当前位置:文档之家› 大学物理同步训练下第10章热力学基础

大学物理同步训练下第10章热力学基础

大学物理同步训练下第10章热力学基础
大学物理同步训练下第10章热力学基础

第九章 热力学基础

一、选择题

1. 如图1所示,一定量的理想气体,由平衡状态A 变到平衡状态B (p A =p B ),则无论经

过的是什么过程,系统必然

(A )对外做正功

(B )内能增加 (C )从外界吸热

(D )向外界放热

答案:B

分析:功和热量为过程量,其大小、正负与过程有关,故A 、C 、D 选项错误;内能(温度)为状态量,与过程无关。由图可知,B 点内能高于A 点(由内能公式E =ipV 2?可得,式中i 为气体分子自由度,见《气体动理论》选择题1)。

2. (◇)对于室温下的单原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比W Q ?等于

(A )23?

(B )12? (C )25? (D )27? 答案:C

分析:由等压过程公式?Q:?E:?W =(i +2):i:2可得W Q ?=2(3+2)=25??。

3. 压强、体积、温度都相等的常温下的氧气和氦气,分别在等压过程中吸收了相等的热量,它们对外做的功之比为

(A )1:1

(B )5:9 (C )5:7 (D )9:5 答案:C

分析:(参考选择题2)可得

?W =2i +2?Q → ?W O 2?W He =2?Q (i O 2+2)?2?Q (i He +2)?=3+25+2=57 关于自由度i 可参考《气体动理论》选择题1。

4. 在下列理想气体过程中,哪些过程可能发生?

(A )等体积加热时,内能减少,同时压强升高

(B )等温压缩时,压强升高,同时吸热

(C )等压压缩时,内能增加,同时吸热

(D )绝热压缩时,压强升高,同时内能增加

答案:D

分析:热力学第一定律?Q =?E +?W (其中?Q 为系统吸收的热量,?E 为系统内能的增量,?W 为系统对外所做的功)。等体过程,?W =0,吸收热量?Q >0,则?E >0,系统内能增加,故A 错误;等温压缩,?W <0,温度不变即?E =0,故?Q <0,系统放热,故B 错误;等压压缩,?W <0,由等压过程公式(见选择题2)可知?E <0,?Q <0,系统内能减小,且系统放热,故C 错误;绝热压缩时,?Q =0,?W <0,故?E >0,系统内能增加,由绝热过程曲线可知压强升高,故D 正确。

5. 分别在等温、等压、等容情况下,将400 J 的热量传给标准状况下的2 mol 氢气,关于3个过程内能的变化说法正确的是

(A )等容过程做功最多,等压过程内能增加最多

(B )等压过程做功最多,等容过程内能增加最多

(C )等温过程做功最多,等压过程内能增加最多

(D )等温过程做功最多,等容过程内能增加最多

答案:D

分析:等容过程,系统不对外做功,吸收的热量全部用于提高自己的内能,故内能增加最多;等温过程,系统内能不变,吸收的热量全部用于对外做功,故做功最多;等压过程吸收的热量一部分用于提高自己的内能,一部分用于对外做功。故D 正确。具体计算如下

等容过程:?W =0,?E =?Q =400 J (参考选择题4)

等压过程:?W =2?Q/7=8007? J ,?E =5?Q/7=20007? J (参考选择题2) 等温过程:?E =0,?W =?Q =400 J (参考选择题4)

6. 如图所示,一定量的理想气体经历a →b →c 过程,在此过程中气体从外界吸收热量Q ,系统内能变化?E ,则以下说法正确的是

(A )系统从外界吸收热量,内能增大

(B )系统从外界吸收热量,内能减小

(C )系统向外界释放热量,内能增大

(D )系统向外界释放热量,内能减小

答案:A

分析:在p ?V 图中,p(V)曲线和V 轴所夹面积为系统对外所作的功,体积增加时为正功,体积减小时为负攻;系统内能为E =ν?iRT 2?=ipV 2?。由图可知,?E >0,内能增加;?W >0(大小为图中阴影部分),由热一律(见选择题4)可得?Q >0,系统吸热。故A 正确。

7. 一定量理想气体,从p?V图上同一初态A开始,分别经历3种不同的过程过渡到不同的末态,但末态的温度相同,如图所示,其中A→C是绝热过程,以下说法正确的是

(A)A→B过程中气体吸热,A→D过程中气体放热

(B)A→B过程中气体放热,A→D过程中气体吸热

(C)A→B过程中气体吸热,A→D过程中气体也吸热

(D)A→B过程中气体放热,A→D过程中气体也放热

答案:B

分析:由内能公式和功的计算(参考选择题6)可得

?E A→B=?E A→C=?E A→D ?W A→B

(?W即为曲线下的面积,如AB过程对外做的功为图示中的阴影部分)。由热一律(参考选择题4)可得?Q=?E+?W,已知A→C为绝热过程,即?Q A→C=?E A→C+?W A→C=0,故?Q A→B=?E A→B+?W A→B

?Q A→D=?E A→D+?W A→D>?E A→C+?W A→C=0,A→D为吸热过程

8. 如图所示,一定量的理想气体体积由V变为V/2,分别经历A→B等压过程,A→C等温过程,A→D绝热过程,关于外界对系统做功,以下说法正确的是

(A)绝热过程最大,等压过程最小

(B)绝热过程最大,等温过程最小

(C)等压过程最大,绝热过程最小

(D)等压过程最大,等温过程最小

答案:A

分析:参考选择题6,外界对系统做的功为曲线下的面积,由图可知绝热过程最大,等压过程最小,A选项正确。

9. 一定量理想气体经历的循环过程用V?T曲线表示(如图),在此循环过程中,气体内能

增大的过程是

(A)A→B(B)B→C

(C)C→A(D)B→C和C→A

答案:A

分析:由理想气体内能公式(见选择题6)可知理想气体的内能正比于温度,图中温度升高的曲线只有A→B,故只有A→B过程内能增大。

10. (◆)根据热力学第二定律判断下列说法正确的是

(A )不可能从单一热源吸收热量使之全部变为有用功

(B )功可以全部变为热,但热不能全部变为功

(C )理想气体自由绝热膨胀过程熵增加

(D )热量不可能从温度低的物体传到温度高的物体

答案:C

分析:(概念题)在等温膨胀过程中,系统可以从单一热源吸收热量,并使之全部变为有用功,故A 、B 选项错误;利用制冷机,热量可以从低温物体传到高温物体,故D 选项错误;一切自发过程都是熵增过程,故C 正确。

二、填空题

1. 密封在体积为V 的容器内的某种平衡态气体的分子数为N ,则此气体的分子数密度为n =_____,设此气体的总质量为M ,其摩尔质量为M mol ,则此气体的摩尔数为_____,分子数N 与阿伏伽德罗常数N 0的关系为_____。

答案:N V ?;M M mol ?;N =N 0M M mol ?

