当前位置:文档之家› 机械优化设计论文

机械优化设计论文

机械优化设计论文
机械优化设计论文

机械优化设计

程序设计

组员:

完成时间:2013年5月12日

目录:

1.1 进退法............................................................................................... - 4 -

1.1.1进退法的原理和流程图.................................................................. - 4 -

1.1.2进退法程序代码............................................................................. - 5 -

1.1.3程序的调试及运行结果.................................................................. - 6 - 1.2 黄金分割............................................................................................. - 7 -

1.2.1黄金分割法的原理和流程图........................................................... - 7 -

1.2.2黄金分割法的程序代码.................................................................. - 7 -

1.2.3程序的调试及运行结果.................................................................. - 9 - 1.3 二次插值 ......................................................................................... - 10 -

1.3.1 二次插值确定搜索区间的原理和流程图...................................... - 10 -

1.3.2二次插值的程序代码 ................................................................... - 11 -

1.3.3程序的调试及运行结果................................................................ - 13 - 1.4 牛顿型法........................................................................................... - 14 -

1.4.1牛顿型法的求极值的原理及其流程图 .......................................... - 14 -

1.4.2牛顿型法的程序代码 ................................................................... - 16 -

1.4.3程序的调试及运行结果................................................................ - 18 - 1.5 鲍威尔法 ......................................................................................... - 19 -

1.5.1鲍威尔法的流程图....................................................................... - 19 -

1.5.2鲍威尔法的程序代码 ................................................................... - 20 -

1.5.3程序的调试及运行结果................................................................ - 23 - 1.6 复合型法........................................................................................... - 24 -

1.6.1复合型法的求极值的原理及其流程图 .......................................... - 24 -

1.6.2复合型法的程序代码 ................................................................... - 25 -

1.6.3程序的调试及运行结果................................................................ - 31 - 1.7 内点惩罚函数法 ................................................................................ - 31 -

1.7.1内点惩罚函数法的求极值的原理及其流程图................................ - 31 -

1.7.2内点惩罚函数法的程序代码......................................................... - 32 -

1.7.3程序的调试及运行结果................................................................ - 35 -

2.1 圆柱齿轮减速器的优化计算 .............................................................. - 35 -

2.1.1圆柱齿轮减速器优化问题的背景.................................................. - 35 -

2.1.2圆柱齿轮减速器的优化设计......................................................... - 36 -

2.1.2.1目标函数的确定 .................................................................. - 36 -

2.1.2.2约束条件的确定 .................................................................. - 38 -

2.1.3求解优化问题的程序代码 ............................................................ - 41 -

2.1.4程序的调试及运行结果................................................................ - 43 -

3.1体会及建议.......................................................................................... - 44 -附录........................................................................................................... - 45 -

(1)fmincon函数 ......................................................................................... - 45 -

1.1 进退法

1.1.1进退法的原理和流程图

进退法是用来确定搜索区间(包含极小值点的区间)的算法,其理论依据是:

()f x 为单谷函数(只有一个极值点),且[,]a b 为其极小值点的一个搜索区间,对

12,[,]x x a b ,

于任意如果

图1-1进退法程序框图

()()12f x f x <,则2[,]a x 为极小值的搜索区间,如果()()12f x f x >,则1[,]x b 为极小值的搜索区间。不断重复即可得到所需的区间。

1.1.2进退法程序代码

h=input('请输入步长的值:'); a1=input('请输入a1的值:'); y1=xsf(a1); a2=h; y2=xsf(a2); if y2>y1 h=-h; a3=a1; y3=y1; a1=a2; y1=y2; a2=a3; y2=y3; end a3=a2+2*h; y3=xsf(a3); while y2>y3 h=2*h;

a1=a2;

y1=y2;

a2=a3;

y2=y3;

a3=a2+2*h;

y3=xsf(a3);

end

a1

a2

a3

y1

y2

y3

子程序:

function y=xsf(a)

y=a^4-a^2-2*a+5;

1.1.3程序的调试及运行结果

在进退法确定根所在的区间里面,我们所取的算例是y=a^4-a^2-2*a+5,并且取初始值a

=0,h=0.1。程序运行后可得到根所在的区间为(0.3,1.5)。与所

给的算例的跟区间一致。

图1-2 . 进退法确定根所在的区间的程序运行结果

1.2 黄金分割

1.2.1黄金分割法的原理和流程图

黄金分割法是建立在区间消去法原理的基础上的试探方法,即在搜索区间[a ,b]内适当插入两点1α、2α、并计算其函数值。1α、2α将区间分成三段。应用函数单谷性质,通过函数值大小的比较,删去其中一段,使搜索区间得以缩短。然后再在保留下来的区间上作同样的处置,如此迭代下去,使搜索区间无限缩小,从而得到极小点的数值近似解。

1.2.2黄金分割法的程序代码

a=input('请输入a 的值:')

e=input('请输入e的值:')

syms s,a,b,i

i=1;

h=0.618;

a1=b-h*(b-a);

y1=hjfg(a1);

a2=a+h*(b-a);

y2=hjfg(a2);

while i==1

switch y1>y2

case 1

a=a1;

a1=a2;

y1=y2;

a2=a+h*(b-a);

y2=hjfg(a2);

if abs((y2-y1)/y2)

i=0

end

case 0 图1-3 黄金分割法程序框图

b=a2;

a2=a1;

y2=y1;

a1=b-h*(b-a);

y1=hjfg(a1);

if abs((y2-y1)/y2)

i=0

end

end

end

disp('最后的结果s')

s=(a+b)/2

子程序:

function f=hjfg(a)

f=a^2+2*a;

1.2.3程序的调试及运行结果

在黄金分割法确定极小值里面,我们所取的算例是f=a^2+2*a,并且取初始搜索区间为[-3,5],即a=-3,b=5。程序运行后可得极小值点s=-1.0013。课本上给的算例的运行结果为-1.0007。程序运行的结果基本一致。本程序所取得精度比较低。

图1-4. 黄金分割法确极小值的程序运行结果

1.3 二次插值

1.3.1 二次插值确定搜索区间的原理和流程

二次插值亦称抛物线插值。现已知函数f(x)在x0,x1, x2处的函数值,这时作一个二次多项式y = P2(x)。通过3点A(x0,y0),B(x1,y 1),C(x2,y 2)作一条曲线来近似代替函数f(x),如果A,B,C 3点不在同一直线上,作出曲线则是抛物线。所需构造插值函数P2(x)为x的二次函数,其形式为

