当前位置:文档之家› 张量网络基础知识

张量网络基础知识

张量网络基础知识
张量网络基础知识

一、常用符号说明

二、基本符号和运算表示的张量网络图表示:

三、张量爱因斯坦乘积和张量多模乘积

张量多模乘积:给定两个张量,并且具有相同维度,则该两个张量的多模乘将

得到一个新的张量,其运算公式

为,该运

算表示为

●张量爱因斯坦乘积:给定两个张量和

,并且由P个相同的维度L1,L2,L3……L P,,则该两个张量的爱因斯坦乘将得到一个新的张量

,其运算公式为

,该运算式子可以表示为:

●区别和联系:张量爱因斯坦乘积和张量多模乘的本质是一样

的,只是在相等的维度所在的阶是否连续,如果是连续的,

则为张量爱因斯坦乘积,如果不是连续的则为张量多模乘。

●图示对比:

张量爱因斯坦乘:

张量多模乘:

四、基于张量的链式分解问题:

●问题:假设原始张量,当一个新张量

沿着第k阶以增量的方式追加到原始张量中,得到更新张量。原始张量的张量链分解结果已知如下,其中

●分析:问题研究的核心为基于原始张量分解的张量核

,当新的张量Y到来后,如何求解张量Y的链分解结果.

●解决步骤:

?对张量进行链分解;

?计算补零张量的张量链分解结果;

?基于张量链格式对张量相加得和的张量链格式;

?对更新张量的张量核进行正交核压缩.

●图示:

●举个例子:比如说面包店有十种面包在售,有前一周的销售额

和客流量X,以天为单位添加销售额Y;

X∈R7x7x10新增加的张量Y∈R1X10,

第一步我们对新张量Y进行TT分解,然后将张量Y`进行补

零至7*7*10,然后对分解的结果进行Y`和已知的X张量的

TT结果进行相加得到Z,最后对Z张量的张量核及逆行正正

交和压缩.

五、算法的可行性相关

●补零张量可行性:

?奇异值分解规律

按行补零:给定一个举证M1∈R m×n和一个矩阵M2∈

R(m+△m)×n,矩阵M2是通过在矩阵M1的底部补零得到

的,即M2=.假定矩阵M1和M2的奇异值分解结

果分别为,如果对各自奇异值

分解结果进行相同的截断后σ秩为r1,r2,则r2=r1,

.

证明:根据奇异值分解的性质可得,U1,V1,U2,V2都是正

交矩阵,S1,S2都是对角阵,因此可以有:

考虑,结合上述两个式子可以得到:,因为相同矩阵的特征值唯一,所以S12=S22相同,因此M1,M2的奇异值相等,即S1=S2.V1=V2.如果对M1和M2的奇异值分解结果进行相同的σ截取,则截取后的σ秩相等,r1=r2,因此,可以推断V2r2=V1r1.

假设 ,根据上诉结论S1=S2和r2=r1,有:

,因

此r2=r1,因此

按列补零同理;

(完整版)《张量分析》报告

一 爱因斯坦求和约定 1.1指标 变量的集合: n n y y y x x x ,...,,,...,,2121 表示为: n j y n i x j i ...,3,2,1,,...,3,2,1,== 写在字符右下角的 指标,例如xi 中的i 称为下标。写在字符右上角的指标,例如yj 中的j 称为上标;使用上标或下标的涵义是不同的。 用作下标或上标的拉丁字母或希腊字母,除非作了说明,一般取从1到n 的所有整数,其中n 称为指标的范围。 1.2求和约定 若在一项中,同一个指标字母在上标和下标中重复出现,则表示要对这个指标遍历其范围1,2,3,…n 求和。这是一个约定,称为求和约定。 例如: 3 3 33 2 32 1 31 2 3 23 2 22 1 21 1 3 13 2 12 1 11 b x A x A x A b x A x A x A b x A x A x A =++=++=++

筒写为: i j ij b x A = j——哑指标 i——自由指标,在每一项中只出现一次,一个公式中必须相同 遍历指标的范围求和的重复指标称为“哑标”或“伪标”。不求和的指标称为自由指标。 1.3 Kronecker-δ符号(克罗内克符号)和置换符号 Kronecker-δ符号定义 j i j i ij ji ≠=???==当当0 1δδ 置换符号 ijk ijk e e =定义为: ?? ? ??-==的任意二个指标任意k j,i,当021) (213,132,3的奇置换3,2,1是k j,i,当112)(123,231,3的偶置换3,2, 1是k j,i,当1ijk ijk e e i,j,k 的这些排列分别叫做循环排列、逆循环排列和非循环排列。 置换符号主要可用来展开三阶行列式: 23123133122123321123123113322133221133 323 123222 113121 1a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++==

张量的基本概念(我觉得说的比较好-关键是通俗)

向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计算机水平,不只对数值计算有极深的造诣,对一个程序如何编译成汇编代码,如何在CPU 中执行,操作系统如何对内存处理,那些程序又如何在内存中调度,反正听得多了,我也能