分析:(概念题)略。

2. 对一定的气体加热,向其传递了826 J 的热量,受热膨胀对外做功500 J 。则该气体内能变化为_____J 。

答案:326

分析:由热一律(见选择题4)可得?E =?Q ??W =826?500=326 J 。

3. (◇)一定量的某种理想气体在等压过程中对外做功为200 J 。若此种气体为单原子分子气体,则该过程中需吸热_____J ;若此气体为双原子分子气体,则需吸热_____J 。

答案:500;700

分析:由等压过程公式(见选择题2)可知?Q =(i +2)?W 2?。已知单原子分子自由度为i =3,双原子分子自由度为i =5,?W =200 J ,代入可得系统吸热分别为

?Q 1=3+22×200=500 J ?Q 2=5+22

×200=700 J 4. 一气缸内贮有10 mol 的单原子分子的理想气体,在压缩过程中外界做功209 J ,气体升温1 K ,此过程中气体内能增量为_____,外界传给气体的热量为_____。(普适气体常量R =8.31 J ?mol ?1?K ?1)

答案:124.65 J ;?84.35 J

分析:由内能公式(见选择题6)可得?E =ν?iR?T 2?=10×3×8.31×12?=124.65 J ;

由热一律(见选择题4)可得?Q =?E +?W =124.65+(?209)=?84.35 J 。

5. 气体经历如图所示的循环过程,在这个循环中外界传给气体的净热量是_____。

答案:90 J

分析:气体在循环过程中对外所做的功等于从外界净吸收的热

量,其大小为循环曲线内部的面积;若是正循环(顺势针),面

积为正,若是逆循环(逆时针),面积为负。如图可得气体在循

环过程中的净吸热为?Q =(4?1)(40?10)=90 J 。

6. 如图所示,该过程中1 mol 理想气体的压强p 与温度T 的关系是_____。

答案:p 2=p 1RT V 1?

分析:由图可知压强与体积成线性关系p =(p 1V 1?)?V ,与物态方程

pV =νRT =RT 联立消去V ,可得

p ?V 1p 1p =RT → p 2=p 1V 1

RT 7. 1 mol 单原子分子理想气体做如图所示得循环,则经过一次循环气体所做的净功

W =______。

答案:π J

分析:在循环过程中气体所做的净功等于曲线所包围的

面积(参考填空题5)。由图可得

W =π?12=π J

8. 如图所示,0.32 kg 的氧气做abcda 的循环,若V 2=2V 1,T 1=300 K ,T 2=200 K ,则此

循环的效率η=_____。

答案:15.1%

分析:在等温过程中,?E =0,?Q =?W =νRTln(V f V i ?);在

等体过程中?W =0,?Q =?E =ν?iR?T 2?=i ?(pV )2?。由图

可知

?Q a→b =νRT 1ln

V 2V 1=300νRln2 ?Q c→d =νRT 2ln V 1V 2=?200νRln2 ?Q b→c =ν?5R 2(T 2?T 1)=?250νR ?Q d→a =ν?5R 2(T 1

?T 2)=250νR 由热机效率定义η=W Q in =1?Q out Q in ??可得

η=1?|?Q c→d +?Q b→c |?Q a→b +?Q d→a =1?250+200ln2250+300ln2=2ln25+6ln2

≈15.1%

9. (◆★)如图所示,一定量的理想气体沿着图中直线从状态a 变化到状态b 。则在此过程中,系统对外做功W =_____,内能变化?E =_____。

答案:6×106 J ;0 J

分析:(参考选择题6)由图可得系统对外做功为

W =

(2+4)(4?2)2×106=6×106 J 内能变化为

?E =i 2

(2×4?4×2)×106=0 J 10. (◆)两个卡诺热机分别使用同一个低温热源,但高温热源温度不同,且在p ?V 图上,它们的循环曲线包围的面积相等。问它们对外所做的净功是否相等_____,热循环效率是否相同_____。

答案:相等;不等

分析:参考填空题5可知两热机对外所做的净功相等。卡诺热机的效率为η=1?T low T high ?,故两热机的热循环效率不同。

三、计算题

1. 64 g 氧气的温度由273 K 上升到323 K 。在以下过程中:(1)保持体积不变;(2)保持压强不变。分别计算氧气各吸收了多少热量,增加了多少内能,对外做了多少功?

解:氧气的摩尔质量为32 g ?mol ?1,自由度i =5;故氧气的物质的量为ν=6432?=2 mol 。

(1)等容过程

?W =0

?Q =?E =ν?

iR?T 2=2×5×8.31×(323?273)2=2078 J (2)等压过程

?E =ν?

iR?T 2=2078 J ?Q =i +2i ?E =75

×2078=2909 J ?W =2i ?E =25

×2078=831 J 或 ?W =?Q ??E =831 J (注:可参考选择题5和选择题2)

2. (◇☆)一定量的某种理想气体进行如图所示的循环过程。已知气体在状态A 的温度为T A =300 K ,求:(1)气体在状态B 、C 的温度;(2)各过程中气体对外所做的功;(3)经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和)。

解:(1)由物态方程pV =νRT 可得

p A V A T A =p B V B T B =p C V C T C

→ T B =

100×3300×1×300=300 K T C =100×1300×1

×300=100 K (2)气体对外所做的功为过程曲线下的面积(如图,AB 过程曲线下的面积为灰色阴影部分,BC 过程曲线下的面积为斜线阴影部分,AC 过程曲线下面积为零)(见选择题6)

W A→B =(100+300)(3?1)2

=400 J ;W B→C =?100(3?1)=?200 J ;W C→A =0 J (3)循环过程中气体净吸收的热量等于循环过程中所做的净功

?Q =?W =W A→B +W B→C +W C→A =200 J

或者用循环曲线包围的面积(即?ABC 的面积)来计算(见填空题5)

?Q =?W =(300?100)(3?1)2

=200 J 3. 如图所示,系统由a 沿acb 到达b ,有80 J 的热量传入系统,而系统做功30 J 。

(1)沿adb 时系统做功10 J ,问有多少热量传入系统?

(2)当系统由b 沿曲线ba 返回到a 时,外界对系统做功20 J ,试问系统是吸热还是放热?

热量为多少?

