当前位置:文档之家› 纳米粒子的可控生长(SiO2)

纳米粒子的可控生长(SiO2)

纳米粒子的可控生长(SiO2)
纳米粒子的可控生长(SiO2)

纳米粒子的可控生长(SiO2)

一、绪论

纳米SiO2是由硅或有机硅的氯化物高温水解生成的表面带有羟基的超细粉体,粒径通常为20-60 nm,化学纯度高,分散性好。纳米SiO2主要采用气相法和沉淀法生产:将无机硅或有机硅的氯化物在氢气和空气存在下于高温炉(1000-1200℃)中分解,生成SiO2气溶胶,再经聚集器收集即可制得气相法纳米SiO2;用酸分解可溶性的硅酸盐,即可制得沉淀法纳米SiO2。其中气相法生产的纳米SiO2粒径较小,结构比较紧密,一次结构的内部具有相对稳定的物理化学性能。沉淀法生产的纳米SiO2表面羟基多,碱性强,结构疏松,一次结构的内部易被氧化,最后形成团聚,导致性能降低。

两种方法生产的纳米SiO2都是粒径小于40 nm的絮状和网状准颗粒结构,表面都存在不饱和的残键及不同键合的羟基,具有很高的表面活性,常用于制备聚合物/无机纳米复合材料,以提高聚合物材料的力学性能。另外,纳米SiO2独特的小尺寸效应和宏观量子隧道效应使聚合物材料的弹性、耐磨性、耐水性、光稳定性及表面糙度等性能也得到大幅度提高。因此聚合物/纳米SiO2复合材料具有广阔的应用前景。

纳米SiO2的表面改性与分散:纳米SiO2以两种形式存在,即单分散性的一次粒子和团聚的二次粒子。一次粒子处于激发态,有极高的反应活性,二次粒子处于相对稳定状态。由于纳米SiO2粒子表面存在大量的羟基,表面结合能高,易于团聚。因此,制备纳米复合材料时需要对纳米SiO2粒子的表面进行改性,使其处于一次粒子状态,改善其在聚合物基体中的分散性。纳米SiO2的表面改性方法主要有物理法和化学法两大类。大致有以下几种: (1)机械化学改性。运用粉碎、摩擦等机械应力作用对纳米粒子表面进行激活,以改变表面晶体结构和物理化学结构; (2)外膜层改性。在纳米SiO2表面均匀地包覆一层其它物质的膜,使其表面性质发生变化;(3)表面覆盖改性。主要是利用表面活性剂覆盖于纳米SiO2粒子表面,赋予粒子表面新的性质。常用的表面活性剂有硅烷类偶联剂、钛酸酯类偶联剂等; (4)局部活性改性。利用纳米SiO2表面的羟基引发与单体或聚合物的反应,在粒子表面接枝含有不同功能的聚合物或单体,使之具有新的功能。

二、纳米SiO2材料的制备及可控生长方法

2.1 共混法

共混法是制备聚合物/纳米SiO2复合材料最简单且应用最广的一种方法。典型的共混方法有: (1)溶液共混。在聚合物溶液中加入纳米SiO2粒子,充分搅拌溶

液,使之分散均匀,再除去溶剂即可; (2)乳液共混。与溶液法相似,只是用乳液代替溶液,主要适用于聚合物难以溶解的情况; (3)熔融共混。对纳米SiO2粒子进行表面处理后加入聚合物中,在熔融状态下共混。共混法的优点在于操作简单,且可控制纳米SiO2粒子的形态、尺寸。但缺点是粒子易团聚,均匀分散困难。

因此共混前须对纳米SiO2进行表面改性。

2.2 溶胶-凝胶法

该法是将烷氧金属化合物或金属盐等水溶性盐或油溶性醇盐等溶于水或有机溶剂中形成均质溶液,溶质发生水解生成纳米粒子溶胶,再与聚合物缩聚形成三维网状结构的凝胶,经高温干燥除去低分子物后即制得纳米复合材料。溶胶-凝胶法的优点是从过程的初始阶段就可在纳米尺度上控制材料结构,并使粒子均匀地分散于聚合物中,甚至可达到“分子复合”的水平,从而制备多种性能的纳米复合材料。该法存在的问题是凝胶干燥过程中因溶剂等低分子物的挥发易导致材料收缩产生裂纹。溶胶-凝胶法是目前应用较广且较完善的制备纳米复合材料的方法。

2.3 原位分散聚合法

原位分散聚合法是采用超声波分散、机械共混等手段使纳米SiO2在聚合物单体(或预聚体)中均匀分散,然后在一定条件下引发单体原位聚合。该方法同共混法一样也需要对纳米SiO2粒子进行表面改性,但分散效果优于共混法。采用

原位分散聚合法可使聚合物单体一次聚合成型,不需二次热加工,避免了由此产生的降解,从而保证了基体各种性能的稳定。

此外文献中还有一些新型的SiO2材料的制备及可控生长方法:

1.反相微乳液法制备纳米 SiO2的研究

室温下, 在四口烧瓶中, 配置一定量的环己烷和表面活性剂混合溶液, 搅拌条件下, 向其中滴加一定浓度的氨水, 得反相微乳液。继续滴加一定量的TEOS, 几小时后, 反相微乳液体系由清亮透明液开始呈现蓝白乳光, 且蓝白乳光越来越明显, 表明水解、缩合逐步生成纳米SiO2粒子。反应产物用无水乙醇离心、洗涤, 80 ℃下烘干, 得白色固体SiO2粉末样品。

结论:(1) 在 NP-5/环己烷/氨水的反相微乳液体系中,经TEOS的水解、缩合反应, 得到了粒径在 30-50nm、单分散的纳米SiO2胶体。

(3) 当体系中 TEOS 的浓度增大时, 粒子的粒径随之增大。降低 NP-5 的浓度, SiO2的粒径减小, 粒度分布变窄。水相中, 氨水的浓度起到了控制纳米SiO2粒子表面形貌的作用, 且在较高氨水浓度时, 粒子的粒径较大, 粒径分布较窄。

2.纳米SiO2的制备及其改性PET 的研究

(1)用量筒量取234mL蒸馏水和 223mL乙二醇倒入烧杯;