第一章 张量分析基础知识

晶体物理性能 南京大学物理系

由于近代科学技术的发展,单晶体人工培养技术的成熟,单晶体的各方面物理性能(如力、声、热、电、磁、光)以及它们之间相互作用的物理效应,在各尖端科学技术领域里,都得到了某些应用.特别是石英一类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电子技术中,比较早地在工业规模上进行大批生产和广泛应用.激光问世的四十多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应用中,已成单晶体应用中极为活跃的领域. 《晶体物理性能》是我系晶体物理专业的专业课程之一,目的就是希望对晶体特别是光电技术中使用的晶体(包括基质晶体与非线性光学晶体)的有关物理性能及其应用方面的基本知识,有一个了解.对今后从事光电晶体的生长、检测和应用的工作,在分析问题、解决问题方面有所帮助,同时要在今后工作中不断从实践和理论两个方面扩大知识领域,有一个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个方面作深入全面的介绍,也将侧重于激光晶体有关的一些性能及其应用. 鉴于以上考虑,《晶体物理性能》讲义将以离子晶体为主要对象,以光电技术上应用为线索组织内容,共分为八章.着重于从宏观角度结合微观机制介绍晶体基本物理性能以及各种交互作用过程的物理效应和它们在光电技术中的某些应用,包括弹性与弹性波(第二章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第八章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、方便地描述这些物理性能必须使用张量来表示.因此,在第一章,我们介绍了关于张量分析基础知识方面的内容. 由于水平有限,实践经验缺乏,时间仓促,因而内容安排不妥、取舍不当、错误之处一定很多,希望同学们提出宝贵意见,批评指正.

张量分析习题答案

第一章 习题7: 若c a m b =+,则 2322(12)(2)(32)a c m b i j k i j k i j k m m m m m m =-=++--+=-+-+- 注意 0a b ?=,则 2(12)(2)2(32)0m m m -+--+= 29 m =- 132023999a i j k = + + 习题10: (1.2.17)式为: )1 23g g g = ? )2 31g g g = ? )3 12g g g = ? ()123g g g g =??()()2i j k i j =+-?+= 2 = ()12011101i j k g g i j k ?= =+- 则 ()1 12 g i j k =+- ()231011 10i j k g g i j k ?= =-++ ()2 12 g i j k = -++ ()311 100 11 i j k g g i j k ?==-+ ()312 g i j k =-+ 11112g g g =?= 222g = 332g =

()()12211j k i k g g = ++== ()( )1331 1j k i j g g =++ == ()()32231g i k i j g =++== 习题24: T =N N T =ΩΩ T ?=?=?u N N u N u T ?=?=-?u u u ΩΩΩ 习题34: :()():ij ji ij i j i j j i T a b T a b T a b ====N ab ba N :()():ij ji ij i j i j j i a b a b a b =Ω=-Ω=-Ω=-ab ba ΩΩ 习题36: ??=??a T b a S b 推出 ()0?-?= a T S b 对a ,b 为任意张量都成立,,则0-=T S ,即=T S 习题48: 设 s r s r u u ==u g g ()pq r pq p q r q p u u ?=Ω ?=Ωu g g g g Ω 1 :2?? ?- ? ?? ? u =u ∈Ωω ()()11:221122 11 22 12 i j k pq s pq j k i s ijk p q s ijk p q s jk i s jk ist ijk s ijk s t ist jk s s t s t jk ijk s j k k j s t st ts st pq s t s t u u u u u u u u δδδδδδδ??-∈Ω?=-∈Ω? ? ?? =-∈Ω ?= ∈Ω ∈ =-Ω=- -Ω= Ω-Ω =Ω=Ω =g g g g g g g g g g g g g g g q p u g

张量的基本概念(我觉得说的比较好,关键是通俗)

简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。 向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计

微波技术基础课程学习知识要点

《微波技术基础》课程学习知识要点 第一章学习知识要点 1.微波的定义—把波长从1米到0.1毫米范围内的电磁波称为微波。微波波段对应的频率范围为: 3×108Hz~3×1012Hz。在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽10000倍。一般情况下,微波又可划分为分米波、厘米波、毫米波和亚毫米波四个波段。 2.微波具有如下四个主要特点:1) 似光性、2) 频率高、3) 能穿透电离层、4) 量子特性。 3.微波技术的主要应用:1) 在雷达上的应用、2) 在通讯方面的应用、3) 在科学研究方面的应用、4) 在生物医学方面的应用、5) 微波能的应用。 4.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。 第二章学习知识要点 1. 传输线可用来传输电磁信号能量和构成各种微波元器件。微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。传输线方程是传输线理论中的基本方程。 2. 均匀无耗传输线方程为