解:由热一律(见选择题4)可得

E b ?E a =?E =?Q acb ??W acb =80?30=50 J

(1)?Q adb =(E b ?E a )+?W adb =50+10=60 J

(2)?Q ba =(E a ?E b )+?W ba =(?50)+(?20)=?70 J

式中负号表示系统放热,放出的热量为70 J 。

4. (◇☆)如图所示,1 mol 双原子分子理想气体从状态沿所示直线变化到状态,试求:

(1)气体的内能增量;

(2)气体对外界所做的功;

(3)气体吸收的热量;

(4)此过程的摩尔热容。(摩尔热容C =?Q ?T ?,其中?Q 表示

1 mol 物质在过程中升高温度?T 时所吸收的热量)

解:(1)气体的内能增量为(参考选择题6)

?E =5(p 2V 2?p 1V 1)2

(2)气体对外界所做的功为曲线下的面积(?OBV 2的面积减去?OAV 1的面积)

?W =

p 2V 2?p 1V 12

(3)由热一律(见选择题4)可得

?Q =?E +?W =3(p 2V 2?p 1V 1)

(4)由物态方程pV =νRT =RT (ν=1 mol )可得?T =p 2V 2R ??p 1V 1R ?,故

C =

?Q ?T =3(p 2V 2?p 1V 1)(p 2V 2?p 1V 1)R ?=3R

第十章_热力学定律 知识点全面

第十章热力学定律 知识网络: 一、 功、热与内能 ●绝热过程:不从外界吸热,也不向外界传热的热力学过程称为绝热过程。 ●内能:内能是物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量的总和,用字母U 表示。 ●热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。 ●热传递的方式:热传导、对流热、热辐射。 二、 热力学第一定律、第二定律 第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。表达式u W Q ?=+ 第二定律的表述:一种表述:热量不能自发的从低温物体传到高温物体。另一种表述:(开尔文表述)不可能从单一热库吸收热量,将其全部用来转化成功,而不引起其他的影响。 应用热力学第一定律解题的思路与步骤: 一、明确研究对象是哪个物体或者是哪个热力学系统。 二、别列出物体或系统(吸收或放出的热量)外界对物体或系统。 三、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。 四、几种特殊情况: 若过程是绝热的,即Q=0,则:W=ΔU ,外界对物体做的功等于物体内能的增加。 若过程中不做功,即W=0,则:Q=ΔU ,物体吸收的热量等于物体内能的增加。 若过程的始末状态物体的内能不变,即ΔU=0,则:W+Q=0,外界对物体做的功等于物体放出的热量。

对热力学第一定律的理解: 热力学第一定律不仅反映了做功和热传递这两种改变内能的方式是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系,此定律是标量式,应用时热量的单位应统一为国际单位制中的焦耳。 对热力学第二定律的理解: ①在热力学第二定律的表述中,自发和不产生其他影响的涵义,自发是指热量从高温物体自发地传给低温物体的方向性,在传递过程中不会对其他物体产生影响或需要借助其他物体提供能量等的帮助。不产生其他影响的涵义是使热量从低温物体传递到高温物体或从单一热源吸收热量全部用来做功,必须通过第三者的帮助,这里的帮助是指提供能量等,否则是不可能实现的。 ②热力学第二定律的实质热力学第二定律的每一种表述,揭示了大量分子参与宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。 对能量守恒定律的理解: ③在自然界中不同的能量形式与不同的运动形式相对应,如物体做机械运动具有机械能,分子运动具有内能等。 ④某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等。 ③某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 三、能量守恒定律 ●能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变 ●第一类永动机不可制成是因为其违背了热力学第一定律 ●第二类永动机不可制成是因为其违背热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方向进行)●熵:是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。 ①熵是反映系统无序程度的物理量,正如温度反映物体内分子平均动能大小一样。 ②系统越混乱,无序程度越大,就称这个系统的熵越大。系统自发变化时,总是向着无序程度增加的方向发展,至少无序程度不会减少,也就是说,系统自发变化时,总是由热力学概率小的状态向热力学概率大的状态进行。从熵的意义上说,系统自发变化时总是向着熵增加的方向发展,不会使熵减少。 ③任何宏观物质系统都有一定量的熵,熵也可以在系统的变化过程中产生或传递。 ④一切自然过程的发生和发展中,总熵必定不会减少。 ●能量耗散:系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用。 四、能源和可持续发展: ●能源的重要性:能源是社会存在与发展永远不可或缺的必需品,是国民经济运动的物质基础,它与材料、信息构成现代社会的三大支柱。 ●化石能源:人们把煤、石油叫做化石能源。 ●生物质能:生物质能指绿色植物通过光合作用储存在生物体内的太阳能,储存形式是生物分子的化学能。 ●风能:为了增加风力发电的功率,通常把很多风车建在一起,我国新疆、内蒙古等地已经开始大规模利用风力发电。

第7章 热力学基础

第7章 热力学基础 7.16 一摩尔单原子理想气体从270C 开始加热至770C (1)容积保持不变;(2)压强保持不变; 问这两过程中各吸收了多少热量?增加了多少内能?对外做了多少功?(摩尔热容 11,11,78.20,46.12----?=?=K mol J C K mol J C m P m V ) 解(1)是等体过程,对外做功A =0。J T C U Q m V 623)2777(46.12,=-?=?=?= (2)是等压过程,吸收的热量J T C Q m p 1039)2777(78.20,=-?=?= J T C U m V 623)2777(46.12,=-?=?=? J U Q A 4166231039=-=?-= 7.17 一系统由如图所示的a 状态沿acb 到达状态b ,有334J 热量传入系统,而系统做功126J 。 (1)若沿adb 时系统做功42J ,问有多少热量传入系统? (2)当系统由状态b 沿曲线ba 返回态a 时,外界对系统做功84J , 试问系统是吸热还是放热?传递热量是多少? (3)若态d 与态a 内能之差为167J ,试问沿ad 及db 各自吸收的热量是多少? 解:已知J A J Q acb acb 126.334== 据热力学第一定律得内能 增量为 J A Q U acb acb ab 208126334=-=-=? (1) 沿曲线adb 过程,系统吸收的热量 J A U Q adb ab adb 25042208=+=+?= (2) 沿曲线ba J A U A U Q ba ab ba ba ba 292)84(208-=-+-=+?-=+?=, 即系统放热292J (3) J A A A adb ad db 420 === J A U Q ad ad ad 20942167=+=+?= J U U A U Q ad ab db db db 41167208=-=?-?=+?=,即在db 过程中吸热41J. 7.18 8g 氧在温度为270C 时体积为34101.4m -?,试计算下列各情形中气体所做的功。 (1)气体绝热地膨胀到33101.4m -?; (2)气体等温地膨胀到33101.4m -?; 再等容地冷却到温度等于绝热膨胀最后所达到的温 7.17题示图