(2)用盐酸或氨水将其调节到需要的pH值后倒入三颈烧瓶中,插入四

氟搅拌器;

(3)将三颈烧瓶放入恒温水浴锅中固定,插入恒压滴液漏斗,升温至50℃;

(4)用量筒量取 223mLTOES倒入恒压滴液漏斗;

(5)开启搅拌器,控制转速为 500rpm,打开恒压滴液漏斗,缓慢滴入TEOS;

(6)TEOS滴完后,关闭恒压滴液漏斗,加入 5mL 的 KH-560,继续反应

1h;

(7)升温至60℃,继续反应3h后结束反应。

结论:HCl 催化制得的SiO2粒子粒径从几十纳米到几百纳米呈不均匀分布,且 KH-560 的加入可以减小SiO2粒子的尺寸,并且使得SiO2粒子的形态从不规

则多面体转变成球形颗粒。NH3·H2O 催化制得的SiO2粒子粒径分布极其均匀,均在 14nm;KH-560 的加入对SiO2粒子的尺寸基本没有影响,但是对粒子与粒

子之间的聚集形态有着很大的影响。未加入 KH-560 的SiO2粒子的聚集形态呈

棒状和树枝状,而 KH-560的加入使得SiO2粒子的聚集形态呈规则的球形和奇

特的蝌蚪状。这两种聚集形态的不同是由于KH-560 能够在一定程度上阻止

SiO2粒子的团聚。KH-560 的能够在单个或少量团聚的SiO2粒子表面形成保护层,类似表面活性剂的作用,阻止团聚的进一步发生。

三、总结

总之,尺寸<100nm的粒子会出现一些与体相材料不同的新性质,产生一些

新的现象。这些新性质和新现象对人们认识自然具有重要学术意义,同时对未来的工业和技术将会产生革命性的影响。纳米粒子的可控合成和组装是功能纳米

器件的设计和构筑并走向应用的关健。其中,纳米粒子的可控合成包括粒子大小、形状和相结构可控。这是一个前沿性和挑战性极强的研究课题,但也是一个亟需解决的课题。影响纳米粒子可控合成的因素很多,主要分为内部因素和外部因素。内部因素决定了热力学平衡状态的形状和结构;外部条件将影响纳术粒子大小、形状和相结构的调控,如:反应时间,温度,升温速率,溶剂的极性和粘度,前驱物

浓度和反应性能以及表面活性剂等均对纳米晶的大小、形状和晶体质量会产生

重大影响,且这些因素的影响又是相互关联的。

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

氧化硅介绍,纳米二氧化硅应用领域

氧化硅介绍,纳米二氧化硅应用领域 氧化硅介绍 产品为人工合成物无定形白色流动性粉末,具有各种比表面积和容积严格的粒度分布。本产品是一种白色、松散、无定形、无毒、无味、无嗅,无污染的非金属氧化物。其原生粒径介于7~80nm之间,比表面积一般大于100m2/g。由于其纳米效应,在材料中表现出卓越的补强、增稠、触变、绝缘、消光、防流挂等性质,因而广泛的应用于橡胶、塑料、涂料、胶粘剂、密封胶等高分子工业领域。 纳米二氧化硅应用领域 1、在涂料领域 纳米二氧化硅(SP30)具有三维网状结构,拥有庞大的比表面积,表现出极大的活性,能在涂料干燥时形成网状结构,同时增加了涂料的强度和光洁度,而且提高了颜料的悬浮性,能保持涂料的颜色长期不退色。在建筑内外墙涂料中,若添加纳米氧化硅(SP30),可明显改善涂料的开罐效果,涂料不分层,具有触变性、防流挂、施式性能良好,尤其是抗沾污染性能大大提高,具有优良的自清洁能力和附着力。纳米SiO2还可与有机颜料配用,可获得光致变色涂料,M.P .J .Peeters等用溶胶凝胶法合成了含纳米二氧化硅(SP30)的全透明的耐温涂料H.Schmidt等合成了很厚的含纳米SiO2的涂料,并耐高温,在500℃下没有出现裂缝,Fayna Mamme ri等合成了P MMA- SiO2纳米涂料。明显增强了涂料的弹性和强度。纳米氧化硅(同SP30)具有常规SiO2所不具有的特殊光学性能,它具有极强的紫外吸收,红外反射特性。经紫外一可见分光光度计测试表明,它对波长400nm以内的紫外光吸收率高达70%以上,对波长800nm 以外的红外光反射率也达70%以上,它添加到涂料中能对涂料形成屏蔽作用,达到抗紫外老化和热老化的目的,同时增加了涂料的隔热性,徐国财等通过纳米微粒填充法,将纳米氧化硅作掺杂到紫外光同化涂料中,明显地提高了紫外光固化涂料的硬度和附着力,还减弱了紫外光同化涂料吸收UV辐射的程度,从而降低了紫外光同化涂料的同化速度。 2、在粘结剂和密封胶领域 密封胶和粘结剂是量大、使用范围广的重要产品。菜市产品粘度、流动件、旧化速度等有严格要求。目前,国内高档的密封胶和粘结剂都依赖进口。据介绍,国外在这个领域的产品已经采用纳米材料作添加剂,而纳米二氧化硅(SP30)是首选材料。其作用机理是纳米SiO2表面包覆一层有机材料,使之具有疏水特性,将它添加到密封胶中能很快形成一种网络结构,抑制胶体流动,同化速率加快,提高粘接效果,同时由于颗粒细小,更增加了胶的密封性。 3、在纺织领域 随着科学技术的发展和人类生活水平的提高,人们对服装提出了舒适、新颖、保健的要求,各种功能化的纺织品应运而生。在此,纳米二氧化硅(SP30)发挥了巨大的作用,目前,人们已将其应用到防紫外、远红外、抗菌消臭、抗老化等方面。例如,以纳米二氧化硅(SP30F)和纳米二氧化钛(T25F)的适当配比而成的复合粉体是抗紫外辐射纤维的重要添剂,又如,日本帝人公司将纳米二氧化硅(SP30)和纳米ZnO-JS03)混人化学纤维中,得到的化学纤维具有除臭及净化气的功能,这种纤维可被用于制造长期卧床病人和医院的消臭敷料、绷带、睡农等。 4、在杀菌剂领域 纳米二氧化硅(SP30)具有生理惰性、高吸附性,在杀菌剂的制备中常用作载体,当