() ()()()d U z dz U z d I z dz I z 22222 20 -=-=ββ 其解为 ()()() U z A e A e I z Z A e A e j z j z j z j z =+=---120121ββββ 对于均匀无耗传输线,已知终端电压U 2和电流I 2,则: 对于均匀无耗传输线,已知始端电压U 1和电流I 1,则: 其参量为 Z L C 00 0=,βπλ=2p ,v v p r =0 ε,λλεp r =0 3. 终端接的不同性质的负载,均匀无耗传输线有三种工作状态: (1) 当Z Z L =0时,传输线工作于行波状态。线上只有入射波存在,电压电流振幅不变,相位沿传播方向滞后;沿线的阻抗均等于特性阻抗;电磁能量全部被负载吸收。 (2) 当Z L =0、∞和±jX 时,传输线工作于驻波状态。线上入射波和反射波的振幅相等,驻波的波腹为入射波的两倍,波节为零;电压波腹点的阻抗为无限大,电压波节点的阻抗为零,沿线其余各点的阻抗均为纯电抗;电压(电流)波腹点和电压(电流)波节点每隔λ4交替出现,每隔2λ重复出现;没有电磁能量的传输,只有电磁能量的交换。 (3) 当Z R jX L L L =+时,传输线工作于行驻波状态。行驻波的波腹小于两倍入射波,波节不为零;电压波腹点的阻抗为最大的纯电阻R Z max =ρ0,电压波节点的阻抗为最小的纯电阻R Z min =0ρ; ()()?????-=-= sin cos sin cos 011011Z z jU z I z I z Z jI z U z U ββββ()()?????+=+= sin cos sin cos 022022Z z jU z I z I z Z jI z U z U ββββ

VUMAT基本知识

NBLOCK:在调用Vumat时需要用到的材料点的数量 Ndir:对称张量中直接应力的数量(sigma11,sigma22,sigma33) Nshr:对称张量中间接应力的数量(sigma12, sigma13, sigma23) Nstatev:与材料类型相关联的用户定义的状态变量的数目 Nfieldv:用户定义的外场变量的个数 Nprops:用户自定义材料属性的个数 Lanneal:指示是否在退火过程中被调用例程的标志。Lanneal=0,指示在常规力学性能增量,例程被调用。Lanneal=1表示,这是退火过程,你应该重新初始化内部状态变量, stepTime:步骤开始后的数值 totalTime:总时间 Dt:时间增量值 Cmname:用户自定义的材料名称,左对齐。它是通过字符串传递的。一些内部材料模型是以“ABQ_”字符串开头给定的名称。为了避免冲突,你不应该在“cmname”中使用“ABQ_”作为领先字符串。 coordMp(nblock,*):材料点的坐标值。它是壳单元的中层面材料点,梁和管(pipe)单元的质心。 charLength(nblock): 特征元素长度,是基于几何平均数的默认值或用户子程序VUCHARLENGTH中定义的用户特征元长度。 props(nprops):用户使用的材料属性 density(nblock):中层结构的物质点的当前密度

strainInc (nblock, ndir+nshr):每个物质点处的应变增量张量 relSpinInc (nblock, nshr):在随转系统中定义的每个物质点处增加的相对旋转矢量 tempOld(nblock):物质点开始增加时的温度。 defgradOld (nblock,ndir+2*nshr):在增量开始时,每个物质点出的变形梯度张量,在3d中形为(F11, F22,F33,F12,F23,F31,F21,F32,F13),在2d中形为(F11,F22,F33,F12,F21) stretchOld (nblock, ndir+nshr) fieldOld (nblock, nfieldv):在增量开始时,每个物质点处用户定义场变量的值stressOld (nblock, ndir+nshr):在增量开始时,每个物质点处的应力张量:stateOld (nblock, nstatev):在增量开始时,每个物质点处的状态变量:tempNew(nblock):在增量结束时,每个物质点处的温度 defgradNew (nblock,ndir+2*nshr):在增量结束时,每个物质点出的变形梯度张量,在3d中形为(F11, F22,F33,F12,F23,F31,F21,F32,F13),在2d中形为(F11,F22,F33,F12,F21) fieldNew (nblock, nfieldv):在增量开始时,每个物质点处用户定义长变量的值