10-热力学基础习题解答

本 章 要 点 1.体积功 2 1 d V V W p V = ? 2.热力学第一定律 21Q E E W E W =-+=?+ d d d Q E W =+ 3. 气体的摩尔热容 定容摩尔热容 2V i C R = 定压摩尔热容 (1)2 P i C R =+ 迈耶公式 C P =R+C V 4.循环过程 热机效率 2111Q W Q Q η= =- 制冷系数 22 12 Q T e W T T = =- 5. 卡诺循环 卡诺热机效率 211 1T W Q T η= =- 卡诺制冷机制冷系数 22 12 Q T e W T T = =- 6. 热力学第二定律定性表述:开尔文表述、克劳修斯表述;热力学第二定律的统计意义; 7. 熵与熵增原理 S=klnW 1 2ln W W k S =?≥0 2 211 d ( )Q S S S T ?=-= ? 可逆 习题10 一、选择题 10. A 二、填空题 1. 15J 2. 2/5 3. 4 1.610J ? 4. ||1W -; ||2W - 5. J ; J 6. 500 ;700 7. W /R ; W 2 7

8. 1123 V p ;0 9. 22+i ; 2 +i i 10. 8.31 J ; J 三、计算题 1. -700J 2. (1)T C =100 K; T B = 300 K . (2) 400J AB W =; W BC = 200 J; W CA =0 (3)循环中气体总吸热 Q = 200 J . 3. (1) W da =-×103J ; (2) ΔE ab =×104 J ; (3) 净功 W = ×103 J ; (4)η= 13% 4. (1)10%η= ;(2)4 310bc W J =? 习题10 一 选择题 1. 1摩尔氧气和1摩尔水蒸气(均视为刚性分子理想气体),在体积不变的情况下吸收相等的热量,则它们的: (A )温度升高相同,压强增加相同。 (B )温度升高不同,压强增加不同。 (C )温度升高相同,压强增加不同。 (D )温度升高不同,压强增加相同 。 [ ] 2. 一定量理想气体,从状态A 开始,分别经历等压、等温、绝热三种过程(AB 、AC 、AD ),其容积由V 1都膨胀到2V 1,其中 。 (A) 气体内能增加的是等压过程,气体内能减少的的是等温过程。 (B) 气体内能增加的是绝热过程,气体内能减少的的是等压过程。 (C) 气体内能增加的是等压过程,气体内能减少的的是绝热过程。 (D) 气体内能增加的是绝热过程,气体内能减少的的是等温过程。 [ ] 3. 如图所示,一定量的理想气体,沿着图10-17中直线从状态a ( 压强p 1 = 4 atm , 体积V 1 =2 L )变到状态b ( 压强p 2 =2 atm ,体积V 2 =4 L ).则在此过程中: (A ) 气体对外做正功,向外界放出热量. (B ) 气体对外做正功,从外界吸热. (C ) 气体对外做负功,向外界放出热量. (D ) 气体对外做正功,内能减少. [ ] 图10-17 图10-18 p (atm) V (L) 0 1 2 3 4 1 2 3 4 a b p O

大学物理热学总结

大学物理热学总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学物理热学总结 (注:难免有疏漏和不足之处,仅供参考。 ) 教材版本:高等教育出版社《大学物理学》热力学基础 1、体积、压强和温度是描述气体宏观性质的三个状态参量。 ①温度:表征系统热平衡时宏观状态的物理量。摄氏温标,t表示,单位摄氏度(℃)。热力学温标,即开尔文温标,T表示,单位开尔文,简称开(K)。 热力学温标的刻度单位与摄氏温标相同,他们之间的换算关系: T/K=273.15℃+ t 温度没有上限,却有下限,即热力学温标的绝对零度。温度可以无限接近0K,但永远不能达到0K。 ②压强:气体作用在容器壁单位面积上指向器壁的垂直作用力。单位帕斯卡,简称帕(Pa)。其他:标准大气压(atm)、毫米汞高(mmHg)。 1 atm =1.01325×105 Pa = 760 mmHg ③体积:气体分子运动时所能到达的空间。单位立方米(m3)、升(L) 2、热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则这两个系统也必处于热平衡。 该定律表明:处于同一热平衡状态的所有热力学系统都具有一个共同的宏观特征,这一特征可以用一个状态参量来表示,这个状态参量既是温度。3、平衡态:对于一个孤立系统(与外界不发生任何物质和能量的交换)而言,如果宏观性质在经过充分长的时间后保持不变,也就是系统的状态参量不再岁时间改变,则此时系统所处的状态称平衡态。 通常用p—V图上的一个点表示一个平衡态。(理想概念) 4、热力学过程:系统状态发生变化的整个历程,简称过程。可分为: ①准静态过程:过程中的每个中间态都无限接近于平衡态,是实际过程进行的无限缓慢的极限情况,可用p—V图上一条曲线表示。 ②非准静态过程:中间状态为非平衡态的过程。

第一章--化学热力学基础-习题解答

第一章 化学热力学基础 1-1 气体体积功的计算式dV P W e ?-=中,为什么要用环境的压力e P ?在什么情 况下可用体系的压力体P ? 答: 在体系发生定压变化过程时,气体体积功的计算式dV P W e ?-=中, 可用体系的压力体P 代替e P 。 1-2 298K 时,5mol 的理想气体,在(1)定温可逆膨胀为原体积的 2 倍; ( 2 ) 定压下加热到373K ;(3)定容下加热到373K 。已知 C v,m = 28.28J·mol -1·K -1。 计算三过程的Q 、W 、△U 、△H 和△S 。 解 (1) △U = △H = 0 kJ V V nRT W Q 587.82ln 298314.85ln 1 2=??==-= 11 282.282ln 314.85ln -?=?==?K J V V nR S (2) kJ nC Q H m P P 72.13)298373(,=-==? kJ nC U m V 61.10)298373(,=-=? W = △U – Q P =- 3.12 kJ 112,07.41298 373ln )314.828.28(5ln -?=+?==?K J T T nC S m P (3) kJ nC Q U m V V 61.10)298373(,=-==? kJ nC H m P 72.13)298373(,=-=? W = 0 112,74.31298 373ln 28.285ln -?=?==?K J T T nC S m V 1-3容器内有理想气体,n=2mol , P=10P θ,T=300K 。求(1) 在空气中膨胀了1dm 3, 做功多少? (2) 膨胀到容器内压力为 lP θ,做了多少功?(3)膨胀时外压总比气体的压力小 dP , 问容器内气体压力降到 lP θ时,气体做多少功? W f dl p A dl p dV δ=-?=-??=-?外外外