纳米二氧化硅

1前言 1.1纳米二氧化硅的发展现状及前景 纳米材料是指微粒粒径达到纳米级(1~100nm)的超细材料。当粒子的粒径为纳米级时,其本身具有量子尺寸效应和宏观量子隧道效应等,因而展现出许多特有的性质,应用前景广阔。纳米SiO 是极具工业应用前景的纳米材料,它的应用领域十分广泛,几乎 2 粉体的行业。我国对纳米材料的研究起步比较迟,直到“八五计涉及到所有应用SiO 2 划”将“纳米材料”列人重大基础项目之后,这方面的研究才迅速开展起来,并取得了令人瞩目的成果。1996年底由中国科学院固体物理研究所与舟山普陀升兴公司合作,成 [1],从而使我国成为继美、英、日、德功开发出纳米材料家庭的重要一员——纳米SiO 2 国之后,国际上第五个能批量生产此产品的国家。纳米SiO 的批量生产为其研究开发提 2 供了坚实的基础。 目前,我国的科技工作者正积极投身于这种新材料的开发与应用,上海氯碱化工与华东理工大学[2]建立了连续化的1000t/a规模中试研究装置,开发了辅助燃烧反应器等核心设备,制备了性能优良的纳米二氧化硅产品,其理化性能和在硅橡胶制品中的应用性能,已经达到和超过国外同类产品指标。专家鉴定认为,纳米二氧化硅氢氧焰燃烧合成技术、燃烧反应器和絮凝器等关键设备及应用技术具有创新性,该成果总体上达到国际先进水平,其中在预混合辅助燃烧新型反应器和流化床脱酸两项核心技术方面达到了国际领先水平,对于突破国际技术封锁具有重大价值。但总地来讲,我国纳米SiO 的生 2 产与应用还落后于发达国家,该领域的研究工作还有待突破。 1.2 纳米二氧化硅的性质[3]~[5] 纳米二氧化硅是纳米材料中的重要一员,为无定型白色粉末,是一种无毒、无味、无污染的非金属材料。微结构呈絮状和网状的准颗粒结构,为球形。这种特殊结构使它具有独特的性质: 纳米二氧化硅对波长490 nm以内的紫外线反射率高达70%~80%,将其添加在高分子材料中,可以达到抗紫外线老化和热老化的目的。 纳米二氧化硅的小尺寸效应和宏观量子隧道效应使其产生淤渗作用,可深入到高分子链的不饱和键附近,并和不饱和键的电子云发生作用,改善高分子材料的热、光稳定性和化学稳定性,从而提高产品的抗老化性和耐化学性。 纳米二氧化硅在高温下仍具有强度、韧度和稳定性高的特点,将其分散在材料中,

介孔二氧化硅纳米颗粒应用于可控药物释放

介孔二氧化硅纳米颗粒应用于可控药物释放 摘要通过对介孔二氧化硅纳米粒子(MSN)载药机理、药物控释机理(PH响应、光响应、温度响应、酶响应及竞争性结合响应)、靶向方法(配体靶向、磁靶向、量子点应用于靶向)的介绍,对MSN 在可控药物传输系统中的应用加以综述。 关键词介孔二氧化硅纳米粒子;药物传输;控制释放;靶向;量子点。 近年来,介孔材料由于其独特的优异性能成为了研究开发的热点,在催化、吸附分离、药物释放等领域的应用前景更使其备受关注。1992年,Kresge等,首次在Nature杂志上报道了一类以硅铝酸盐为基的新颖的介孔氧化硅材料,M41S,其中以命名为MCM-41的材料最引人注目其特点是孔道大小均匀、六方有序排列、孔径在1。5-10nm 范围可以连续调节,具有高的比表面积和较好的热稳定及水热稳定性,从而将分子筛的规则孔径从微孔范围拓展到介孔领域这对于在沸石分子筛中难以完成的大分子催化、吸附与分离等过程,无疑展示了广阔的应用前景。 可控药物传输系统可以实现药物在病灶部位的靶向释放,有利于提高药效,降低药物的毒副作用,在疾病治疗和医疗保健等方面具有诱人的应用潜力和广阔的应用前景,已成为药剂学、生命科学、医学、材料学等众多学科研究的热点[1-6]。许多药物都具有较高的细胞毒性,在杀死病毒细胞的同时,也会严重损伤人体正常细胞。因此,理想的可控药物传输系统不仅应具有良好的生物相容性,较高的载药率和包

封率,良好的细胞或组织特异性——即靶向性;还应具有在达到目标病灶部位之前不释放药物分子,到达病灶部位后才以适当的速度释放出药物分子的特性。 介孔SiO2纳米粒子(mesoporous silica nanoparticles,MSN)具有在2~50 nm范围内可连续调节的均一介孔孔径、规则的孔道、稳定的骨架结构、易于修饰的内外表面和无生理毒性等特点,非常适合用作药物分子的载体。同时,MSN 具有巨大的比表面积(>900 m2/g)和比孔容(>0。9 cm3/g),可以在孔道内负载各种药物,并可对药物起到缓释作用,提高药效的持久性。因此,近年来MSN 在可控药物传输系统方面的应用日益得到重视,本文通过对MSN 载药机理[7]、药物控释机理[8]和靶向方法[9-14]的介绍,对MSN 在可控药物传输系统中的应用[15-17]加以综述。 1、介孔二氧化硅纳米颗粒 1992年,Kresge等首次合成出MCM-41型介孔分子筛,这种具有规则孔道结构的介孔纳米微球立即吸引了广泛的关注,并得到了快速的发展。MSN是利用有机分子(表面活性剂或两亲性嵌段聚合物)作为模板剂,与无机硅源进行界面反应,形成由二氧化硅包裹的规则有序的组装体,通过煅烧或溶剂萃取法除去模板剂后,保留下二氧化硅无机骨架,从而形成的多孔纳米结构材料。通过选择不同的模板剂和采用不同的合成方法可得到不同结构特征的介孔材料。 1。1 MSN的生物相容性