P2(x)= a0 + a1x + a2x2 (1.1)

式中,为待定常数。将A,B,C3点坐标分别代入上时即可得到一个关于a0,a1,a2

的三元一次联立方程组,解这个方程可得出插值的多项式P2(x)的3个系数。利用基函数的性质可以更为简便地构造P2(x),这种插值称为二次插值或抛物线插值。

P2(x)=y0++ (x- x0)(x- x1) (1.2)1.3.2二次插值的程序代码

a1=input('请输入a1的值:')

a2=input('请输入a2的值:')

a3=input('请输入a3的值:')

e=input('请输入精度e的值:')

h=input('请输入步长h的值:')

y1=eccz(a1);

y2=eccz(a2);

y3=eccz(a3);

c1=(y3-y1)/(a3-a1);

c2=((y2-y1)/(a2-a1)-c1)/(a2-a3);

ap=0.5*(a1+a3-c1/c2);

yp=eccz(ap);

while abs((y2-yp)/y2)>=e

if (ap-a2)*h>0

if y2>yp

a1=a2;

y1=y2;

a2=ap;

y2=yp;

else

a3=ap;

y3=yp;

end

else

if y2>yp;

a3=a2;

y3=y2;

a2=ap;

y2=yp;

else

a1=ap;

y1=yp;

end

end

if y2

am=a2;

ym=y2;

else

am=ap; 图1-5二次插值的程序框图

ym=yp;

end

end

am

ym

后面是子函数:

function y=eccz(a)

y=sin(a);

1.3.3程序的调试及运行结果

在二次插值法确定在一个区间的极小值里面,我们所取的算例是y=sin(a),并且取初始搜索区间为[4,5],取a1=4,a2=4.5,a3=5。程序运行后可得极小值点am=4.711,极小点出的函数值为-1.000。课本上给的算例的极小值为4.710594,极小点处的函数值为-0.999998。程序运行的结果基本一致。

图1-6. 二次插值法确定极小值的程序运行结果

1.4 牛顿型法

1.4.1牛顿型法的求极值的原理及其流程图

在点)

(k x

的邻域内,用一个二次函数 )(x ?来近似代替原目标函数,并以

)(x ?的极小点作为原目标函数的极小点的近似值,若不满足收敛精度要求,则将该近似极小点作为下一次迭代的初始点。如此反复迭代,直到所求的近似极小点满足收敛精度要求为止。顿迭代法中迭代点的位置是按照极值条件确定的,其中并未含有沿下降方向搜寻的概念。因此对于非二次函数,如果采用上述牛顿

法迭代公式,有时会使函数值上升,即出现

)()()

()1(k k x f x f >+的现象。而且这类

方法的主要缺点是每次迭代都要计算函数的二阶导数矩阵,并对该矩阵求逆。这样工作量很大。

图1-7.牛顿型法的程序框图

1.4.2牛顿型法的程序代码syms a1 a2 ak a3 a4 ad

x0=[a3,a4];

x0=input('请输入x0的值:')

e=input('请输入精度e的值:')

k=0;

s1=diff(f,a1,1);

s2=diff(f,a2,1);

g=[diff(f,a1,2),diff(s1,a2,1);diff(s2,a1,1),diff(f,a2,2)]; s=subs(g,[a1,a2],[x0(1),x0(2)]);

k=inv(s);

q=[diff(f,a1,1),diff(f,a2,1)];

w=subs(q,[a1,a2],[x0(1),x0(2)]);

w1=w';

xx=x0';

dk=-k*w1;

x1=xx+ad*dk;

s3=f(x1(1,1),x1(2,1));

m=diff(s3,ad,1);

add=solve(m);

x1=xx+add*dk;

while abs(x1-xx)

a0=a1;

s1=diff(f,a1,1);

s2=diff(f,a2,1);

g=[diff(f,a1,2),diff(s1,a2,1);diff(s2,a1,1),diff(f,a2,2)]; s=subs(g,[a1,a2],[x0(1),x0(2)]);

k=inv(s);

q=[diff(f,a1,1),diff(f,a2,1)];

w=subs(q,[a1,a2],[x0(1),x0(2)]);

w1=w';

dk=-k*w1;

xx=x0';

x1=xx+ad*dk;

x2=x1';

s4=f(x2(1,1),x2(2,1));

m=diff(s4,ad,1);

add=solve(m);

x1=x0+add*dk;

end

xm=x1;

xm

子程序:

function y=f(a1,a2)

syms a1 a2

y=a1*a1+25*a2*a2;

1.4.3程序的调试及运行结果

在牛顿型法求所给的函数的极值里面,我们所取的初始搜索点为[2 2],算例是y=a1*a1+25*a2*a2,精度e为0.00001。程序运行后可得极小值点xm=[0;0],极小点出的函数值为0。课本上给的算例的极小点为[0;0],极小点处的函数值为0。程序运行的结果基本一致。

图1-8、牛顿型法确定函数的极值的结果图

1.5 鲍威尔法

1.5.1鲍威尔法的流程图

图1-9、鲍威尔法的程序框图

机械优化设计论文(基于MATLAB工具箱的机械优化设计)

基于MATLAB工具箱的机械优化设计 长江大学机械工程学院机械11005班刘刚 摘要:机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计效率和质量。本文系统介绍了机械优化设计的研究内容及常规数学模型建立的方法,同时本文通过应用实例列举出了MATLAB 在工程上的应用。 关键词:机械优化设计;应用实例;MATLAB工具箱;优化目标 优化设计是20世纪60年代随计算机技术发展起来的一门新学科, 是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术, 为机械设计提供了一种可靠、高效的科学设计方法, 使设计者由被动地分析、校核进入主动设计, 能节约原材料, 降低成本, 缩短设计周期, 提高设计效率和水平, 提升企业竞争力、经济效益与社会效益。国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视, 并开展了大量工作, 其基本理论和求解手段已逐渐成熟。 国内优化设计起步较晚, 但在众多学者和科研人员的不懈努力下, 机械优化设计发展迅猛, 在理论上和工程应用中都取得了很大进步和丰硕成果, 但与国外先进优化技术相比还存在一定差距, 在实际工程中发挥效益的优化设计方案或设计结果所占比例不大。计算机等辅助设备性能的提高、科技与市场的双重驱动, 使得优化技术在机械设计和制造中的应用得到了长足发展, 遗传算法、神经网络、粒子群法等智能优化方法也在优化设计中得到了成功应用。目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。 一、机械优化设计研究内容概述 机械优化设计是一种现代、科学的设计方法, 集思考、绘图、计算、实验于一体, 其结果不仅“可行”, 而且“最优”。该“最优”是相对的, 随着科技的发展以及设计条件的改变, 最优标准也将发生变化。优化设计反映了人们对客观世界认识的深化, 要求人们根据事物的客观规律, 在一定的物质基和技术条件下充分发挥人的主观能动性, 得出最优的设计方案。 优化设计的思想是最优设计, 利用数学手段建立满足设计要求优化模型; 方法是优化方法, 使方案参数沿着方案更好的方向自动调整, 以从众多可行设计方案中选出最优方案; 手段是计算机, 计算机运算速度极快, 能够从大量方案中选出“最优方案“。尽管建模时需作适当简化, 可能使结果不一定完全可行或实际最优, 但其基于客观规律和数据, 又不需要太多费用, 因此具有经验类比或试验手段无可比拟的优点, 如果再辅之以适当经验和试验, 就能得到一个较圆满的优化设计结果。 传统设计也追求最优结果, 通常在调查分析基础上, 根据设计要求和实践