(完整版)张量分析中文翻译

张量 张量是用来描述矢量、标量和其他张量之间线性 关系的几何对象。这种关系最基本的例子就是点积、 叉积和线性映射。矢量和标量本身也是张量。张量可 以用多维数值阵列来表示。张量的阶(也称度或秩) 表示阵列的维度,也表示标记阵列元素的指标值。例 如,线性映射可以用二位阵列--矩阵来表示,因此该 阵列是一个二阶张量。矢量可以通过一维阵列表示, 所以其是一阶张量。标量是单一数值,它是0阶张量。 张量可以描述几何向量集合之间的对应关系。例 如,柯西应力张量T 以v 方向为起点,在垂直于v 终点方向产生应力张量T(v),因此,张量表示了这两个 向量之间的关系,如右图所示。 因为张量表示了矢量之间的关系,所以张量必 须避免坐标系出现特殊情况这一问题。取一组坐标 系的基向量或者是参考系,这种情况下的张量就可 以用一系列有序的多维阵列来表示。张量的坐标以 “协变”(变化规律)的形式独立,“协变”把一种 坐标下的阵列和另一种坐标下的阵列联系起来。这 种变化规律演化成为几何或物理中的张量概念,其 精确形式决定了张量的类型或者是值。 张量在物理学中十分重要,因为在弹性力学、流体力学、广义相对论等领域中,张量提供了一种简洁的数学模型来建立或是解决物理问题。张量的概念首先由列维-奇维塔和格莱格里奥-库尔巴斯特罗提出,他们延续了黎曼、布鲁诺、克里斯托费尔等人关于绝对微分学的部分工作。张量的概念使得黎曼曲率张量形式的流形微分几何出现了替换形式。 历史 现今张量分析的概念源于卡尔?弗里德里希?高斯在微分几何的工作,概念的 制定更受到19世纪中叶代数形式和不变量理论的发展[2]。“tensor ”这个单词在 1846年被威廉·罗恩·哈密顿[3]提及,这并不等同于今天我们所说的张量的意思。 [注1]当代的用法是在1898年沃尔德马尔·福格特提出的[4]。 “张量计算”这一概念由格雷戈里奥·里奇·库尔巴斯特罗在1890年《绝对微分几何》中发展而来,最初由里奇在1892年提出[5]。随着里奇和列维-奇维塔1900年的经典著作《Méthodes de calcul différentiel absolu et leurs applications 》(绝对微分学的方法及其应用)出版而为许多数学家所知[6]。 在20世纪,这个学科演变为了广为人知的张量分析,1915年左右,爱因斯坦的广义相对论理论中广泛应用了这一理论。广义相对论完全由张量语言表述。爱因斯坦曾向几何学家马塞尔·格罗斯曼学习过张量方法,并学得很艰苦。[7]1915 年到1917年之间,列维·奇维塔 在与爱因斯坦互相尊重互相学习的氛围下,对爱因斯坦的张量表述给与了一些指正。 “我很佩服你的计算方法的风采,它必将使你在数学大道上策马奔腾,然而我们却只能步履蹒跚。”阿尔伯特·爱因斯坦,意大利相对论数学家[8]。 柯西应力张量是一个二阶张量。该张量的元素在三维笛卡尔坐标系下组成如下矩 阵: 312()()()111213212223313233 T T T =e e e σσσσσσσσσσ??=???????????? 该矩阵的各列表示作用在 e 1,e 2,e 3方向正方体表面上的应力(单位面积上的力)。

张量分析3

第三章 张量分析 将偏导数的概念推广,建立协变导数的概念,使得一个张量的协变导数是另一个张量,这是张量分析发展中最重要的里程碑碑。张量的协变导数是本章讨论的重点。 §3.1 基矢量的偏导数与克里斯托费尔符号 求一个矢量的导数,必须对它的各个分量与基矢量乗积之和求导: j ,i i i i j ,j ,i i j ,j g V g V )g V (V x V +===?? (3.1-1a) i j ,i i j ,i j ,i i g V g V )g V (+== (3.1-1b) 上式中的“,”号表示偏导数,本书以后均采用此记法。 (3.1-1a )、(3.1-1b )式中有基矢量i g 和对偶基矢量i g 对于曲线坐标j x 的偏导数j ,i g 和i j ,g 。下面分别进行讨论。 一、基矢量i g 的偏导数j ,i g 由基矢量的定义[(1.4-4)式]可以写出 s j i s 2s i s j j ,i i x x z )i x z (x g ???=????= 这表示基矢量i g 对于坐标j x 的偏导数也是矢量,它也可以分解成沿对偶基矢量i g 或基矢量i g 方向的分量: k k ij k ijk j ,i g g g Γ=Γ= (3.1-2) 式中ijk Γ是j ,i g 沿k g 方向的分量;k ij Γ是j ,i g 沿k g 方向的分量。 从它们的意义可以理解,为什么ijk Γ和k ij Γ中包含I,j,k 三个指标。若用另一基矢量点乘(3.1-2)式,就得到 i j k l k i j l k l i j l k j ,i g g g g Γ=δΓ=?Γ=? (3.1-3a) k ij k l l ij k l l ij k j ,i g g g g Γ=δΓ=?Γ=? (3.1-3b) ijk Γ称为第一类克里斯托费尔 (Christoffel )符号;k ij Γ称为第二克里斯托费尔符号。(3.1-2)式或(3.1-3)式都可以作为克里斯托费尓符号的定义。

张量分析中文翻译(最新整理)