铂纳米微粒制备方法的研究

铂纳米微粒制备方法的研究 李明元1,毛立群2,郭建辉2,黄在银1 (1.广西大学化学化工学院,广西,南宁 530004;2.河南大学化学化工学院,河南,开封 475001) 摘 要:分散型铂纳米微粒和负载型铂纳米微粒都是重要的催化剂。制备尺度可控、粒度分布均一的铂纳米微粒,对提高其催化活性和选择性,以及延长其使用寿命具有重要的意义。本文介绍了分散型和负载型铂纳米微粒常用的制备方法,讨论了各方法的制备原理及其优缺点。 关键词:纳米铂;制备方法;分散型;负载型 1 前言 铂及其合金在石油和化学工业中主要用作催化剂,对加氢反应,氧化反应具有较好的催化性能[1-2]。近年来随着纳米科学与技术研究的不断深入,研究工作者发现纳米铂由于具有比表面积高和因而显示出的更高的催化活性,使得关于纳米铂的制备及催化性能研究成为热点[3-5]。铂纳米微粒的制备方法大致分为两类,即化学法(化学还原法、微乳液法等)和物理方法(真空蒸镀法、等离子体溅射法、粒子束外延法等)。铂纳米微粒的催化性能与其制备方法密切相关,微粒的尺度、形貌、化合价等对其催化性能起着至关重要的作用[6],此外,对于载体型纳米铂催化剂而言,载体的性质也同样对纳米铂的催化性能也会产生影响。本文简述了铂纳米微粒的制备方法,主要介绍各种制备方法的原理及其优缺点,以及运用这些方法制备*铂纳米微粒所取得的进展。 2 分散型铂纳米微粒的制备 分散型铂纳米微粒的制备方法主要有化学还原法、微乳液法、吸氢多次还原法等。目前关于负载型铂纳米微粒的制备研究较多,而分散型铂纳米微粒的制备研究相对较少。 2.1 化学还原法 化学还原法制备纳米铂微粒,一般是在含有金属铂的盐或者酸里面加入还原剂还原高价铂到铂单质,然后经过洗涤、过滤、干燥、煅烧等处理后得到催化剂铂纳米粉体。常用的还原剂有甲醛[7]、多聚甲醛[8]、硼氢化钠[9]、硫代硫酸钠、连二亚硫酸钠、乙醇、乙二醇、柠檬酸、葡萄糖、水合肼等。化学还原法具有操作简单,反应条件温和,对仪器的要求低等优点。但是用化学还原法制备铂纳米微粒需要加入还原剂、保护剂等,在后处理过程中需采用高温焙烧的方法将它们除去。而在焙烧过程中容易造成保护剂的碳化和铂纳米微粒的团聚[10],因此化学还原法不容易得到小尺度,且粒度均一的铂纳米微粒。保护剂主要有聚合物、有机配合物、壳聚糖、表面活性剂等[11]。通常,保护剂的加入量对铂纳米微粒尺度有重要影响,铂纳米微粒的团聚程度随着保护剂的加入量的增加而减小。 唐浩林等[12]在碱性条件下(pH=8.5)用无水乙醇还原氯铂酸,并采用Nafion聚离子对生成的铂纳米微粒进行表面修饰,得到平均粒径为4nm的铂纳米微粒。Nafio n憎水性极强的高分子主链和亲水性的磺酸基团对铂纳米微粒具有良好的化学修饰作用,且Nafion聚离子对铂存在位阻作用,使铂纳米微粒稳定吸附在Nafion聚离子上而彼此分散开。陈卫等[13-14]在碱性条件下用甲醇做还原剂还原氯铂酸,分别在加入保护剂聚乙烯吡咯烷酮(PVP)和没有加入保护剂的条件下制得了平均粒径为2.5nm 的球状铂纳米微粒。杨玉琴等[15]在加入保护剂PVP 下,用两种还原剂乙醇和硼氢化钠还原氯铂酸制得铂纳米微粒。他们的研究表明,加入的保护剂越多,得到的铂纳米微粒就越小,分散性也越好,但是保护剂加入的越多,制备的铂纳米颗粒的催化性能就越低。他们还发现,用硼氢化钠做为还原剂制备的铂纳米微粒较小并且很少有团聚现象。吕高孟等[16]以吡啶为保护剂,在室温条件下以硼氢化钾为还原剂制得了粒径在2.0~3.0nm的铂纳米微粒。用吡啶作保护剂解决了空气对保护剂的破坏从而使胶体纳米铂可以较长时间地存在。但胶体纳米铂难以分离,因此他们所制备的铂纳米粒子并没有从胶体中分离出来。由Fox研究小组[17]用聚芳醚二硫树枝状分子作保护剂得到启发,张伟等[18]用聚芳醚三乙酸铵树枝分子作为保护剂制得了平均粒径为2.5nm的铂纳米微粒。聚芳醚三乙酸铵树枝分子上的羟基与铂纳米微粒之间有较强的相互作用,使其具有较好的稳定性,不宜发生团聚。 2.2 微乳液法 微乳液中油包水型(W/O)的水核尺寸小且彼此分离,不同水核内不能进行物质交换,因此适当的微乳液可以制备出尺寸和大小都比较均一且分散性好的纳米微粒[19]。微乳液中组分的比例对纳米微粒 5  2007年第12期 内蒙古石油化工 收稿日期:2007-08-14 基金项目:河南省教育厅资助项目(2007150007)