机械优化设计课程设计任务-Read知识交流

机械优化设计课程设计任务 一、目的 通过课程设计培养学生综合运用本课程及相关课程的理论解决实际问题的能力,使学生掌握在机械优化设计中建立优 化问题数学模型、选择适当优化算法编制程序解决实际问题的 方法,提高计算机的应用水平,为今后的学习和工作打好基础。 二、课程设计的基本要求 1.根据优化问题建立数学模型; 2.选择适当的优化算法; 3.编制、调试和考核程序; 4.作上机前的数据准备并进行上机计算; 5.对优化计算结果进行分析。 三、课程设计报告内容 1.优化问题的简图和已知条件; 2.建立优化问题的数学模型(设计变量、目标函数、约束条 件); 3.简单叙述所用算法的基本原理(如内、外罚函数法、POWELL 法、二次插值法、初始区间搜索等) 4.结果分析: 精度对迭代次数、结果等的影响。 5. 在编写、调试程序过程中遇到的主要问题及解决办法; 6. 请你谈谈对学习机械优化设计这门课的体会,并提出你的 意见和建议。 四、优化设计题目 (一)对称人字架的优化设计

如图1所示,在对对称人字架顶端作用一个P =294300N 的静载荷,人字架跨度B =1520mm ,人字架杆件为壁厚T = 2.5mm 的空心圆管,材料的弹性模量E =2.119×105N/mm2,许用压应力y σ=690N/mm2。设计满足强度条件和稳定性条件,在20~140mm 范围内确定圆管平均直径D ,200~1200mm 范围内确定人字架高度H ,使人字架用料最省。 图1 对称人字架 1、建立优化设计目标函数 人字架用料最省,亦即体积最小。因此将人字架的总体积达到最小作为优化目标。人字架的总体积为 V=2πDT 2 2)2/(H B + (mm 3) 优化设计中的设计变量可取为: X=[x 1 ,x 2]T =[D ,H]T 2、确定约束条件 由静力平衡和材料力学的有关公式可得 (1)强度条件

机械优化设计课本中编程实例

燕山大学机械优化设计论文 专业:12机械工程 班级:工学部1班 学号: 姓名: 2012年12月05日

摘 要: 机械优化设计是将最优化原理和计算技术应用于设计领域,为工程设计提供一种重要的科学设计方法。机械优化设计包括建立优化设计问题的数学模型和选择恰当的优化方法与程序两方面的内容。由于机械优化设计是应用数学方法寻求机械设计的最优方案,所以首先要根据实际的机械设计问题建立相应的数学模型,即用数学形式来描述实际设计问题。在建立数学模型时,需要用专业知识确定设计的限制条件和所追求的目标,确立各设计变量之间的相互关系等。机械优化设计问题的数学模型可以是解析式,实验数据或经验公式。虽然它们给出的形式不同,但都是反应设计变量之间的数量关系的。MATLAB 是目前国际上最流行的科学与工程计算的软件工具, 它具有强大的数值分析、矩阵运算、信号处理、图形显示、模拟仿真和最优化设计等功能。本文用MATLAB 来解决机械设计中的几个常见的问题。 关键词:MATLAB ;优化;机械设计;软件 1 引 言 近年来发展起来的计算机辅助设计,在引入优化设计方法后,使得在设计过程中既能够不断选择设计参数并评选出最优设计方案,又可以加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益缩短的今天,把优化设计方法与计算机辅助设计结合起来,使设计过程完全自动化,已成为设计方法的一个重要趋势。 2 采用MATLAB 软件进行优化设计 2.1.问题描述: 求3682+-=t t f 的最优解 2.1.1规划模型的建立: 目标函数 36102+-=t t f 约束条件 无约束 2.1.2对应的程序: clc clear syms t f=t^2-10*t+36; x1=0; h=2; f1=subs(f,x1);

机械优化设计方法论文

浅析机械优化设计方法基本理论 【摘要】在机械优化设计的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。每一种优化方法都是针对某一种问题而产生的,都有各自的特点和各自的应用领城。在综合大量文献的基础上,总结机械优化设计的特点,着重分析常用的机械优化设计方法,包括无约束优化设计方法、约束优化设计方法、基因遗传算方法等并提出评判的主 要性能指标。 【关键词】机械;优化设计;方法特点;评价指标 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等。 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。

机械优化设计三个案例

机械优化设计案例1 1. 题目 对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。 2.已知条件 已知数输入功p=58kw ,输入转速n 1=1000r/min ,齿数比u=5,齿轮的许用应力[δ]H =550Mpa ,许用弯曲应力[δ]F =400Mpa 。 3.建立优化模型 3.1问题分析及设计变量的确定 由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。 单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为: ] 3228)6.110(05.005.2)10(8.0[25.087)(25.0))((25.0)(25.0)(25.02221222122212222122121222 212221202 22222222121z z z z z z z z z z z g g z z d d l d d m u m z b bd m u m z b b d b u z m b d b z m d d d d l c d d D c b d d b d d b v +++---+---+-=++++- ----+-=πππππππ 式中符号意义由结构图给出,其计算公式为 b c d m u m z d d d m u m z D m z d m z d z z g g 2.0) 6.110(25.0,6.110,21022122211=--==-=== 由上式知,齿数比给定之后,体积取决于b 、z 1 、m 、l 、d z1 和d z2 六个参数,则设计变量可取为 T z z T d d l m z b x x x x x x x ][][21165 4321 == 3.2目标函数为 min )32286.18.092.0858575.4(785398.0)(26252624252463163212 51261231232123221→++++-+-+-+=x x x x x x x x x x x x x x x x x x x x x x x x x x f 3.3约束条件的建立 1)为避免发生根切,应有min z z ≥17=,得