第10章热力学基础

第10章热力学基础 学习指导 、基本要求 1.理解准静态过程功、热量、内能及摩尔热容的概念,并掌握其运算。 2.理解热力学第一定律,并熟练掌握热力学第一定律在理想气体等值过程、绝热过程中的应用。 3.理解循环过程的意义。掌握循环过程中能量传递和转化的特点,会熟练计算热机效率、制冷机的制冷系数。 4.理解热力学第二定律的两种表述及统计意义。理解可逆过程和不可逆过程的概念, 理解卡诺定理及熵增原理。 、知识框架

、重点和难点 1 .重点 (1) 掌握热力学第一定律及其应用,尤其是在几个等值过程中的应用。 (2) 熟练掌握热力学系统循环过程中,各阶段的特性及其相关物理量的运算。 2. 难点 (1) 掌握热力学第一定律的应用。 (2) 掌握等值、绝热过程在系统循环过程中的运算。 (3) 对热力学第二定律及其有关概念的理解。 四、基本概念及规律 1?准静态过程 若热力学过程中,任一中间状态都可看作平衡态,该过程叫作准静态过程。 2.理想气体在准静态过程中对外做的功 pdV 对于微小过程 dW = pdV 3. 理想气体在准静态过程中吸收的热量 式中,C 为摩尔热容。 4. 摩尔热容 摩尔热容表示1摩尔质量的物质温度升高 5. 理想气体的内能 M C V,m T 理想气体的内能只是温度的单值函数。 理想气体内能的变化量 m C v,m T 2 M 理想气体的内能改变量仅取决于始末状态的温度,与所经历的过程无关。 6. 热力学第一定律 1K 所吸收的热量。 (1) 定体摩尔热容 C v,m 一 dQ v M 4R (2) 定压摩尔热容 C P,m dQ p —dT M (3) 迈耶公式 C P,m = C V,m ' R (4) 比热容比 -C p,m ; C v,m E 2 -巳

大学物理热力学论文[1]

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律其实是包括热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。热力学所研究的物质宏观性质,特别是气体的性质,经过气体动理论的分析,才能了解其基本性质。气体动理论,经过热力学的研究而得到验证。两者相互补充,不可偏废。人们同时发现,热力学过程包括自发过程和非自发过程,都有明显的单方向性,都是不可逆过程。但从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。关键词: (1)热力学第一定律(2)卡诺循环(3)热力学第二定律(4)熵 正文: 在一般情况下,当系统状态变化时,作功与传递热量往往是同时存在的。如果有一个系统,外界对它传递的热量为Q,系统从内能为E1 的初始平衡状态改变到内能为E2的终末平衡状态,同时系统对外做功为A,那么,不论过程如何,总有: Q= E2—E1+A 上式就是热力学第一定律。意义是:外界对系统传递的热量,一部分

是系统的内能增加,另一部分是用于系统对外做功。不难看出,热力学第一定律气其实是包括热量在内的能量守恒定律。它还指出,作功必须有能量转换而来,很显然第一类永动机违反了热力学第一定律,所以它根本不可能造成的。 物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程,或简称循环。经历一个循环,回到初始状态时,内能没有改变,这是循环过程的重要特征。卡诺循环就是在两个温度恒定的热源(一个高温热源,一个低温热源)之间工作的循环过程。在完成一个循环后,气体的内能回到原值不变。卡诺循环还有以下特征: ①要完成一次卡诺循环必须有高温和低温两个热源: ②卡诺循环的效率只与两个热源的温度有关,高温热源的温 度越高,低温热源的温度越低,卡诺循环效率越大,也就 是说当两热源的温度差越大,从高温热源所吸取的热量Q1 的利用价值越大。 ③卡诺循环的效率总是小于1的(除非T2 =0K)。 那么热机的效率能不能达到100%呢?如果不可能到达100%,最大可能效率又是多少呢?有关这些问题的研究就促进了热力学第二定律的建立。 第一类永动机失败后,人们就设想有没有这种热机:它只从一个热源吸取热量,并使之全部转变为功,它不需要冷源,也没有释放热量。这种热机叫做第二类永动机。经过无数的尝试证明,第二类永动

第一章化学热力学基础参考答案

第一章 2.计算下行反应的标准反应焓变△r Hθm: 解:①2Al(s) + Fe2O3(s) → Al2O3(s) + 2Fe(s) △f Hθm(kJ?mol-1) 0 -824.2 -1675.7 0 △r Hθm=△f Hθm(Al2O3,s)+2△f Hθm(Fe,s)-2△f Hθm(Al,s) - △f Hθm(Fe2O3 ,s) = -1675.7 + 2×0 - 2×0 - (-824.2) = - 851.5 (kJ?mol-1) ②C2H2 (g) + H2(g) → C2H4(g) △f Hθm(kJ?mol-1) 226.73 0 52.26 △r Hθm = △f Hθm(C2H4 ,g) - △f Hθm(C2H2,g) - △f Hθm(H2,g) = 52.26 - 226.73 - 0 = -174.47 (kJ?mol-1) 3. 由下列化学方程式计算液体过氧化氢在298 K时的△f Hθm(H2O2,l): ① H2 (g) + 1/2O2 (g) = H2O (g) △r Hθm = - 214.82 kJ?mol-1 ② 2H(g) + O(g) = H2O (g) △r Hθm = - 926.92 kJ?mol-1 ③ 2H(g) + 2O(g) = H2O2 (g) △r Hθm = - 1070.6 kJ?mol-1 ④ 2O(g) = O2 (g) △r Hθm = - 498.34 kJ?mol-1 ⑤ H2O2 (l) = H2O2 (g) △r Hθm= 51.46 kJ?mol-1 解:方法1:根据盖斯定律有: [(方程①-方程②+方程③-方程⑤)×2-方程④]÷2可得以下方程 ⑥H2(g)+O2(g)=H2O2(l) △r Hθm △r Hθm=[(△r Hθ1-△r Hθ2+△r Hθ3-△r Hθ5) ×2-△r Hθ4] ÷2 ={[-214.82-(-926.92)+(-1070.6)-51.46] ×2-(-498.34)} ÷2 =[(-409.96)×2+498.34] ÷2 =(-321.58) ÷2 = -160.79(kJ?mol-1) △f Hθm(H2O2 ,l)= △r Hθm= -160.79 kJ?mol-1 方法2:(1)由①可知H2O的△f Hθm(H2O,g)= - 214.82 kJ?mol-1 (2)根据④计算O的△f Hθm(O,g) 2O(g) = O2 (g) △r Hθm = - 498.34 kJ?mol-1 △r Hθm = △f Hθm(O2 ,g)- 2△f Hθm(O,g) = 0 - 2△f Hθm(O,g) = - 498.34 kJ?mol-1 △f Hθm(O,g)= 249.17 kJ?mol-1 (3) 根据②求算△f Hθm(H,g) 2H(g) + O(g) = H2O (g) △r Hθm = - 926.92 kJ?mol-1 △f Hθm(kJ?mol-1) 249.17 - 214.82 △r Hθm = △f Hθm(H2O,g) - 2△f Hθm(H,g) -△f Hθm(O,g) = - 214.82 - 2△f Hθm(H,g)- 249.17 = - 926.92