柯西应力张量是一个二阶张量。该张量的元素在三维笛

,其中新的基矢量按照如下公式由旧的基矢量变换得到,

指数之间的变换规律如下: 11111111,,,,11,,,,=n n n m n n m n n m n m i i i j j j j i i i j j i i j j T R R R R T ++++???∧???--????????????()()这样的张量称为阶或类型为(n,m-n )型的张量[4].这样的讨论产生了张量的一般定义。 定义:(n,m-n )型的张量是多线性映射的分配,即: 对于基f=(e 1,...,e N ) 是如此,如果应用如下基变换 多维阵列变成“协变”规律形式 11111111,,,,11,,,,[f,]=[f ] n n n m n n m n n m n m i i i j j j j i i i j j i i j j T R R R R R T ++++??????--????????????()()多维阵列定义张量满足“协变”规律,这个可以追溯到里奇的早期工作。如今,这种定义在一些物理和工程书籍中仍然经常使用。 张量场 在许多实际应用当中,特别是微分几何和物理领域,通常把张量的元素考虑成为函数形式。事实上,这只是Ricci 早期的工作。在当今的数学术语里面,这样的对象称为张量场,但是它们通常仅仅指的的张量本身。 本文当中的“协变”规律的定义采用一种不同的形式,张量场的基底由基础空间的坐标所决定,而且,“协变”规律的定义通过坐标函数的偏导数来表示, ,定义如下坐标变换 多线性映射 有一种定义张量的方法是站在多维阵列的角度的,从被定义对象基独立性和几何对象的本质来看,这种定义方法并不明显。尽管这种方法也可以说明变化规律对基独立性的觉得作用,但有时还是首选张量更本质的定义。一种方法是张量定义成多线性映射。这种方法中(n,m )类型的张量被定义成一种映射。 copies copies :, n m T V V V V R **???????????→ 式中V 表示向量空间,V *表示该向量空间对应的共轭向量空间,其中的变元是线性的。 通过把多线性映射(n,m )型的张量T 应用到V 的基{e 1}和V *的基共轭基{ε1}中,即: 1111(,,,,)i in i in j jm j jm T T e e εε??????≡??????

01 张量基础

第一章 张量基础
晶体的物理性质一般是各向异性的,这 些性质常常需要用与方向有关的两个可测量 的量之间的关系来定义,而用张量来描述, 张量是晶体物理的数学基础。

第一章 张量基础
张量的基本知识 张量的变换定律 张量的几何表示法 晶体对称性对晶体性质的影响 晶体物理性质的相互关系

1.1 张量的基本知识(1)
一、标量与矢量
1、标量
在物理学中,常遇到这样一些量,如物体的温 度、密度等等,它们都与方向无关。这些无方向的 物理量,称为标量(也称零阶张量)。它们完全由 给定的某一数值来确定。

1.1 张量的基本知识(2)
2、矢量
与方向有关的物理量,称为矢量(也称一阶张 量)。它们不仅有大小,而且有一定的方向。如电 场强度、电位移、温度梯度等都是矢量。矢量用上 方带箭头的字母表示,如电场强度可表示为 E 。 矢量还可以用直角坐标系(x1,x2,x3 )中三个坐 标轴上的分量来决定它的大小和方向,于是 就可以 E 写成: E = [E , E , E ]
1 2 3
——字母的下标1、2、3分别代表x1, x2, x3轴。这 样,当坐标轴选定后,矢量就完全由其在这些轴 上的分量来确定。

1.1 张量的基本知识(3)
二、二阶张量
在各向同性介质中,电场强度矢量 E 和电位移矢量 D 的 方向永远保持一致,在电场强度不高的情况下,两者成线形 关系,因此,它们间的关系可以直接表示为:
D =εE
ε——介电常数
在各向异性介质中,电场强度矢量 E 和电位移矢量 D 的 E 方向经常不一致,因此, D 在三个坐标轴上的分量都与 的三 个分量相关,此时,它们间的关系可表示为: D1 = ε 11 E1 + ε 12 E 2 + ε 13 E3 D2 = ε 21 E1 + ε 22 E 2 + ε 23 E3 D3 = ε 31 E1 + ε 32 E 2 + ε 33 E3

张量分析各章要点

各章要点 第一章:矢量和张量 指标记法: 哑指标求和约定 :同一项中出现一对相同的协、逆变指标则对该指标求和 自由指标规则:同一项中只能出现一次,不同项中保持在同一水平线上 协变基底和逆变基底: k i k i i x ??==?ξ?ξr g e j j i i ?=δg g i i k k x ?ξ=?g e 123 = ==g g g 张量概念 i i'i'i =βg g i'i'i i =βg g i k i k j j ''''ββ=δ i'i'i i v v =β i i 'i 'i v v =β i 'j'i 'j'k l ij ..k 'l'i j k 'l'..kl T T =ββββ i i i i v v ==v g g ..kl i j ij k l T =???T g g g g 度量张量 ij i i i j i i g =?=?=?G g g g g g g ?=?=?=?=v G G v v T G G T T .j kj i ik T T g = 张量的商法则 lm ijk T(i,j,k,l,m)S U = ijk ...lm T(i,j,k,l,m)T = 置换符号 312n 1n 123n i i i i i 123n 1n i i i ...i A a a a ......a a e -- i j k Lmn ijk .L .m .n a a a e e A = i j k .L .m .n ijk Lmn a a a e e A = 置换张量

i j k ijk ijk i j k =ε??=ε??εg g g g g g ijk i j k ()e ε=??=g g g ijk ijk i j k ()ε=??=g g g i j k ijk ijk i j k a b a b ()::()?=ε=ε=?=?a b g g a b εεa b 广义δ符号 i i i r s t j j j ijk ijk ijk r s t rst rst rst k k k r s t e e δδδδδδ==εε=δδδδ ijk j k j k jk ist s t t s st δ=δδ-δδδ ijk k ijt t 2δ=δ ijk ijk 6δ= 性质:是张量 重要矢量等式:()()()??=?-?a b c a c b a b c 第二章: 二阶张量 重要性质:T =T.u u.T 主不变量 i 1.i Tr()T ζ==T i j l m 2l m .i .j 1T T 2 ζ=δ 3det()ζ=T 1()()(())(())()?????????=ζ??T u v w +u T v w +u v T w u v w 2)[)][()(]()[()]()????????????=ξ??T u (T v w +u T v T w)+T u (v T w u v w ( ()[()()]det()()?????=??T u T v T w T u v w 标准形 1. 特征值、特征向量 ?=λT v v ()-λ?=T G v 0 321230λ-ζλ+ζλ-ζ= 2. 实对称二阶张量标准形 i 12 3 i 1122 33=??=λ?+λ?+λ? N N g g g g g g g g 3. 正交张量(了解方法) 12112233(cos()sin())(sin()cos())=?+??+-?+??+?R e e e e e e e e