机械优化设计项目报告

机械装备优化设计三级项目 题目:基于MATLAB的带式输送机斜齿轮传动参数优化设计 班级:13级机械装备1班 设计人员(按贡献大小排序): 丁涛 宋潮 金渊哲

摘要: 针对带式输送机中单级圆柱齿轮减速器传动的生产实际,根据优化设计理论,以斜齿圆柱齿轮体积之和最小为优化设计目标。通过变量的选取、约束条件的确定。分析建立了优化设计数学模型.基于Matlab工具箱中非线性约束优化函数fmincon,对齿轮模数、齿数、齿宽系数、螺旋角等结构参数进行优化设计,节省了金属材料。降低了制造成本.取得了较好的优化效果。为产品的改进设计提供了理论依据。 关键词:MATLAB、带式输送机、斜齿轮、参数优化设计

前言: 机械优化设计是适应生产现代化要求发展起来的一种机械设计方法,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度的方向发展。现在用于机械优化设计的软件与方法程序较多,有些已非常成熟,只需要按照规定的格式编写目标函数和约束函数子程序即可。机械优化设计方法林林总总,但由于机械设计问题的复杂性,所以每种优化方法都有其优越性和局限性。选择合适的机械优化方法尤为重要。而MATLAB语言的优化工具箱在进行优化设计时,可自由选择算法和线性搜索策略,计算快捷高效,图形结果可视化,且其初始参数值输入简单,编程工作量小,具有明显的优越性,且应用广泛。MATLAB语言是集科学计算、数据可视化和程序设计为一体的工程应用软件。作为基础软件,它广泛应用在工程学科的计算机辅助分析、设计仿真和教学中,在行星轮系传动参数设计中,利用MATLAB 的优化工具箱的函数计算及按摩,可提高建模的准确性和计算中的数值稳定性,为设计提供了可靠的科学根据。

机械优化设计技术

学号:1310111131 姓名汪海超班级:13机制2班 机械优化设计技术 摘要:机械优化设计是一种非常重要的现代设计方法, 能从众多的设计方案中找出最佳方案, 从而大大提高设计的效率和质量。现代工程装备的复杂性使得机械优化设计变得越来越困难, 利用新的科学理论探索新的优化设计法是该研究领域的一个重要方面。在综合大量文献的基础上, 阐述机械优化设计的含义、目的及必要性, 总结机械优化设计的特点,从优化设计数学模型建立和求解算法两方面探讨现代机械优化设计的理论方法和研究现状, 并指出该领中应当进一步研究的问题和发展方向 关键词:机械;优化设计;数学模型;优化方法;智能优化 优化设计是 20世纪 60年代随计算机技术发展起来的一门新学科 , 是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术 , 为机械设计提供了一种可靠、高效的科学设计方法 , 使设计者由被动地分析、校核进入主动设计 , 能节约原材料 , 降低成本 , 缩短设计周期 , 提高设计效率和水平 , 提升企业竞争力、经济效益与社会效益[ 1 - 2].国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视 , 并开展了量工作 , 其基本理论和求解手段已逐渐成熟。国内优化设计起步较晚 , 但在众多学者和科研人员的不懈努力下 , 机械优化设计发展迅猛。 1 机械优化设计研究内容 机械优化设计是一种现代、科学的设计方法 , 集思考、绘图、计算、实验于一体 , 其结果不仅“可行”, 而且“最优”。该“最优”是相对的 , 随着科技的发展以及设计条件的改变 , 最优标准也将发生变化。优化设计反映了人们对客观世界认识的深化 ,要求人们根据事物的客观规律 , 在一定的物质基础和技术条件下充分发挥人的主观能动性 , 得出最优的设计方案。 2 传统优化设计理论方法 传统优化设计方法种类很多 , 按求解方法特点分为准则优化法、线性规划法和非线性规划法。作者仅从工程应用角度对之进行归纳和整理 , 具体算法可参考其他资料。 3 现代优化设计理论方法 优化准则法对于不同类型的约束、变量、目标函数等需导出不同的优化准则 , 通用性较差 , 且多为近似最优解 ;规划法需多次迭代、重复分析 , 代价昂贵 , 效率较低 , 往往还要求目标函数和约束条件连续、可微 , 这都

合工大机械优化设计课程实践报告

合肥工业大学 《机械优化设计》课程实践 研究报告 班级:机械设计制造及其自动化12-3班学号: 姓名: 授课教师:王卫荣 日期: 2015年 11 月 14 日

目录 一、一维搜索程序作业 (3) 1.λ=0.618的证明 (3) 2.编写0.618法程序并计算 (4) 二、单位矩阵程序作业 (6) 三、连杆机构问题和自选工程优化问题 (7) 1.连杆机构问题 (7) 2.自选工程优化问题 (14) 四、课程实践心得体会 (18)

一、一维搜索程序作业 1.λ=0.618的证明 黄金分割法,又称作0.618法,适用于[a,b] 区间上的任何单谷函数求极小值问题。黄金分割法是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b] 内适当插入两点α1、α2,并计算其函数值。α1、α2 将区间分成三段。应用函数的单谷性质,通过函数值大小的比较,删去其中一段,使搜索区间得以缩短。然后再在保留下来的区间上做同样的位置,如此迭代下去,使搜索区间无限缩小,从而得到极小点的数值近似值。 黄金分割法要求插入点α1、α2 的位置相对于区间[a,b] 两端点具有对称性,即 图1-1 黄金分割法 α1 = b –λ ( b – a ) α2 = a + λ ( b – a ) (3-1) 其中,λ为待定常数。 下面证明λ = 0.618。 除对称性要求外,黄金分割法还要求保留下来的区间内再插入一点所形成的区间新三段,与原来区间的三段具有相同的比例分布。设原有区间[a,b] 长度为1如图1-1 所示,保留下来的区间[a,b] 长度为λ,区间缩短率为λ。为了保持相同的比例分布,新插入点α3应在λ ( 1 –λ ) 位置上,α1在元区间的1 –λ位置应相当于在保留区间的λ2位置。故有 1 –λ = λ2 即 λ2 + λ– 1 = 0 取方程正数解得 若保留下来的区间为[α1,b] ,根据插入点的对称性,也能推得同样的λ的值。