二氧化硅纳米颗粒的制备

二氧化硅纳米颗粒制备表征及其应用的研究 周韬 摘要:本实验采用沉淀法和溶胶凝胶法制备了二氧化硅纳米晶体,并对得到的产物进行了红外光谱和粒径分析。 关键词:溶胶凝胶,红外光谱,粒径分析 引言 近几年来用单分散二氧化硅球形颗粒为原料自组装制备光子晶体受到了人们的广泛关注,光子晶体广泛的应用前景,促使人们制备出优良的单分散二氧化硅球形颗粒[1]。 光子晶体是介质的周期排列而构成的一种人工微结构材料, 由于电磁波在其中的传播可以用类似于电子在半导体中传播的能带理论来描述, 故而得光子晶体之名, 以此表明光子之晶体与电子之晶体(半导体)的区别与联系。光子晶体被认为是控制光子(电磁波)传播的行之有效的工具, 光子晶体的典型特点是具有光子带隙。当物质的自发辐射频率处在光子带隙内时, 它可以用于抑制光子晶体内的物质的自发辐射。同时, 当在光子晶体内引入缺陷时,如果物质的自发辐射频率和缺陷模的频率一致, 又可用于增强物质的自发辐射, 而且这种自发辐射有类似于受激辐射的特性。光子晶体可以用于制备超高品质因子的微腔, 用于研究腔量子电动力学效应,是量子通讯和量子信息处理的有力工具[2]。 本实验采用溶胶凝胶的方法尝试制备二氧化硅纳米颗粒。 1、实验部分 1.1原理 二氧化硅的制备方法也有很多种,依据反应是否在溶液中发生,分为干法和湿法。干法主要有气相法和电弧法,湿法主要有溶胶-凝胶法,沉淀法,水热法及微乳液法等。其中,溶胶凝胶法(以下简称Sol-Gel法)利用活性较高的前驱体作为原料,在含水的溶液中水解,生成溶胶,然后溶胶颗粒间进一步发生相互作用,与溶剂共同生成凝胶,干燥后、煅烧获得前驱体相应的氧化物。 二氧化硅的制备主要分为如下两步: 第一步水解 ?Si?OR+H2O →?Si?OH+ROH

磁性介孔二氧化硅纳米药物载体的制备及其 研究

Journal of Comparative Chemistry 比较化学, 2018, 2(2), 39-46 Published Online June 2018 in Hans. https://www.doczj.com/doc/d017642240.html,/journal/cc https://https://www.doczj.com/doc/d017642240.html,/10.12677/cc.2018.22007 Study on the Construction of Nanocarriers Based on Mesoporous Silica Yang Zhou1,2, Lijun Tao1,2, Yinjia Wan1,2, Yuan Zhou1,2 1Wuhan Institute of Technology, Wuhan Hubei 2Green Chemical Process Key Laboratory of Ministry of Education, Wuhan Hubei Received: Apr. 21st, 2018; accepted: May 14th, 2018; published: May 21st, 2018 Abstract Human beings are working hard to conquer the cure of cancer and strive to explore the methods and techniques of treating cancer. The preparation of magnetic mesoporous silica nano-drug car-rier provides a new research direction for cancer treatment. Fe3O4 nanoparticles were prepared by solvothermal method. SiO2 was coated on the surface of Fe3O4 with CTAB as template. Then the template was stirred in the ethanol solution of NaCl to form mesopores outside Fe3O4. In the expe-riment, the magnetic mesoporous silica nanometer drug carrier with good morphology was pre-pared by controlling the time of the coating and changing the amount of TEOS. Finally, the opti-mum dosage of TEOS was about 150 μl when the time was 6 hours. Finally, Fe3O4@mSiO2 was mod-ified by surface thiolation, so that the surface thiylated Fe3O4@mSiO2can not only through the mesoporous drug loading, but also through the chemical bond drug to improve the carrier drug loading rate. The successful preparation of magnetic mesoporous silica nano-drug carrier brings new research direction for targeted therapy of cancer treatment. Keywords Drug Delivery, Magnetic Mesoporous Materials, Cancer Therapy 磁性介孔二氧化硅纳米药物载体的制备及其 研究 周洋1,2,陶丽君1,2,万尹佳1,2,周原1,2 1武汉工程大学,湖北武汉 2绿色化工教育部重点实验室,湖北武汉 收稿日期:2018年4月21日;录用日期:2018年5月14日;发布日期:2018年5月21日

纳米铂

纳米铂-L半胱氨酸修饰玻碳电极对 对苯二酚的检测研究 姓名:陈盼盼学号:201004034032 班级:化学一、文献综述 化学工业对人类社会和物质文明做出了重大贡献,人们在享受现代科学与技术给人们带来巨大的便利和快乐的同时,也逐渐意识到人类未来面临的巨大生存危机和困难。20世纪,人们逐步认识化学品的不当生产和使用会对人的健康、社区环境、生态环境产生危害性。据统计,世界每年生产的人工合成有毒化合物约50万种,共400万t,所有这些物质,近一半留在大气江河、湖、海内,另外每年还有将近18万t的铅和磷,3000万t的汞和各种有毒重金属流入水体内,200万t石油流进海洋。中国化学工业排放的废水、废气和固体废物分别占全国工业排放总量的22.5%、7.82%和5.93%,造成环境严重恶化,直接危害人类,又破坏生物圈,长期的影响着人类的生存。 对苯二酚,又名氢醌.化学名1,4-苯二酚,英文名 1,4-Dihydroxybenzene ; Hydroquinone。对苯二酚为白色针状结晶,分子式C6H4(OH)2,分子量110.11,比重1.332,熔点172℃,沸点286℃,闪点165℃,溶于水、乙醇及乙醚,微溶于苯。可燃。自燃点516℃。长期接触对二苯酚蒸气、粉尘或烟雾可刺激皮肤、粘膜,并引起眼的水晶体混浊。操作现场空气中最高容许浓度2mg/m3。 对苯二酚是一种重要的化工原料且应用广泛【1】主要用于显影剂、蒽醌染料、偶氮染料、合成氨助溶剂、橡胶防老剂、阻聚剂、涂料和