电力系统分块计算的意义和策略

电力系统分块计算的意义和策略何小庆11031009 摘要:本文阐述了电力系统分块可行性和电力系统分块意义,介绍了了两种重要的分块方法:节点撕裂法和支路切割法。通过这几种方法做了比较,最后对电力系统分块做了展望。 关键字:电力系统分块,节点撕裂法,支路切割法 Abstract:This paper presents a reliability of a section algorithm of power system and the importance of this algorithm,and introduces two vital methods of a section algorithm of power system,node tearing and branch cutting .Through comparing those methods,we can conclude the future of a section algorithm of power system. Key word: a section algorithm of power system,node tearing,branch cutting 0 前言 网络分块计算最早有Kron[1]于20世纪50年代初提出,他利用张量分析的概念发展了网络分裂算法(piecewise diakoptics),其基本思想是吧电网分解成若干规模较小的子网,对每一个子网在分割的边界处分别进行等值计算,然后再求出分割边界处的协调变量,最后求出各个子网的内部电量,得到却系统的解。 1 电力系统分块可行性分析 电力系统能够分块计算具有以下几个原因: 一,现代电力系统规模庞大,节点众多,分块处理可将大系统拆分为大量小系统,最终简化分析计算过程。 二,目前的计算工具无法满足计算速度的要求。分块处理应用于某一台计算机上,通过串行处理而有效地求解交大系统的分析结果,虽然对于缩短计算时间成效不大,但对于减少内存占用意义明显。分块处理应用于多台计算机上,通过并行处理可提供比单台计算机更快的计算速度,从而缩短计算时间。 三,电力系统本身所具有的分层分区结构特别适合分块计算的应用。就信息的传送而言,每一个地区电网只能收集到本地区系统内的信息,其中重要的信息将被传送到更高一级的调度中心。调度中心根据各地区传送来德尔信息进行加工处理,将协调信息传送给各地区电力系统的调度中心。分块计算正好可以适应这一分层调度的要求。近年来,随着计算机的发展,各种并行计算机和多处理机组成的列阵机相继出现。这样的应用背景促进了人们对并行计算的兴趣,并开展了大量的研究工作,提出了各种基于网络分块的并行计算。 根据协调变量的不同,网络分块计算主要分为两类:一类是支路切割法(branch cutting),通过切割原网络中的某些支路把原网络分解;另一类是节点撕裂法(node tearing),即将原网络的部分节点“撕裂”开,把网络分解。前者的协调变量是切割电流,后者的协调变量是分裂点点位。两种方法有各自的特点,将两种方法统一起来,就产生了统一的网络分裂算法。 2 电力系统分块意义 现代电力系统规模庞大,使进行各种分析的计算量很大,以致现有计算工具无法满足计算速度的要求。分块处理可以达到利用现有计算工具,大大缩短计算时间的要求。 对于电力系统,通常情况下,是在各电力公司的边界线对系统进行分割。分割理论的应用至少有二:第一种应用是,把分割法应用于某一台计算机上,通过串行处理而有效地求解较大系统的分析结果,这中方法的

张量分析与材料应力张量习题解答

练习题Ⅱ(金属所) 1. 用下标符号证明:C B A B C A C B A )()()(?-?=??。 2. 证明 nk nj ni mk mj mi lk lj li lmn ijk δδδδδδδδδ=∈∈ 3. 证明ijk klm =(δil δjm -δim δjl ) 4. 证明ijk ikj =-6。 5. 证明 ijk mik =-2δjm 。 6. 证明具有中心对称的晶体不具有由奇阶张量描述的物理性质,但由偶阶张量描述的物理性质也具有中心对称的特性。 7. B 为矢量,M 为二阶张量,证明: (div M )?B =div(M ?B )-{ (B ?)∶M } 8. 设在P 点的应力张量 σ如下:求法线方向为]221[的面上的正应力。 ???? ? ??----=211121112)(ij σ 9. 设在P 点的应力张量 σ如下:求该处的主应力及主方向。并验证主方向是相互正交 的。 ???? ? ??=740473037)(ij σ 10. 位移场u 在给定坐标系下的分量分别是:u 1= ax 2+bx 3,u 2=ax 1 cx 3,u 3= bx 2+cx 3; 其中a 、b 、c 皆为常数。求这个位移场的应变张量Γ。 11. 弹性体的的应变张量场如下所示,这个应变张量场合理吗? ???? ??????++--=3222 2111 216112226226)(x x x x x x x ij ε 12. 在立方晶体中承受一均匀应力场,以]101[、]211[和[111]为x 1、x 2和x 3坐标轴的应力分量只有σ13和σ23两项,求以三个晶轴作坐标系的各应力分量σ’ij 。