第10章热力学基础

第10章 热力学基础 一、选择题 1. 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体)开始时它们的压强和温度都相同,现将3 J 热量传给氨气,使之升高到一定的温度。若使氢气也升高同样的温度,则应向氢气传递热量为 (A)6 J (B)3 J (C)5 J (D )l0 J [ ] 2. 对于物体的热力学过程, 下列说法中正确的是 (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关 (C) 在物体内, 若单位体积内所含热量越多, 则其温度越高 (D) 以上说法都不对 [ ] 3. 有关热量, 下列说法中正确的是 (A) 热是一种物质 (B) 热能是物质系统的状态参量 (C) 热量是表征物质系统固有属性的物理量 (D) 热传递是改变物质系统内能的一种形式 [ ] 4. 关于功的下列各说法中, 错误的是 (A) 功是能量变化的一种量度 (B) 功是描写系统与外界相互作用的物理量 (C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外做的功也不一样 (D) 系统具有的能量等于系统对外做的功 [ ] 5. 1mol 理想气体从初态(T 1, p 1, V 1 )等温压缩到体积V 2, 外界对气体所做的功为 (A) 121ln V V RT (B) 2 11ln V V RT (C) )(121V V p - (D) 1122V p V p - [ ] 6. 物质的量相内能同的两种理想气体, 一种是单原子分子气体, 另一种是双原子分子气体, 从同一状态开始经等体升压到原来压强的两倍.在此过程中, 两气体 (A) 从外界吸热和内能的增量均相同 (B) 从外界吸热和内能的增量均不相同 (C) 从外界吸热相同, 内能的增量不相同 (D) 从外界吸热不同,的增量相同 [ ] 7. 理想气体由初状态( p 1, V 1, T 1)绝热膨胀到末状态( p 2, V 2, T 2),对外做的功为

第一章热力学基础

第一章热力学基础 1.1mol 的理想气体,初态体积为25L,温度为100℃。计算分别通过下列四个不同过程,恒温膨胀到体积为100L时,物系所做的功。 (1)可逆膨胀; (2)向真空膨胀; (3)先在外压等于体积为50L时气体的平衡压力下,使气体膨胀到50L,然后再在外压等于体积为100L时气体的平衡压力下进行膨胀; (4)在外压等于终态压力下进行膨胀。 计算的结果说明什么问题? (①4299.07J ②0 ③3101162J ④2325.84J )2.1 mol理想气体由202650Pa、10L时恒容升温,使压力升到2026500Pa。 再恒压压缩至体积为1L。求整个过程的W、Q、ΔU及ΔH。 3.已知1molCaCO3 ( s )在900℃、101325Pa下分解为CaO(s)和CO2(g)时吸热178KJ,计算此过程的Q、W、ΔU及ΔH。 4.已知水蒸气的平均恒压摩尔热容C p,m=34.1J·K-1?mol-1,现将1 Kg100℃的水蒸气在101325Pa下,升温至400℃,求过程的W、Q及水蒸气的ΔU 和ΔH。 5.1Kg空气由25℃经绝热膨胀到-55℃。设空气为理想气体,相对分子质量近似取29,C v,m为20.92 J·K-1?mol-1。求过程的Q、W、ΔU及ΔH。6.在容积为200L的容器中放有20℃、253313Pa的某理想气体,已知其C p,m=1.4C v,m,求其C v,m值。若该气体的热容近似为常数,试求恒容下加热该

气体至80℃时所需的热是多少。 7.2 mol理想气体,分别经下列三个过程由298K、202650Pa变到298K、101325Pa,分别计算W、Q、ΔU和ΔH的值。 (1)自由膨胀; (2)始终对抗恒外压101325Pa膨胀; (3)可逆膨胀。 8.计算下列相变过程的W、Q、ΔU及ΔH。 (1)1g水在101325Pa、100℃下蒸发为蒸汽(设为理想气体)。 (2)1g水在100℃、当外界压力恒为50662.5Pa时,恒温蒸发,然后,将蒸气慢慢加压到100℃、101325Pa。 (3)将1g、100℃、101325Pa的水突然移放到恒温100℃的真空箱中,水气即充满整个真空箱,测其压力为101325Pa。(正常沸点时,水的摩尔汽化热为40662 J?mol-1)。 比较三个过程的计算结果,可以说明什么问题? 9.计算在298K、101325Pa时下列反应的ΔrH°。 Fe2O3 ( s )+3CO( g ) →2Fe(s)++3CO2 ( g ) 有关热力学数据如下: 物质Fe2O3 ( s ) CO( g ) Fe(s) CO2 ( g )

第13章-热力学基础习题及答案

第十三章习题 热力学第一定律及其应用1、关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是。 2、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程。 3、一定量的理想气体,分别经历如图(1) 所示 的abc过程,(图中虚线ac为等温线),和图(2) 所 示的def过程(图中虚线df为绝热线).判断这两 种过程是吸热还是放热. abc过程 热,def过程热. 4、如图所示,一绝热密闭的容器,用隔板分成相等的两部 分,左边盛有一定量的理想气体,压强为p0,右边为真空.今 将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压 强是。(= γC p/C V) 5、一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.V V

答案 1、(1)(4)是正确的。 2、是A-B 吸热最多。 3、abc 过程吸热,def 过程放热。 4、P 0/2。 5、等压, 等压, 等压 理想气体的功、内能、热量 1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。 2、 一定量的理想气体经历acb 过程时吸热500 J .则 经历acbda 过程时,吸热为 。 3、一气缸内贮有10 mol 的单原子分子理想气体,在压 缩过程中外界作功209J , 气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol· K) 4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J. p (×105 Pa) 3 m 3)