香精的稳定剂、抗氧剂等。对苯二酚因具有毒性,而且在自然条件下,不易降解,对人体环境有较大的危害, 因此受到人们的普遍关注,但其微量不容易不检测出来,因而需要更加灵敏的方法来检测目前,微量对二苯酚的测定方法有荧光谱法【2】、薄层色谱法【3】高效液相色谱法【4】动力学光度法【5】因为对苯二酚具有电学活性,可用电化学方法测定其含量,因此用选择性好、灵敏度有高的化学修饰电极测量对对苯二酚已有报道【6-7】,但是因为修饰过程复杂,干扰过多,灵敏度等问题。所以要设计更好的修饰方法来对微量对苯二酚的检测。 玻碳电极,是电化学研究中使用最为频繁的碳材料基础电极【8】。它的表面具有多变的性质,极易受实验条件的影响而发生变化。玻碳电极在应用与电化学研究时,在每次试验前需要对电极进行前处理,以改善其电化学相应信号的重现性【8】。目前,世界上几乎所有的实验室,对玻碳电极最为常采用的的前处理程序都是先在Al2O3磨料浆中打磨电极,随后在超声水浴中清洗。但这样的处理方法再重现性上不尽人意。因次,在这里我们要进行电化学活化以此来满足电分析实验室所需的各种高要求,各种有效的电化学活化方法均采用一个叫高阳极极化电位。电化学活化既可以在酸性、中性溶液中【9】也可以在碱性溶液中【10】,动力学研究表明活化电极的电子传导性质的改善可能以表面的亲水性【11】、清洁度【12】、含氧基团【13】等因素有关。 纳米材料具有表面效应【14】、体积效应【15】和介电限域效应登

纳米二氧化硅微球的应用及制备进展_姜小阳

第30卷第3期 硅酸盐通报Vol.30No.32011年6月BULLETIN OF THE CHINESE CERAMIC SOCIETY June ,2011 纳米二氧化硅微球的应用及制备进展 姜小阳,李霞 (青岛科技大学材料科学与工程学院,青岛266042) 摘要:纳米二氧化硅微球在电子、光学器件、化学生物芯片、催化等领域有着广泛的应用。本文综述了近几年纳米 二氧化硅微球几种制备方法,例如:溶胶-凝胶法、模板法、沉淀法、超重力法、微乳液法等,并对这些工艺方法的优缺 点做了简单评述, 最后对二氧化硅的应用前景进行了展望。关键词:纳米二氧化硅;微球;应用;制备 中图分类号:O613文献标识码:A 文章编号:1001- 1625(2011)03-0577-06Progress in Application and Preparation of Nano-silica Microspheres JIANG Xiao-yang ,LI Xia (College of Materials Science and Engineering ,Qingdao University of Science and Technology ,Qingdao 266042,China ) Abstract :Nanosized silica microspheres have important applications in electronics ,optical devices ,chemical biosensors ,catalysis ,etc.In this thesis ,the preparation methods of nano-silica were reviewed such as sol-gel process ,template process ,precipitation process ,high gravity reactive method ,micro- emulsion method ,etc.The relative merits of each method are introduced.At last ,the application prospect of nano-silica microspheres is depicted. Key words :nano-silica ;microspheres ;application ;preparation 基金项目:国家自然科学基金(No.51072086)资助项目 作者简介:姜小阳(1985-),男,硕士.主要从事纳米二氧化硅微球的制备及应用的研究. 通讯作者:李霞.E-mail :lix@qust.edu.cn 1引言 纳米固体或纳米微粒是指颗粒粒度属于纳米量级(1 100nm )的固态颗粒[1]。纳米二氧化硅微球为无 定型白色粉末,无毒、无味、无污染,表面存在大量羟基和吸附水,具有粒径小、纯度高、比表面积大、分散性能好等特点,并凭借其优越的稳定性、补强性、触变性和优良的光学及机械性能,广泛应用于生物医药、电子、催化剂载体及生物材料、工程材料等领域 [2]。如今,纳米二氧化硅微球的制备和应用研究工作已成为材料科 研领域的一大热点[3]。2纳米二氧化硅微球的应用 纳米二氧化硅在添加剂、橡胶、塑料、纤维、彩色打印、军事材料、生物技术等领域有着广泛的应用。纳米SiO 2表面含有大量的羟基与不饱和键,可以在摩擦副表面形成牢固的化学吸附膜,从而保护金属摩擦表面,改善润滑油的摩擦性能,因此可以作为一种高性能、高环保型润滑油的添加剂 [4]。利用纳米SiO 2可以吸收

一种合成二氧化硅纳米粒子的新方法

一种合成二氧化硅纳米粒子的新方法 摘要 在溶胶-凝胶过程通过使用超声法,已第一次使用顺序的方法制备单分散的和大小均匀的二氧化硅纳米颗粒。在乙醇介质中,通过水解正硅酸四乙酯(TEOS),得到二氧化硅颗粒,并对不同试剂对粒径的影响进行了详细的研究。各种在 20-460nm范围内的不同大小的颗粒的合成。实验用到试剂:氨水(2.8-28molL-1),乙醇(1-8molL-1),水(3-14molL-1),和TEOS(0.012-0.12molL-1),而粒子的尺寸在扫描电子显微镜(SEM)和透射电子显微镜(TEM)下观察。除了上述的观察,温度对粒径的影响也进行了研究。在本研究中所获得的结果是与利用紫外-可见分光光度法测定的所观察到二氧化硅粒子的电子吸收行为的结果一致。 1、介绍 二氧化硅纳米粒子因为他们容易制备和其在各种工业中的广泛应用,如催化剂,颜料,制药,电子和薄膜基板,电子和热绝缘体,和湿度传感器[1],在科研中占据了突出的位置。这些产品中的一些产品的质量高度依赖于这些粒子的粒径和粒径分布。 Stober 等人[2]在1968年,报道了一项先进的合成球形和单分散二氧化硅纳米粒子的方法,即从从硅醇盐的的乙醇水溶液,在以氨水作为催化剂的存在下,制备从50nm至1μm的不同尺寸范围的具有窄粒度分布的二氧化硅纳米粒子。颗粒的大小取决于硅醇盐和醇的类型。在甲醇溶液中制备的颗粒是最小的,而颗粒尺寸是随着醇的链长增加而增大的。当长链醇被用作溶剂,颗粒尺寸分布也变宽。在此之后,在这一领域[3-11]也进行了大量的研究。在本研究中,主要涉及两种类型的反应:(ⅰ)通过水解形成硅羟基和(ii)硅氧烷桥所形成的缩聚反应: 水解作用:Si–(OR) 4 + H 2 O →Si–(OH) 4 + 4R–OH, 缩合:2Si–(OH) 4→2(Si–O–Si) + 4H 2 O。 缩合速率取决于反应条件,这可能会导致形成一个三维网状的结构,或形成单一的单分散颗粒[12]。对于较大的颗粒的制备,由Bogush等人已经描述了一个种子的生长技术。在该技术中的种子悬浮液利用Stober反应沉淀制得。当反应完成后,TEOS和水以1:2的摩尔比加入到该种子悬浮液中。这种技术的缺点是,如果的TEOS的量超过某一临界值时,会出现第二颗粒群。使用这种技术,可以制备更多的单分散粒子,并且使它们在溶胶中的质量分数增加,但用这种方法,不可能增加超过1微米大小的单分散粒子。电解质对二氧化硅纳米颗粒的大小的影响由Bogush和Zukoski[5]进行了说明,并且在他们的研究中,他们报告说,当电解质(NaCl)的浓度由0增加至10-4M时,颗粒尺寸从340增加至710nm。 黄和同事已经报道,超声处理在反应的过程中,可以显著地增加碳化二亚胺介导的酰胺化作用[13]的产率。鉴于此,在本研究中,我们已经确定了各试剂对粒径的影响,除了温度对超声波处理的影响。据我们所知,这是第一次报道在溶胶-凝胶过程中利用顺序添加方法制备二氧化硅粒子。 2、材料和方法 2、1试剂 正硅酸乙酯(TEOS)(99.99%,Aldrich公司),乙醇(99.99%,Aldrich 公司),和氢氧化铵(28%,Wako),使用时无需任何进一步纯化。整个实验过程中使用的Milli-Q水(18.2 )。 2、2表征