优化设计小论文

优化设计小论文

机械优化设计 优化设计是20世纪60年代初发展起来的一门新的学科,也是一项新的设计技术。它是将数学规划理论与计算技术应用于设计领域, 按照预定的设计目标,以电子计算机及计算程序作为设计手段,寻求最优设计方案的有关参数,从而获 得较好的技术经济效益。机械的研究和应用具有悠久的历史,它伴随甚至推动了人类社会和人类文明的发展。机构学研究源远流长, 但从古到今,机构学领域主要研究三个核心问题, 即机构的构型原理与新机构的发明创造、机构分析与设 计的运动学与动力学性能评价指标、根据性能评价指标分析和设计机构。机构 是组成机械的基本单元,一般机械都是由一个或多个机构组成。对于机构的研究, 能够为发明、创造新机械提供理论、资料和经验。而对于机构的优化设计, 使 机构具有确定的几何尺寸,能够满足运动学要求, 并能实现给定的运动规律,这 些能够为某些具体的机械设计, 使机械满足某些特定的功能提供了可靠的依 据。 机械设计是机械工程的重要组成部分,是决定机械性能最主要的因素。从 工程设计基础和目标上可将设计分为:新型设计(开发性设计)、继承设计、变 型设计(基于标准型的修改)。所谓新型设计,即应用成熟的科学技术或经过实 验证明可行的新技术,设计未曾有过的新型机械,主要包括功能设计和结构设计,是机械设计发展的方向所在,然而贯穿其中的关键环节即是设计的方法和 实现的手段。人类一直都在不断探索新方法和新设计理念。从17 世纪前形成的直觉设计过渡到经验设计和传统设计,直到目前的现代设计[1],从静态、经验、手工式的‘安全寿命可行设计’方法发展到动态、科学、计算机化、自动化的 优化设计方法,已将科学领域内的实用方法论应用于工程设计中了。 机械优化设计基本思路是在保证基本机械性能的基础上,借助计算机,应 用一些精度较高的力学/ 数学规划方法进行分析计算,让某项机械设计在规定 的各种设计限制条件下,优选设计参数,使某项或几项设计指标(外观、形状、结构、重量、成本、承载能力、动力特性等)获得最优值。

机械优化设计一维搜索实验报告

《机械优化设计》 实验报告 班级: 机械设计(2)班 姓名:邓传淮 学号:0901102008

1 实验名称:一维搜索黄金分割法求最佳步长 2 实验目的:通过上机编程,理解一维搜索黄金分割法的原理,了解计算机在优化设计中的应用。 3 黄金分割法的基本原理 黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

4实验所编程序框图(1)进退发确定单峰区间的计算框图

(2)黄金分割法计算框图

5 程序源代码 (1)进退发确定单峰区间的程序源代码 #include #include #define f(x) pow(x,4)-3*pow(x,3)-5*pow(x,2)-14*x+46 main() { int k; double x,h,x1,x2,x3; double f1,f2,f3,f; double a,b; x1=0; h=1; x2=x1+h; f1=f(x1); f2=f(x2); if (f1>f2) { h=2*h; x3=x2+h; f3=f(x3);

机械优化设计

一维搜索方法 摘要:在机械优化设计过程中将求解一维目标函数的极值点的数值迭代方法称之为一维搜索方法,在本质上可归结为单变量的函数的极小化问题。虽然优化设计中的大部分问题是多维问题,但是一维优化方法是优化方法中最基本的方法,在数值迭代过程中都要进行一维搜索,因此,一维搜索方法在优化设计的研究中占据着无可替代的地位。概括起来,可以将一维搜索方法分为两大类:一类是试探法,另一类是插值法。 关键字:优化设计一维搜索方法试探法插值法 引言 一维搜索方法是各种优化方法中最简单又最基本的方法,不仅用来解决一维目标函数的求优问题,也可以将多维优化问题转化为若干次一维优化问题来处理,同时多维优化问题每次迭代计算过程中,每前进一步都要应用一维寻优方法确定其最优步长。一维搜索方法可分为两大类,一类称作试探法,有黄金分割法(0.618法)、裴波纳契(Fibonacci)法等;另一类称作插值法或函数逼近法,属于插值法一维搜索的有二次插值法、三次插值法等。 一维搜索的试探方法 在实际的计算当中,最常用的一维试探方法黄金分割法,即0.618法。黄金分割法适用于[a ,b]区间上的任何单谷函数求极小值问题,因此,这种方法的适应面相当广。 黄金分割法是建立在区间消去法原理基础上的试探方法,即在搜索区间[a ,b]内适当插入两点α1,α2,并计算其函数值。α1,α2将区间分成三部分。利用单谷函数的性质,通过函数值大小的比较删去其中一段,是搜索区间得以缩短。然后再在保留下来的区间上做同样的处理,如此迭代下去是搜索区间无限缩小,从而得到极小点的数值近似值。 黄金分割法要求插入点α1,α2的位置相对区间[a ,b]两端点具有对称性,即 α1=b-λ(b-a) α2=a+λ(b-a) 其中,λ为待定常数。 黄金分割法的搜索过程如下: 1)给出初始搜索区间[a ,b]及收敛精度,将λ赋以0.618; 2)按坐标点计算上公式计算α1和α2,并计算其对应的函数值; 3)根据区间消去法原理缩短搜索区间。为了能用原来的坐标点计算公式,进行区间名称的代换,并在保留区间中计算一个新的试验点及其函数值。 4)检查区间是否缩短到足够小和函数值收敛到足够近,如果条件不满足则返回到步骤 2); 5)如果条件满足,则取最后两试验点的平均值作为极小点的数值近似解。

机械优化设计方法基本理论

机械优化设计方法基本理论 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。 1.2 约束条件 约束条件是设计变量间或设计变量本身应该遵循的限制条件,按表达方式可分为等式约束和不等式约束。按性质分为性能约束和边界约束,按作用可分为起作用约束和不起作用约束。针对优化设计设计数学模型要素的不同情况,可将优化设计方法分类如下。约束条件的形式有显约束和隐约束两种,前者是对某个或某组设计变量的直接限制,后者则是对某个或某组变量的间接限制。等式约束对设计变量的约束严格,起着降低设计变量自由度的作用。优化设计的过程就是在设计变量的允许范围内,找出一组优化的设计变量值,使得目标函数达到最优值。