第一章 热力学基础练习题

第一章 热力学基础 一、名词解释: (溶液的)活度,溶液的标准态,j i e (活度的相互作用系数),(元素的)标准溶解吉布斯自由能,理想溶液,化合物的标准摩尔生成吉布斯自由能。 二、其它 1、在热力学计算中常涉及到实际溶液中某组分的蒸汽压问题。当以纯物质为标准态时,组分的蒸汽压可表示为______;当以质量1%溶液为标准态时,组分的蒸汽压可表示为______;前两种标准态组分的活度之比为____。 2、反应MnO(s)+C(s)=Mn(s)+CO(g),G θ ?=268650-158.4T 1J mol -?,在标准 状态下能进行的最低温度为______K 。该反应为(填“吸或放”)______热反应。当T=991K ,总压为101325Pa 时,该反应______(填“能或否”)向正方向进行;在991K 时,若要该反应达到化学平衡的状态,其气相总压应为______Pa ;若气相的CO 分压为Pa 5102?,则开始还原温度为______。 反应MnO(s)+C(s)=Mn(s)+CO(g),1 4.158268650-?-=?mol TJ G θ,在标准状态下 能进行的最低温度为______。 3、理想溶液是具有______________________________性质的溶液;理想溶液形成时,体积变化为____,焓变化为__________。实际溶液与理想溶液的偏差可用______________参数来衡量。 4.判断冶金生产中的化学反应能否向预想的方向进行,在等温、等压下用____热力学函数的变化值;若该反应在绝热过程中进行,则应该用____函数的变化值来判断反应进行的方向。 5.冶金生产中计算合金熔体中杂质元素的活度常选的标准态是________________________。对高炉铁液中[C],当选纯物质为标准态时,其活度为____,这是因为_______________。 6.物质溶解的标准吉布斯自由能是指______________________________;纯物质为标准态时,标准溶解吉布斯自由能为__。

大学物理第九章热力学基础历年考题

第9章热力学基础 一、选择题 1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是 [] (A>准静态过程一定是可逆过程 (B>可逆过程一定是准静态过程 (C>二者都是理想化的过程 (D>二者实质上是热力学中的同一个概念 2. 对于物体的热力学过程, 下列说法中正确的是 [] (A>内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B>摩尔热容量的大小与所经历的过程无关 (C>在物体内, 若单位体积内所含热量越多, 则其温度越高 (D>以上说法都不对 3. 有关热量, 下列说法中正确的是 [](A>热是一种物质 (B>热能是物质系统的状态参量 (C>热量是表征物质系统固有属性的物理量 (D>热传递是改变物质系统内能的一种形式 4. 关于功的下列各说法中, 错误的是 [](A>功是能量变化的一种量度 (B>功是描写系统与外界相互作用的物理量 (C>气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样 (D>系统具有的能量等于系统对外作的功 5. 理想气体状态方程在不同的过程中有不同的微分表达式, 式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>绝热过程 6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>绝热过程 7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>绝热过程 8. 理想气体状态方程在不同的过程中可以有不同的微分表达式,

则式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>任意过程 9. 热力学第一定律表明: [](A>系统对外作的功不可能大于系统从外界吸收的热量 (B>系统内能的增量等于系统从外界吸收的热量 (C>不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功 不等于系统传给外界的热量 (D>热机的效率不可能等于1 10. 对于微小变化的过程, 热力学第一定律为d Q= d E d A.在以下过程中, 这三者同时为正的过程是 [](A>等温膨胀(B>等容膨胀 (C>等压膨胀(D>绝热膨胀 11. 对理想气体的等压压缩过程,下列表述正确的是 [](A> d A>0, d E>0, d Q>0 (B> d A<0, d E<0, d Q<0 (C> d A<0, d E>0, d Q<0 (D> d A = 0, d E = 0, d Q = 0 12. 功的计算式适用于 [](A>理想气体(B>等压过程 (C>准静态过程(D>任何过程 13. 一定量的理想气体从状态出发, 到达另一状态.一次是等温压缩到, 外界作功A;另一次为绝热压缩到, 外界作功W.比较这两个功值的大小是 [](A>A>W(B>A = W(C>A<W (D>条件不够,不能比较 14. 1mol理想气体从初态(T1、p1、V1 >等温压缩到体积V2, 外界对气体所作的功为 [](A>(B> (C>(D> 15. 如果W表示气体等温压缩至给定体积所作的功, Q表示在此过程中气体吸收的热量, A表示气体绝热膨胀回到它原有体积所作的功, 则整个过程中气体内能的变化为 [](A>W+Q-A(B>Q-W-A (C>A-W-Q(D>Q+A-W

第十章_热力学定律知识点全面

功、热与内能 ?绝热过程:不从外界吸热,也不向外界传热的热力学过程称为绝热过程。 ?内能:内能是物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量的总和,用字母 ?热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。 ?热传递的方式:热传导、对流热、热辐射。 热力学第一定律、第二定律 第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。表达式 第二定律的表述:一种表述:热量不能自发的从低温物体传到高温物体。另一种表述: 库吸收热量,将其全部用来转化成功,而不引起其他的影响。 应用热力学第一定律解题的思路与步骤: 、明确研究对象是哪个物体或者是哪个热力学系统。 二、别列出物体或系统(吸收或放出的热量)外界对物体或系统。 三、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也 同样依照规则来解释其意义。 四、几种特殊情况: 若过程是绝热的,即 Q=0,则:g U,外界对物体做的功等于物体内能的增加。 若过程中不做功,即 W=Q 贝y : Q=A U,物体吸收的热量等于物体内能的增加。 知识网络: U 表示。 (开尔文表述)不可能从单一热

若过程的始末状态物体的内能不变,即△U=0,则:W+Q=O,外界对物体做的功等于物体放出的热量。 对热力学第一定律的理解: 热力学第一定律不仅反映了做功和热传递这两种改变内能的方式是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系,此定律是标量式,应用时热量的单位应统一为国际单位制中的焦耳。 对热力学第二定律的理解 ① 在热力学第二定律的表述中,自发和不产生其他影响的涵义,自发是指热量从高温物体自发地传给低温物体的方向性,在传递过程中不会对其他物体产生影响或需要借助其他物体提供能量等的帮助。不产生其他影响的涵义是使热量从低温物体传递到高温物体或从单一热源吸收热量全部用来做功,必须通过第三者的帮助,这里的帮助是指提供能量等,否则是不可能实现的。 ②热力学第二定律的实质热力学第二定律的每一种表述,揭示了大量分子参与宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。 对能量守恒定律的理解: ③在自然界中不同的能量形式与不同的运动形式相对应,如物体做机械运动具有机械能,分子运动具有内能等。 ④某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等。 ③某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 三、能量守恒定律?能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变 ?第一类永动机不可制成是因为其违背了热力学第一定律 ?第二类永动机不可制成是因为其违背热力学第二定律一切自然过程总是沿着分子热运动的无序性增大的方向进行)?熵:是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。 ①熵是反映系统无序程度的物理量,正如温度反映物体内分子平均动能大小一样。 ②系统越混乱,无序程度越大,就称这个系统的熵越大。系统自发变化时,总是向着无序程度增加的方向发展, 至少无序程度不会减少,也就是说,系统自发变化时,总是由热力学概率小的状态向热力学概率大的状态进行。从熵

