们给出正整数A 的p 进制表示: 012211a p a p a p a A m m m m +?++?+?=---- ,其中1,,2,1},1,,2,1,0{-=-∈m i p a i 且 01≠-m a 。而m 仍然为十进制数字,简记为p m m a a a A )(021 --=。 典例分析 例1.将一个十进制数字2004(若没有指明,我们也认为是十进制的数字)转化成二进制与 八进制,并将其表示成多项式形式。 分析与解答 分析:用2作为除数(若化为p 进位制就以p 作为除数),除2004商1002,余数为0;再 用2作为除数,除1002商501余数为0;如此继续下去,起到商为0为止。所得的各次余 数按从左到右的顺序排列出来,便得到所化出的二进位制的数。 解:

(完整版)小学奥数中的数论问题

小学奥数中的数论问题 在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。 一、小学数论究包括的主要内容 我们小学所学习到的数论内容主要包含以下几类: 整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容) 余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小) (2)同余的性质和运用 奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理 一、两个自然数分别除以它们的最大公约数,所得的商互质。 二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。 (2)约数个数决定法则(小升初常考内容) 整数及分数的分解与分拆:这一部分在难度较高竞赛中常

出现,属于较难的题型。二、数论部分在考试题型中的地位 在整个数学领域,数论被当之无愧的誉为“数学皇后”。翻开任何一本数学辅导书,数论的题型都占据了显著的位置。在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。 出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。三、孩子在学习数论部分常常会遇到的问题 数学课本上的数论简单,竞赛和小升初考试的数论不简单。 有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数? 这道题就经常在孩子们平时的作业里和单元测试里出现。可是小升初考题里则是:例2:求3600有多少个约数? 很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划

高中数学竞赛历届IMO竞赛试题届完整中文版

第1届I M O 1.求证(21n+4)/(14n+3)对每个自然数n都是最简分数。 2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解: (a)A=√2;(b)A=1;(c)A=2。 3.a、b、c都是实数,已知cosx的二次方程 acos2x+bcosx+c=0, 试用a,b,c作出一个关于cos2x的二次方程,使它的根与原来的方程一样。当a=4,b=2,c=-1时比较cosx和cos2x的方程式。 4.试作一直角三角形使其斜边为已知的c,斜边上的中线是两直角边的几何平均值。 5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N, (a.)求证AF、BC相交于N点; (b.)求证不论点M如何选取直线MN都通过一定点S; (c.)当M在A与B之间变动时,求线断PQ的中点的轨迹。 6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q 上。 第2届IMO 1.找出所有具有下列性质的三位数N:N能被11整除且N/11等于N的各位数字的平方和。 2.寻找使下式成立的实数x: 4x2/(1-√(1+2x))2<2x+9 3.直角三角形ABC的斜边BC的长为a,将它分成n等份(n为奇数),令为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证: tan=4nh/(an2-a).

高中数学竞赛数论

高中数学竞赛 数论 剩余类与剩余系 1.剩余类的定义与性质 (1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。K 0,K 1,…,K m-1为模m 的全部剩余类. (2)性质(ⅰ)i m i K Z 1 0-≤≤=Y 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里. (ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ?a ≡b(modm). 2.剩余系的定义与性质 (1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,2 1 ,,1,0,1,,121,21--+----m m m ΛΛ;当m 为偶数时,12 ,,1,0,1,,12,2--+-- m m m ΛΛ或2,,1,0,1,,12m m ΛΛ-+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系?两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系. 证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!

高一年级竞赛数学数论专题讲义:10.中国剩余定理

高一竞赛数论专题 10.中国剩余定理 1.(中国剩余定理)设12,,,k m m m 是k 个两两互素的正整数,证明对任意整数12,, ,k a a a ,一次同余方程组 (mod ),j j x a m ≡1.j k ≤≤必有解,在模1k j j m m ==∏的意义下解101 (mod )k j j j j x x M M a m - =≡=∑唯一. 其中1,j j j m M M m -= 是j M 关于模j m 的数论倒数即11(mod ).j j j M M m -≡ 2.解同余方程组1(mod 7)1(mod8)3(mod 9)x x x ≡??≡??≡? . 3.设*,n N ∈证明:存在* ,m N ∈使得同余方程21(mod )x m ≡在模m 的意义下至少有n 个根. (请对比拉格朗日定理). 4.证明:对任意给定的正整数n ,均有连续n 个正整数,其中每一个都有大于1的平方因子.

5.证明:对任意正整数n ,存在n 个连续正整数,它们中每一个数都不是素数的幂. 6.证明:存在任意长的由不同正整数组成的等差数列,它的项都是正整数的幂,幂指数是大于1的整数. 7.设,m n 是自然数,满足对任意自然数,k (,111)(,111)m k n k -=-.证明存在某个整数l 使得11.l m n =