机械优化设计论文

机械优化设计论文 摘要:机械优化设计的目的是以最低的成本获得最好的效益,是设计工作者一直追求的目标,从数学的观点看,工程中的优化问题,就是求解极大值或极小值问题,亦即极值问题。本文从优化设计的基本理论、优化设计与产品开发、优化设计特点及优化设计应用等方面阐述优化设计的基本方法理论。 关键词:机械优化设计产品开发 一、械优化设计的基本理论 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。 优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立目标函数和约束条件,并使目标函数获得最优值一种现代设计方法, 目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。 二、机械优化设计与产品开发 产品生产是企业的中心任务,而产品的竞争力影响着企业的生存与发展。产品的竞争力主要在于它的性能和质量,也取决于经济性,而这些因素都与设计密切相关,可以说产品的水平主要取决于设计水平。随着生产的日益增长,要求机器向着高速、高效、低消耗方向发展,并且由于商品的竞争,要求不断缩短设计周期,因而对产品的设计已不是仅考虑产品本身,还要考虑对系统和环境的影响;不仅要考虑技术领域,还要考虑经济、社会效益;不仅考虑当前,还要考虑长远发展。在这种情况下,所谓传统的设计方法已越来越显得适应不了发展的需要。由于科学技术的迅速发展,对客观世界的认识不断深入,设计工作所需的理论基础和手段有了很大进步,使产品的设计发生了很大的变化,特别是电子计算机的发展及应用,对设计工作产生了革命性的突变,为设计工作提供了实现设计自动化和精密计算的条件。因此,用理论设计代替经验设计、用精确设计代替近似设计、用优化设计代替一般设计将成为设计的必然发展趋势。 三、机械优化设计的特点 优化设计是以建立数学模型进行设计的。优化设计引用了一些新的概念和术语,如前所述的设计变量、目标函数、约束条件等。机械优化设计将机械设计的具体要求构造成数学模型,将机械设计问题转化为数学问题,构成一个完整的数学规划命题,逐步求解这个规划命题,使其最佳地满足设计要求,从而获得可行方案

机械优化设计实验报告浙江理工大学.docx

机械优化设计实验 报告 班级:XXXX 姓名:XX 学号:XXXXXXXXXXX

一、外推法 1、实验原理 常用的一维优化方法都是通过逐步缩小极值点所在的搜索区间来求最优解的。一般情况下,我们并不知道一元函数f(X)极大值点所处的大概位置,所以也就不知道极值点所在的具体区域。由于搜索区间范围的确定及大小直接影响着优化方法的收敛速度及计算精度。因此,一维优化的第一步应首先确定一个初始搜索区间,并且在该区间内函数有唯一的极小值存在。该区间越小越好,并且仅存在唯一极小值点。 所确定的单股区间应具有如下性质:如果在[α1,α3]区间内任取一点α2,,α1<α2<α3或α3<α2<α1,则必有f(α1)>f(α2) #include #define f(x) 3*x*x-8*x+9 //定义函数 int main() { double a0,a1,a2,a3,f1,f2,f3,h; printf(“a0=”,a0); //单谷区间起始点 scanf(“%lf”,&a0); printf(“h=”,h); //起始的步长 scanf(“%lf”,&h); a1=a0;

a2=a1+h; f1=f(a0); f2=f(a2); if(f1>f2) //判断函数值的大小,确定下降方向 { a3=a2+h; f3=f(a3); } else { h=-h; a3=a1; f3=f1; a1=a2; f1=f2; a2=a3; f2=f3; a3=a2+h; f3=f(a3); } while(f3<=f2) //当不满足上述比较时,说明下降方向反向,继续进行判断 { h=2*h; a1=a2; f1=f2; a2=a3; f2=f3; a3=a2+h; f3=f(a3);

机械优化设计习题及答案

机械优化设计习题及参考答案 1-1.简述优化设计问题数学模型的表达形式。 答:优化问题的数学模型是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。求设计变量向量[]12T n x x x x =L 使 ()min f x → 且满足约束条件 ()0 (1,2,)k h x k l ==L ()0 (1,2,)j g x j m ≤=L 2-1.何谓函数的梯度?梯度对优化设计有何意义? 答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:??? ?????????????=??+??= ??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d f ρ 令xo T x f x f x f x f x f ?? ????????=????=?21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。 (1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。 (2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。梯度)0(x f ?方向为函数变化率最大方向,也就是最速上升方向。负梯度-)0(x f ?方向为函数变化率最小方向,即最速下降方向。 2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最 大的方向和数值。 解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)0(x f ?。求f (x1,x2)在

优化设计报告

(课程实践报告封面模版) 合肥工业大学 《机械优化设计》课程实践 研究报告 班级:机设六班 学号: 姓名:李继鑫 授课老师:王卫荣 日期: 2013年 5 月 7 日

(一)一维搜索 min f(x)=]10,0[]2,0[]32)2[(*cos *π???+-x d x c 注:其中c 、d 为待定系数,用于确定选择的函数是哪一个。 C 语言程序段如下: #include #include #define p 3.14 float fun(float x,float c,float d); void main(void) { float a0,a1,a2,r,a,b; float y1=0.0000,y2=0.0000,u; float c,d; u=0.618; printf("input[a,b]and r:a= b= r= "); scanf("%f%f%f",&a,&b,&r); printf("choose only ONE function number c=1 0 or d=0 1\n"); scanf("%f%f",&c,&d); if(c==1) d=0; else c=0,d=1; a1=b-u*(b-a),y1=fun(a1,c,d);

a2=a+u*(b-a),y2=fun(a2,c,d); do { if(y1>=y2) { a=a1; a1=a2,y1=y2; a2=a+u*(b-a),y2=fun(a2,c,d); } else { b=a2; a2=a1,y2=y1; a1=b-u*(b-a),y1=fun(a1,c,d); } }while(fabs((b-a)/b)>r && fabs((y2-y1)/y2)>r); a0=0.5*(a+b); printf("The best result a0=%f\n",a0); } /******function editting********/ float fun(float x,float c,float d) {