铂纳米颗粒修饰微型电极在毛细管电泳中的应用

铂纳米颗粒修饰微型电极在毛细管电泳中的应用铂纳米颗粒具有比表面积大、表面活性中心多、催化效率高、选择性高等特点,因而被广泛应用于电化学。毛细管电泳电化学法具有进样体积小、分离效率高、灵敏度高、快速简便等优点,特别适于单细胞等微体积环境中电活性物质的测定。 将铂纳米颗粒修饰微电极用于毛细管电泳电化学中,进一步提高了检测灵敏度,扩大了检测范围,是现代分析化学研究的热点之一。本论文研制了两种铂纳米颗粒修饰微电极,与毛细管电泳电化学法联用,实现了对抗坏血酸和过氧化氢的快速灵敏检测,并实现了单细胞中这两种物质的定性与定量检测。 第一章,首先介绍了铂纳米颗粒独特地物理化学性质,详细的总结了铂纳米颗粒修饰电极的制备方法以及在电化学中的应用。然后又介绍了毛细管的基本原理以及常与其联用的检测器,其中重点介绍了毛细管电泳电化学法。 最后对铂纳米颗粒修饰电极的应用发展趋势作了简单介绍。第二章,抗坏血酸(AA)又称维生素C,在哺乳动物细胞中是一种重要的基本营养成分,在不同的酶反应中做辅因子,如胶原蛋白合成。 AA可以减少脂多糖引发的活性氧,从而防止刺激一氧化氮合成酶产生过多的一氧化氮而加剧肝细胞内物质的氧化。此外,有关报道还证明AA能通过生成过氧化氢、活性氧这一细胞毒性反应参与细胞氧化应激。 因此,对于抗坏血酸的检测是非常重要而有意义的。本章利用电沉积的方法将铂纳米颗粒修饰到自制的碳纤维电极表面,并运用扫描电镜(SEM)和循环伏安法对此电极进行了表征,将其用于毛细管电泳安培检测中对抗坏血酸进行了检测。

实验证明该电极对抗坏血酸有良好的催化响应,并具有良好的灵敏度、稳定性和重现性。相对于裸碳纤维电极,铂纳米颗粒修饰电极对AA检测的灵敏度提高了四倍。 信噪比为3时,检测限为0.5μmol/L。在最佳实验条件下对0.1mmol/L的 抗坏血酸进行十次平行测定,迁移时间和峰电流的相对标准偏差分别为1.7%,4.8%。 实验成功地对单个肝癌细胞中的抗坏血酸进行了定性和定量测定。第三章,H2O2是体内较为重要的代谢产物之一,它能穿过细胞膜,并且是比较稳定的一种活性氧。 许多报道还证明适当浓度的过氧化氢可以作为细胞信号传导的第二信使。并且H2O2与肿瘤的发生、发展和凋亡有密切的联系,对 生物体内H2O2的检测可以为诊断和预防由氧化胁迫和 损伤诱导的疾病提供依据。 因此,在细胞水平上对H2O2进行检测是非常重要的。本章通过乙二醇还原法将铂纳米颗粒负载到多壁碳纳米管上,将其分散到Nafion溶液中,再将其蘸到自制的铂微电极表面制成铂纳米颗粒/多壁碳纳米管修饰铂电极,并用SEM和透射电镜(TEM)对该电极进行表征。 将其应用到毛细管电泳安培检测中对H2O2进行检测,并探讨了缓冲溶液、分离电压和检测电势等条件对检测 H2O2的影响。结果表明该电极灵敏度高,稳定性和重现性好。 当信噪比为3时,H2O2的检测限为0.4μmol/L。

纳米二氧化硅价格

在我们的认知里,厂家进行直接销售是有利于顾客进行购买的,首先没有了繁琐的分销渠道费用,也少了中间商赚取差价的机会,所以其性价比高的价格优势得以体现,也让很多顾客一直在寻找厂家价格。下面由纳米二氧化硅厂家恒力特新材料为您介绍下它的相关知识,能够帮助您在购买此产品时有全面的认知。 纳米二氧化硅在高性能混凝土中添加水泥用量的1~6%,可使抗压强度提高1倍,并可改善混凝土工作性——可塑性、泵送性、保水性、防泌水性、抗渗性、抗冻性等。适量加入水泥中改性使用,她与游离钙结合即生成硅酸钙凝胶,填充水泥石结构缝隙,使短命的水泥混凝土成为耐久的人造石。 纳米二氧化硅复合少量钛白粉、氧化锌等可成为高分散轻质活性