脑成像基础知识

TR(time of repetition,TR)又称重复时间。MRI的信号很弱,为提高MR的信噪比,要求重复使用同一种脉冲序列,这个重复激发的间隔时间即称TR。 弛豫(relaxation,经常被误写为“驰豫”)是指在核磁共振和磁共振成像中磁化矢量由非平衡态到平衡态的过程。在统计力学和热力学中,弛豫时间表示系统由不稳定定态趋于某稳定定态所需要的时间。在协同学中,弛豫时间可以表征快变量的影响程度,弛豫时间短表明快变量容易消去。这个系统可以是具体或抽象的,比如弹性形变消失的时间可称为弛豫时间,又比如光电效应从光照射到射出电子的时间段也称为弛豫时间,政策实施到产生效果也可称为弛豫时间。 弛豫时间有两种即T1和T2。 T1 T1为自旋一晶格或纵向驰豫时间,纵向磁化强度恢复的时间常数T1称为纵向弛豫时间(又称自旋-晶格弛豫时间)。 T2 T2为自旋一自旋或横向弛豫时间,横向磁化强度消失的时间常数T2称为横向弛豫时间(又称自旋-自旋弛豫时间)。 T2* 在理想的状态下,在同一磁场下,给定的化学环境中,所有的核以同一频率进动。但是在实际系统中,各个核的化学环境有细微的不同。 1/T2* = 1/T2 + 1/T (inhomo) = 1/T2 + γΔB0 不像T2,T2*受磁不均匀性的影响,T2*总是比T2短。 T1总是比T2长吗? 一般来说,2T1 ≥ T2 ≥ T2*。在大部分情况下,T1比T2长。 常见弛豫时间值 以下为常见健康人体组织的两个弛缓时间常数大概数值,仅供参考。 1.5特斯拉主磁场之下 组织类型T 1 大约值(毫秒) T 2 大约值(毫秒) 脂肪组织 240-250 60-80 全血(缺氧血) 1350 50 全血(带氧血) 1350 200 脑脊髓液(类似纯水) 2200-2400 500-1400 大脑灰质 920 100