高一竞赛数论专题 10.中国剩余定理解答 1.(中国剩余定理)设12,,,k m m m 是k 个两两互素的正整数,证明对任意整数12,, ,k a a a ,一次同余方程组 (mod ),j j x a m ≡1.j k ≤≤必有解,在模1k j j m m ==∏的意义下解101 (mod )k j j j j x x M M a m - =≡=∑唯一. 其中1,j j j m M M m -= 是j M 关于模j m 的数论倒数即11(mod ).j j j M M m -≡ 证明:因为(,)1,,i j m m i j =≠所以(,) 1.j j M m =由Bezout 定理知道存在整数,s t 使得 1.j j sM tm += 1(mod ).j j sM m ≡取1.j M s - =于是11(mod ).j j j M M m -≡另一方面,,j j m M m =所以|,.i j m M i j ≠ 于是111(mod )(1,2,,).k j j j i i i i i j M M a M M a a m i k --=≡≡=∑即11(mod )k j j j j x M M a m -=≡∑是一次同余方程组(mod ),j j x a m ≡1j k ≤≤的解. 若00 ,x x '是是一次同余方程组(mod ),j j x a m ≡1j k ≤≤的两个解. 则00 (mod ),(mod ).j j j j x a m x a m '≡≡于是00(mod ).j x x m '≡即00|j m x x '-.因为(,)1,.i j m m i j =≠ 所以00 |m x x '-,即00(mod ).x x m '≡ 所以中国剩余定理的得证. 2.解同余方程组1(mod 7)1(mod8)3(mod 9)x x x ≡??≡??≡? . 解:7,8,9两两互素,则由中国剩余定理知道有唯一解. 123789504,72,63,56.M M M M =??==== 1722(mod 7),M =≡取114(mod 7).M -≡ 2631(mod8),M =≡-取12 1(mod8).M -≡- 3562(mod 9),M =≡取135(mod 9).M -≡

小学奥数数论知识点总结

小学奥数数论知识点总结 1.奇偶性问题 奇+奇=偶奇×奇=奇 奇+偶=奇奇×偶=偶 偶+偶=偶偶×偶=偶 2.位值原则 形如:abc=100a+10b+c 3.数的整除特征: 整除数特征 2末尾是0、2、4、6、8 3各数位上数字的和是3的倍数 5末尾是0或5 9各数位上数字的和是9的倍数 11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25末两位数是4(或25)的倍数 8和125末三位数是8(或125)的倍数 7、11、13末三位数与前几位数的差是7(或11或13)的倍数 4.整除性质 ①如果c|a、c|b,那么c|(ab)。 ②如果bc|a,那么b|a,c|a。 ③如果b|a,c|a,且(b,c)=1,那么bc|a。④如果c|b,b|a,那么c|a.

⑤a个连续自然数中必恰有一个数能被a整除。 5.带余除法 一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r 当r=0时,我们称a能被b整除。 当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r 6.唯一分解定理 任何一个大于1的自然数n都可以写成质数的连乘积,即n=p1×p2×...×pk 7.约数个数与约数和定理 设自然数n的质因子分解式如n=p1×p2×...×pk那么:n的约数个数: d(n)=(a1+1)(a2+1)....(ak+1) n的所有约数和:(1+P1+P1+…p1)(1+P2+P2+…p2)… (1+Pk+Pk+…pk) 8.同余定理 ①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b 对于模m同余,用式子表示为a≡b(modm) ②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。③两数的和除以m的余数等于这两个数分别除以m的余数和。 ④两数的差除以m的余数等于这两个数分别除以m的余数差。 ⑤两数的积除以m的余数等于这两个数分别除以m的余数积。 9.完全平方数性质 ①平方差:A-B=(A+B)(A-B),其中我们还得注意A+B,A-B同奇偶性。

历年全国高中数学联赛试题及答案

1988年全国高中数学联赛试题 第一试(10月16日上午8∶00——9∶30) 一.选择题(本大题共5小题,每小题有一个正确答案,选对得7分,选错、不选或多选均得0分): 1.设有三个函数,第一个是y=φ(x ),它的反函数是第二个函数,而第三个函数的图象及第二个函数的图象关于x +y=0对称,那么,第三个函数是( ) A .y=-φ(x ) B .y=-φ(-x ) C .y=-φ-1(x ) D .y=-φ- 1(-x ) 2.已知原点在椭圆k 2x 2+y 2-4kx +2ky +k 2-1=0的内部,那么参数k 的取值范围是( ) A .|k |>1 B .|k |≠1 C .-1π 3 ; 命题乙:a 、b 、c 相交于一点. 则 A .甲是乙的充分条件但不必要 B .甲是乙的必要条件但不充分 C .甲是乙的充分必要条件 D .A 、B 、C 都不对 5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I 表示所有直线的集合,M 表示恰好通过1个整点的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合.那么表达式 ⑴ M ∪N ∪P=I ; ⑵ N ≠?. ⑶ M ≠?. ⑷ P ≠?中,正确的表达式的个数是 A .1 B .2 C .3 D .4 二.填空题(本大题共4小题,每小题10分): 1.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b 2,b 3,y ,b 4均为等差数列,那么b 4-b 3 a 2-a 1= . 2.(x +2)2n +1的展开式中,x 的整数次幂的各项系数之和为 . 3.在△ABC 中,已知∠A=α,CD 、BE 分别是AB 、AC 上的高,则DE BC = . 4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再及负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为 . 三.(15分)长为2,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积. 四.(15分) 复平面上动点Z 1的轨迹方程为|Z 1-Z 0|=|Z 1|,Z 0为定点,Z 0≠0,另一个动点Z 满足Z 1Z=-1,求点Z 的轨迹,指出它在复平面上的形状和位置. 五.(15分)已知a 、b 为正实数,且1a +1 b =1,试证:对每一个n ∈N *, (a +b )n -a n -b n ≥22n -2n +1.

相关主题
文本预览
相关文档 最新文档