第一章热力学基础

第一章热力学基础 1.1 开始时1kg水蒸气处于0.5MPa和250℃,试求进行下列过程是吸收或排出的热量: a)水蒸气封闭于活塞——气缸中并被压缩到1MPa和300℃,活塞对蒸汽做功 200kJ。 b)水蒸气稳定地流经某一装置,离开时达到1MPa和300℃,且每流过1kg蒸汽 输出轴功200kJ。动能及势能变化可忽略。 c)水蒸气从一个保持参数恒定的巨大气源流入一个抽空的刚性容器,传递给蒸 汽的轴功为200kJ,蒸汽终态为1MPa和300℃。 1.2 1kg空气从5×105Pa、900K变化到105Pa、600K时,从温度为300K的环境 吸热Q 0,并输出总攻W g 。若实际过程中Q0=-10kJ (排给环境),试计算W g 值,然 后求出因不可逆性造成的总输出功的损失。

第二章能量的可用性 2.1 一稳定流动的可逆燃料电池在大气压力和25℃(环境温度)的等温条件下工作。进入燃料电池的是氢和氧,出来的是水。已知在此温度和压力下,反应物 生成物之间的吉布斯函数之差G 0=G Ro -G p0 =236kJ/mol(供应的氢气),试计算输出功 率为100W的可逆燃料电池所需的氢气供应量[L/min],及与环境的换热量[W]。 2.2 以1×105Pa、17℃的空气作原料,在一个稳定流动的液化装置中生产空气。该装置处于17℃的环境中。试计算为了生产1kg压力为1×105Pa的饱和液态空气所需的最小输入轴功[W]。如该装置的热力学完善度是10%,试计算生产1L液态空气所需的实际输入功[kW.h]。 2.3 在简单液化林德液化空气装置中,空气从1×105Pa、300K的环境条件经带有水冷却的压缩机压缩到200×105Pa和300K。压缩机的等温效率为70%。逆流换热器X的入口温差为0.饱和液态空气排出液化装置时的压力为1×105Pa。换热器与环境的换热量和管道的压降忽略不计。试计算加工单位质量的压缩空气所得到的液态空气量,液化1kg空气所需的输入功,以及液化过程的热力学完善度。

第一章 化学热力学基础 公式总结

第一章 化学热力学基础 公式总结 1.体积功 We = -Pe △V 2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程 .定温可逆时: Wmax=-Wmin= 4.焓定义式 H = U + PV 在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U 在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H 5.摩尔热容 Cm ( J·K-1·mol-1 ): 定容热容 CV (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程 适用对象 : 任意的气体、液体、固体物质 ) 定压热容 Cp ?=?2 1 ,T T m p dT nC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程 适用对象 : 任意的气体、液体、固体物质 ) 单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2.5R , Cp,m = 3.5R 1 221ln ln P P nRT V V nRT =n C C m = ?=?2 1 ,T T m V dT nC U

多原子理想气体: Cv,m = 3R , Cp,m = 4R Cp,m = Cv,m + R 6.理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结 7.定义:△fHm θ(kJ·mol-1)-- 标准摩尔生成焓 △H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变; △fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。 8.热效应的计算 由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程 △rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1) 10.热机的效率为 对于卡诺热机 dT C p T T ? ?2 1 1 2 1211Q Q Q Q Q Q W +=+=-=η

第十章_热力学定律 知识点全面

知识网络: 一、功、热与内能 ●绝热过程:不从外界吸热,也不向外界传热的热力学过程称为绝热过程。 ●内能:内能是物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量的总和,用字母U表示。 ●热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。 ●热传递的方式:热传导、对流热、热辐射。 二、热力学第一定律、第二定律 ?=+ 第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。表达式u W Q 第二定律的表述:一种表述:热量不能自发的从低温物体传到高温物体。另一种表述:(开尔文表述)不可能从单一热库吸收热量,将其全部用来转化成功,而不引起其他的影响。 应用热力学第一定律解题的思路与步骤: 一、明确研究对象是哪个物体或者是哪个热力学系统。 二、别列出物体或系统(吸收或放出的热量)外界对物体或系统。 三、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。 四、几种特殊情况: 若过程是绝热的,即Q=0,则:W=ΔU,外界对物体做的功等于物体内能的增加。 若过程中不做功,即W=0,则:Q=ΔU,物体吸收的热量等于物体内能的增加。

若过程的始末状态物体的内能不变,即ΔU=0,则:W+Q=0,外界对物体做的功等于物体放出的热量。 对热力学第一定律的理解: 热力学第一定律不仅反映了做功和热传递这两种改变内能的方式是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系,此定律是标量式,应用时热量的单位应统一为国际单位制中的焦耳。 对热力学第二定律的理解: ①在热力学第二定律的表述中,自发和不产生其他影响的涵义,自发是指热量从高温物体自发地传给低温物体的方向性,在传递过程中不会对其他物体产生影响或需要借助其他物体提供能量等的帮助。不产生其他影响的涵义是使热量从低温物体传递到高温物体或从单一热源吸收热量全部用来做功,必须通过第三者的帮助,这里的帮助是指提供能量等,否则是不可能实现的。 ②热力学第二定律的实质热力学第二定律的每一种表述,揭示了大量分子参与宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。 对能量守恒定律的理解: ③在自然界中不同的能量形式与不同的运动形式相对应,如物体做机械运动具有机械能,分子运动具有内能等。 ④某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等。 ③某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 三、能量守恒定律 ●能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变 ●第一类永动机不可制成是因为其违背了热力学第一定律 ●第二类永动机不可制成是因为其违背热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方向进行)●熵:是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。 ①熵是反映系统无序程度的物理量,正如温度反映物体内分子平均动能大小一样。 ②系统越混乱,无序程度越大,就称这个系统的熵越大。系统自发变化时,总是向着无序程度增加的方向发展,至少无序程度不会减少,也就是说,系统自发变化时,总是由热力学概率小的状态向热力学概率大的状态进行。从熵

相关主题
文本预览
相关文档 最新文档