实用类文本阅读试题及答案

实用类文本阅读 一、阅读下面的文字,完成1--3小题。 不平凡的求学生涯 1931年9月,清华大学招入了一批新学生,其中有一个瘦小的戴眼镜的无锡人。这位新生作文和历史拿了满分,理科却几乎是零分,他就是后来成为中国近代力学之父的钱伟长。清华当年招生的作文题目是《梦游清华园》,钱伟长写了一篇四百五十字的赋,出题目的老师想改改不了,只能给了满分。历史考题更奇怪,要求写出二十四史的作者、注者和卷数,许多考生望“题”兴叹,而钱伟长却答得分毫不差。钱伟长的文科好,一点也不奇怪。他的父亲和祖父都是教书先生,四叔是著名的文科学者钱穆。他中学的文史老师,则是语文学家吕叔湘。钱伟长自小看古书长大,十岁的时候就可以把《三国演义》倒背如流。可是,19岁的钱伟长在数理上一塌糊涂,物理只考了5分,数学、化学共考了20分,英文因没学过是0分。 但正是这样一个在文史上极具天赋、数理上极度“瘸腿”的学生,却在一夜之间做出了一个大胆的决定——弃文从理。这个决定缘于1931年9月18日,日本发动了震惊中外的“九·一八事变”。听到了这个消息后,钱伟长拍案而起,他说:我不读历史系了,我要学造飞机大炮。他决定转学物理以振兴中国的军力。于是钱伟长几次跑去找物理系主任吴有训,吴先生被这位青年的爱国热情打动了,答应他试读一年。为了能尽早赶上课程,钱伟长来往于宿舍、教室和图书馆之间,早起晚归,极度用功。他克服了用英语听课和阅读的困难,一年后数理课程超过了70分,四年后,成了一名出类拔萃的优秀生。正如他后来常说的:“我从来不相信有什么‘天才’,而只是相信人的才能是用艰苦的劳动培植出来的。奋发才有为,勤学才有识。” 1940年1月钱伟长考取中英庚款会的公费留学生,赴加拿大多伦多大学学习。钱伟长与自己的导师辛吉教授第一次面谈时,发现两人都在研究板壳理论,于是师生俩开始共同啃这块硬骨头。的确,板壳内禀理论是一大难题,但是很有实用价值。在航空航海工程、武器装备、仪器仪表和各项工程设施中,到处可见到平板和壳体。多年来对于各种各样的板壳,各学派学者用不同的方程式来描述,钱伟长认为它们应该有内在的联系,有必要加以统一。于是他开始废寝忘食地寻求这种联系。经过半年多努力,用掉了几尺厚的草稿纸,他终于以严谨简约的张量分析为基本工具,建立了板壳的基本理论,对原有的各种论述进行分类,提炼出本质的核心内容,找到了一组统一的方程式。 与此同时,辛吉教授通过另一途径得到了类似的结果。1941年,他们合写成了一再为人们称道、引用的著名论文《弹性板壳的内禀理论》。这篇论文发表于世界导弹之父冯·卡门的60岁祝寿文集。该文集的作者多数是当时世界上第一流的科学家,28岁的钱伟长,是文集作者中最年轻的学者、唯一的中国人。爱因斯坦看后也由衷感叹,这位中国青年解决了困扰我多年的问题。此文奠定了钱伟长在美国科学界的地位。 1942年取得博士学位后,经过辛吉教授特地推荐,钱伟长到了冯·卡门所在的美国加州理工学院做博士后研究。由于反法西斯战争的需要,美国当时正在加紧研究火箭、导弹,精确地计算火箭导弹的弹道成了当务之急。钱伟长担起了这个重任,他经常到喷气推进研究所在地墨西哥州的白沙基地参加火箭试验,对各种型号的导弹的弹道及空气动力学性能进行了细致的分析,写出了许多保密的内部报告,并提出了有关火箭、导弹落点的理论。在第二次世界大战中,伦敦遭到德国导弹的袭击,英国首相邱吉尔很着急,向美国求援,问题转达到冯·卡门那里,钱伟长提出了一个对运行的导弹加以干扰迫使其射程减小的方案,立即得到采纳。因此战争中尽管伦敦东码头区遭到德国导弹破坏,市中心却安然无恙。邱吉尔在回忆录中提起此事,说美国青年人很厉害,但实际上应该说:中国青年人很厉害! (摘编自戴世强《钱伟长小传》) 1.下列对传记有关内容的分析和概括,最恰当的两项是(5分) A.钱伟长在清华大学入学考试中,文史成绩优异,作文和历史都拿了满分,是因为钱伟长受到良好的家庭环境的熏陶和影响,自小是看古书长大的。 B.钱伟长基于爱国的崇高理想,弃文从理,转系后读书极为用功,最终成为一名优秀的理科毕业生,这充分说明了奋发才能有为、勤学才能有识的道理。 C.多年来各学派学者对平板和壳体进行了广泛研究,但没有找到内在联系,钱伟长在前人研究的基础上建立起板壳的基本理论,与导师辛吉的研究结果相似。 D.由于反法西斯战争的需要,钱伟长在美国加州理工学院时主要从事有关火箭、导弹的研究,他提出的方案曾帮助伦敦在二战中免遭德国导弹的破坏。 E.本文用形象生动的语言,记叙了钱伟长青年时期刻苦求学的过程,展现了一代科学大师的成长历程,塑造了一个成就卓著、令人尊敬的科学家的形象。 2.本文反映了钱伟长哪些优秀的品格?请简要概括。(6分) 3.文史上极具天赋的钱伟长上大学时却弃文从理,最终在科学领域还取得了杰出的成就;而人们平时却常说扬长避短更容易取得成功。对此,你有何看法?请结合选文探究。(8分)二、阅读下面的文字,完成4--6小题 寂静钱钟书 周劼人 12月19日,寂寥的寒夜,清华园日晷旁,烛光隐隐。小提琴哀婉的曲调飘散在清冷的夜空,人们伫立无语,鞠躬,献上白菊。 偶有路人好奇:“这是在祭奠谁?” 有人低声答语:“今天是钱钟书先生辞世10周年。” 10年前,钱钟书先生安详离世。遵钱先生遗嘱,“一切从简”,连在八宝山的告别仪式也只有短短的20分钟。“如此寂静。”钱先生的一位生前好友说。那日,清华的南北主干道上飘起了一千只纸鹤,学生们用这种方式,静静地送别他们的老学长。 他的人生,本不寂静。 无论是人们熟稔的《围城》,还是近乎天书的《管锥编》,都惊讶了世人,折服了学界。《管锥编》单是书证就数万条,引述涉及四千位作家上万种著作。世人惊叹“大师风华绝代,天才卓尔不群”。 然而他却又静静地坐在书斋里,照例埋头读他的书,做他的学问。图书馆内很多冷僻线装书的借书单上,只有他一人的名字。即使是身处困境,他也只是默默地埋头书本。“文革”时他被送去干校劳动改造,能看的只有寥寥几本书,但只要抱起书本来,就能兴致盎然。第一批“大赦”回京的名单中,没有钱钟书,也没有杨绛。他们夫妻二人平静地走回窝棚,杨先生说:“给咱们这样一个棚,咱们就住下,行吗?”钱先生歪着脑袋认真的想了一下,说:“没有书。” “文革”后,对钱钟书先生的称颂日渐声高,然而钱家的书斋内一如既往地平静。他谢绝了一切记者和学者的拜访,有人将此误读为“清高孤傲,自以为是”。 他人的不解,钱先生并未在意过。杨绛先生说:“他从不侧身大师之列……他只想安安心心做学问。” “钱先生做学问是‘心在焉’,”清华大学一位老师说:“而我们今天这个社会上,今天这个校园里,有多少人则是‘心不在焉’。” 清华大学一位博士生说,他多次读《围城》,读第三遍时忽然明白,“围城不是别人给的,

相关主题
文本预览
相关文档 最新文档