【精品毕设】现代机械优化设计课程论文

现代机械优化设计 摘要:机械优化设计是近年来发展起来的一门新的学科,起始于20世纪60年代,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。在机械应用的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量 关键词:优化设计;方法特点;发展态势 一、机械优化设计的设计思想 机械优化设计是为了适应于不断发展的生产现代化而发展起来的。它建立在数学规划理论和计算机程序设计基础上,通过有效的实验数据和科学的评价体系来从众多的设计方案中寻到尽可能完善的或最适宜的设计方案。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益。 所谓优化设计就是在规定的各种设计限制条件下,将实际设计问题首先转为最优化问题,然后运用最优化理论和方法,在电子计算机上进行自动调优计算,从满足各种设计要求及限制条件的全部可行方案中,选定出最优设计方案。就最优化的理论和方法而言,继古典的微分法和变分法之后,出现有数学规划优化法、准则优化法、混合法及利用遗传算法、人工神经网络的优化方法等。进入21世纪,工程技术人员普及应用最优化方法是必然趋势 1.设计变量 设计变量是指在设计过程中我们必须全面考虑确定的各项独立参数,一旦这些设计参数全部确定了,设计方案也就完全确定了。他们在整个设计过程中相当于一个个变量,变量的多少与数值大小直接影响着优化工作的复杂程度。也就是说,设计变量数目越多,设计空间的维数越大,优化设计工作也就越复杂,同时效益也越显著。因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。 2.约束条件 约束条件是设计变量间或设计变量本身应该遵循的限制条件,而优化设计问题大多数是约束的优化问题。针对优化设计数学模型要素的不同情况,可将优化设计方法进行分类。约束条件的形式有显约束和隐约束两种,前者是对某个或某组设计变量的直接限制,后者则是对某个或某组设计变量的间接限制。等式约束对设计变量的约束严格,起着降低设计变量自由度的作用。优化设计的过程就是在设计变量的允许范围内,找出一组优化的设计变量值,使得目标函数达到最优值。 3.目标函数 在优化设计过程中,每一个变量之间都存在着一定的相互关系这就是用目标函数来反映。他可以直接用来评价方案的好坏。在优化设计中,可以根据变量的多寡将优化设计分为单目标优化问题和多目标优化问题,而我们最常见的就是多目标函数优化。 一般而言,目标函数越多,设计的综合效果越好,但问题求解越复杂。在实际的设计问题中,常常会遇到在多目标函数的某些目标之间存在矛盾的情况,这就要求设计者正确处理各目标函数之间的关系。对这类多目标函数的优化问题的研究,至今还没有单目标函数那样成熟。 二、机械优化设计的主要特点 在优化设计过程中,每一种优化方法都是针对某一种问题而产生的,都有各自的特点和

机械优化设计大作业

一、问题描述 1.1结构特点 (1)体积小、重量轻、结构紧凑、传递功率大、承载能力高 ; (2)传动效率高,工作高 ;(3)传动比大。 1.2用途和使用条件 某行星齿轮减速器主要用于石油钻采设备的减速,其高速轴转速为1300r/min ;工作环境温度为-20℃~60℃,可正、反两向运转。 按该减速器最小体积准则,确定行星减速器的主要参数。 二、分析 传动比u=4.64,输入扭矩T=1175.4N.m ,齿轮材料均选用38SiMnMo 钢,表面淬火硬度HRC 45~55,行星轮个数为3。要求传动比相对误差02.0≤?u 。 弹性影响系数Z E =189.8MPa 1/2;载荷系数k=1.05;齿轮接触疲劳强度极限[σ]H =1250MPa ;齿轮弯曲疲劳强度极限[σ]F =1000MPa ;齿轮的齿形系数Y Fa =2.97;应力校正系数Y Sa =1.52;小齿轮齿数z 取

值范围17--25;模数m取值范围2—6。 注:优化目标为太阳轮齿数、齿宽和模数,初始点[24,52,5]T 三、数学建模 建立数学模型见图1,即用数学语言来描述最优化问题,模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 3.1设计变量的确定 影响行星齿轮减速器体积的独立参数为中心轮齿数、齿宽、模数及行星齿轮的个数,将他们列为设计变量,即: x=[x 1 x 2 x 3 x 4 ]T=[z 1 b m c]T [1] 式中:z1 ˉ ̄太阳轮齿数;b―齿宽(mm);m—模数(mm);行星轮的个数。通常情况下,行星轮个数根据机构类型以事先选定,由已知条件c=3。这样,设计变量为: x=[x 1 x 2 x 3 ]T=[z 1 b m]T [1] 3.2目标函数的确定 为了方便,行星齿轮减速器的重量可取太阳轮和3个行星轮体积之和来代替,即: V=π/4(d 12+Cd 2 2)b 式中:d1--太阳轮1的分度圆直径,mm;d2--行星轮2的分度圆直径,mm。 将d 1=mz 1, d 2 =mz 2 ,z 2 =z 1 (u-2)/2代入(3)式整理,目标函 数则为:

机械优化设计课程教学大纲

《机械优化设计》课程教学大纲 一.课程基本信息 开课单位:机械工程学院 英文名称:Mechanical Optimize Design 学时:总计48学时,其中理论授课36学时,实验(含上机)12学时 学分:3.0学分 面向对象:机械设计制造及其自动化,机械电子工程等本科专业 先修课程:高等数学,线性代数,计算机程序设计,工程力学,机械原理,机械设计 教材:《机械优化设计》,孙靖民主编,机械工业出版社,2012年第 5版 主要教学参考书目或资料: 1.《机械优化设计》,陈立周主编,上海科技出版社,1982年 2.《机械优化设计基础》,高健主编,机械工业出版社,2000年 3.其它教学参考数目在课程教学工作实施前另行确定 二.教学目的和任务 优化设计是60年代以来发展起来的一门新学科,它是将最优化方法和计算机技术结合、应用于设计领域而产生的一种现代设计方法。利用优化设计方法可以从众多的设计方案中寻找最佳方案,加快设计过程,缩短设计周期,从而大大提高设计效率和质量。优化设计方法目前已经在机械工程、结构工程、控制工程、交通工程和经济管理等领域得到广泛应用。在机械设计中采用最优化方法,可以加速产品的研发过程,提高产品质量,降低成本,从而达到增加经济效益的目的。学生通过学习《机械优化设计》课程,可以掌握优化设计的基本原理和方法,熟悉建立最优化问题数学模型的基本过程,初步具备对工程中的优化设计问题进行建模、编程和计算的应用能力,为以后从事有关的工程技术工作和科学研究工作打下一定的基础。 三.教学目标与要求 本门课程通过授课、计算机编程等教学环节,使学生了解优化设计的基本思想,优化设计在机械中的作用及其发展概况。初步掌握建立数学模型的方法,掌握优化方法和使用MATLAB优化工具箱能力。并具备一定的将机械工程问题转化为最优化问题并求解的应用能力 四.教学内容、学时分配及其基本要求 第一章优化设计概述(2学时) (一)教学内容 1、课程的性质、优化的含义;优化方法的发展与应用;机械优化设计的内容及目的;机械优化设计的一般过程 2、机械优化设计的基本概念和基本术语;优化设计的数学模型;优化问题的几何描述;优化设计的基本方法 (二)基本要求

浅谈机械优化设计方法

浅谈机械优化设计方法 发表时间:2019-08-29T14:17:25.640Z 来源:《基层建设》2019年第16期作者:钟文 [导读] 摘要:伴随着我国的经济发展越来越快,无疑给可优化性能设计带来巨大的挑战。 深圳市海目星激光智能装备股份有限公司 518110 摘要:伴随着我国的经济发展越来越快,无疑给可优化性能设计带来巨大的挑战。机械优化设计是近几年来发展起来的一门新的学科,在二十世纪中旬的时候开始,优化技术和计算机技术的兴起,在每个设计领域中被应用,为工程设计提供了重要的科学的设计方法。因此,对机械设计的优化方法加以分析,吸取精华,紧跟时代步伐,与国际同步,才能增强制造业在我国市场中的竞争压力。 关键词:机械;优化设计;方法特点 引言 当今是一个信息化的社会,科技发展速度非常快,人们对多功能产品不仅有强烈的需求,也需要产品必须具备相应的功能,可靠性优化设计由此应运而生,已经取得了飞速发展和广泛应用,即以时间、费用和性能为基础,将产品能得以可靠使用作为优先考虑的设计准则,进行设计和生产可靠的性能要求。因此,可靠性设计是诸多学科和技术的交融而新兴的一种技术。 1 机械优化的概述 机械优化是顺应时代发展而不断延伸出来的一种现代化的生产而发展兴起的。它是建立在数学规划的理论和计算通过有效的实验数据和科学的评价体系来从众多的设计方案中寻找到能够尽可能的完善和适宜的设计方案,在这机械优化的这个机械方面的研究和应用的发展速度都是非常的快速,并且在快速发展的过程中取得了非常显著的效果。 2 机械设计优化方法的分类及特点 2.1 无约束优化设计法 无约束优化设计是没有约束函数的优化设计。无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法;另一类是只利用目标函数值的无约束优化方法。 2.2 约束优化设计法 优化设计问题大多数是约束的优化问题,根据处理约束条件方法的不同可分为直接法和间接法。直接法常见的方法有复合形法、约束坐标轮换法和网络法等。其内涵是构造一个迭代过程,使每次的迭代点都在可行域中,同时逐步降低目标函数值,直到求得最优解。间接法常见的有惩罚函数法、增广乘子法。它是将约束优化问题转化成无约束优化问题,再通过无约束优化方法来求解,或者非线性优化问题转化成线性规划问题来处理。 2.3 遗传算法 遗传算法是一种非确定性的拟自然算法,它仿造自然界生物进化的规律,对一个随机产生的群体进行繁殖演变和自然选择,适者生存,不适者淘汰,如此循环往复,使群体素质和群体中个体的素质不断演化,最终收敛于全局最优解。最近几年中遗传算法在机械工程领域也开展了多方面的应用,主要表现在:机械结构优化设计;可靠性分析;故障诊断;参数辨识;机械方案设计。遗传算法尽管已解决了许多难题,但还存在许多问题,如算法本身的参数优化问题、如何避免过早收敛、如何改进操作手段或引入新的操作来提高算法的效率、遗传算法与其它优化算法的结合问题等。 2.4 蚁群算法 蚁群算法是受自然界中真实蚁群的集体行为的启发而提出的一种基于群体的模拟进化算法。蚁群算法对系统优化问题的数学模型没有很高的要求,只要可以显式表达即可,避免了导数等数学信息,使得优化过程更加简单,遍历性更好,适合非线性问题的求解。 2.5 模拟退火算法 模拟退火算法是一个全局最优算法,以优化问题的求解与物理系统退火过程的相似性为基础,适当的控制温度的下降过程实现模拟退火,从而达到求解全局优化问题的目的。模拟退火算法是一种通用的优化算法,用以求解不同的非线性问题;对不可微甚至不连续的函数优化,能以较大概率求得全局优化解;并且能处理不同类型的优化设计变量(离散的、连续的和混合型的);不需要任何的辅助信息,对目标函数和约束函数没有任何要求。 3机械优化设计过程中的设计方式 众所周知,在机械方面的设计都是非常的复杂困难的,要对机械进行优化设计面临的挑战也是非常大的,但是由于机械领域中优化形式十分的广泛,相关的研究人员根据优化运算的形式进行划分,主要分为准则优化,其次是线性规划,最后是非线性规划三种。其中准则优化是一种传统的优化方式,这种方式没有通过机械优化设计的数学理论方式进行优化,而是通过物理学方面的分析得出相应的结果,这样的方式得出的结论往往是具备一定的主观性的,但是这样的传统的优化设计方式具有的优点就是可以直观的看到优化的概念,并且这种优化设计的方式相对来说也是比较简单的,并且能够充分的发挥出目标函数的最大功效,并且非常的符合传统的工程需要,但是同样具有一定的缺点,就是在效率上始终优点偏低。 线性规划就是依据数学的基础进行优化的方式,同样线性规划是机械优化设计中最重要的设计方式,但是线性规划的优化设计方式在通过数学的理论上进行设计存在着很多的缺陷,就是在针对多函数的时候就不能充分的发挥出功效,还有就是在计算的过程中,十分的复杂,结算量非常的大,导致了在效率上有很大的缺陷,所以通常情况下,线性规则的优化设计方式都没有被采用。那么非线性规划的优化设计方式是整个生产和生活中应用最广泛的优化方式,并且能够有效的推进机械优化设计的发展,并且可以利用数学模式的计算将非线性规划分为两种,一种是没有约束的直接设计方式,就是在利用机械优化设计方案中以及存在的数据和再生的数据最为基础来进行合理的分析,进而得到最佳的效果,还有一种就是没有约束但是比较间接的方法,这种方式就是前者的方式的数学模式计算改变成了数学原理作为基础,通过利用函数的特性进行计算,从而得到最优的方式,这种方式在整个的机械优化设计中是非常重要的组成部分。 4机械设计优化方法的选择 根据优化设计问题的特点(如约束问题),选择适当的优化方法是非常关键的,因为同一个问题可以有多种方法,而有的方法可能会导致优化设计的结果不符合要求。选择优化方法有四个基本原则:效率要高、可靠性要高、采用成熟的计算程序、稳定性要好。另外选择适当的优化方法还需要个人经验,深入分析优化模型的约束条件、约束函数及目标函数,根据复杂性、准确性等条件对它们进行正确的选

相关主题
文本预览
相关文档 最新文档