补强粉体,加入橡胶中可生产优质飞机、汽车轮胎。配制功能性纳米复合材料,可广泛应用于新型建材、橡塑制品、油漆涂料、玻璃钢、工程陶瓷、纺织人革、胶粘剂、炼钢脱氢剂、水晶制品…… 纳米二氧化硅的“海绵体”轻质特性,可作为活性载体,分散吸纳各种颜料、药物、化工材料等,生产各种功能材料制品,如隐形飞机涂料、防辐射抗紫外线材料、屏蔽电磁波、降解涂料中甲醇等有害物,抗菌、抗静电、导电、储能电池、医药制药赋形、化工催化促进、纺织保健……。 纳米二氧化硅是新材料革命的“女神”,也是“为民造福的基础原材料”,电子时代的战备物资、太阳能电池的储能材料。它的用途和潜在市场可改变一个国家,一个地区的经济结构! 恒力特新材料是集科技研发、生产、销售为一体的高新技术企业,是国内和华东地区橡胶助剂骨干企业,恒力特牌橡胶防老剂 8PPD-35、BLE、BLE-W、BLE-C、SP、SP-C、AW、DFC-34等系

纳米铂基本性质及生产应用介绍

纳米铂基本性质及生产应用介绍 2016-10-28 14:05来源:内江洛伯尔材料科技有限公司作者:研发部 【产品说明】 中文名称:纳米铂粒子

英文名称:Platinum nanoparticles 中文别名:铂纳米、铂金纳米、纳米铂金溶液 CAS号:7440-06-4 【产品特性】 外观:黑色液体 PH:7.0±0.5 粒径:3nm 铂金纯度:99.95% 包装规格:按客户要求包装 保存方法:置于阴凉、干燥处 【详细介绍】 铂纳米颗粒(Platinum nanoparticles)一般是指大小在2-20nm的铂颗粒分散在水内的悬浮体或胶体,与其他金属纳米材料类似由于其形貌和尺寸的原因铂纳米颗粒具有一般金属纳米材料的表面效应、体积效应、量子尺寸效应及宏观量子隧道效应等性质。在形貌调控方面,目前已经报道的铂纳米结构包括:纳米球、纳米线、纳米管、纳米立方体、纳米轮、和纳米笼等;在尺寸调控方面,传统的调控方法为加晶种法,首先合成特定形貌的晶种,包括纳米球、纳米棒、纳米立方体和纳米多面体等,然后将晶种加入合成体系中分离成核与生长过程,保证每个成核中心有大致相同的生长时间,实现铂纳米材料粒径均一性的调控,并通过调变晶种与铂金属前体的比例控制粒径的大小。 铂纳米颗粒的制备方法大致分为两类,即化学法( 化学还原法、微乳液法、吸氢多次还原法等) 和物理方法( 真空蒸镀法、等离子体溅射法、粒子束外延法等)。铂纳米材料作为一种功能性材料,在催化、传感器、燃料电池、光学、电子学、电磁学等领域具有重要的应用价值。应用于各种生物催化剂、宇航服制作、汽车尾气净化装置、食品及化妆品防腐剂、抗菌剂、美容产品等。

纳米粒子在气象中的形核与生长 第一章汇总

1 介绍 本文打算深入探讨近期的发现,描述有关气相纳米颗粒的形核和长大,并且着重于从分子水平的研究原理来解释这些过程。从源头或者通过气—固形核的悬浮颗粒(小微粒悬浮于空气中)能够直接排放进入大气。悬浮小颗粒的气相成核大部分形成了大气粉尘。新型颗粒的形成分为两个不同的阶段,首先形成一个临界核心,随后该临界核心捕获新形成的小核并凝固下来,成长为一个较大尺寸的核(大于2—3nm )。形核通常指的是在发生气—液—固相变之前,先形成一定数量的晶胚或原子团簇的过程。这一过程以形核系统的焓熵都减少为特点。虽然由热力学第一定律它在热力学方向是有利的,但由热力学第二定律可知熵的减少却阻碍了形核。自由能势垒的原因通常很复杂,并且需要在它自发形成新相之前克服。另外一个阻碍气态纳米粒子形核和生长的主要原因是,在小团簇和纳米粒子上方饱和蒸汽压的提高,严重阻碍了新形成的纳米核的生长,这也被称为开尔文效应。 原子团簇的形成是由于原子之间的随机碰撞或现有分子的重新排布。而生长则是一个可逆的、逐步进行的过程。当团簇达到临界尺寸(临界团簇或临界核)后,接下来的生长过程就可以自发进行了。每一步,团簇的形成和分解,我们都可以用动力学原理的基本理论来描述。在原始相或者不同类不规则相内同样能够形成团簇,比如已存在的小粒子或离子就有助于克服自由能势垒,这与在新相的小团簇和原始相之间形成的新界面有关。虽然团簇的生命周期非常短,但是由于大量团簇的不断生成与分解,一些达到临界尺寸的核或者团簇就能自发生长成为较大的颗粒。气相成核大体上类似于液相凝固、过饱和溶液的结晶、以及液体内部气泡形核,所有的过程都能够用同样的基本原理来描述。形核过程的共同特征是,在临界团簇或临界核上都存在一个可以区分原始相和新相的分界层。从含能角度出发,团簇自由能ΔG 的形成随着团簇尺寸的增大而增大,当达到临界尺寸*i i =时自由能最大,过了临界尺寸后又开始减小。因此,我们用自由能鉴别团簇是否形核是可行的。 0)/(*=???=i i i G (1.1) 临界核性能在形核理论中至关重要。形核率,它和临界核的化学组成以及气相凝

铂颗粒粒径效应负载铂纳米颗粒的TiO_2薄膜性质研究

第25卷,第11期 光谱学与光谱分析Vol 125,No 111,pp186121864 2005年11月 Spectroscopy and S pectral Analysis November ,2005  铂颗粒粒径效应:负载铂纳米颗粒的TiO 2薄膜性质研究 华南平1 ,甘玉琴1 ,徐娇珍1 ,邹翠娥1 ,杨 平1 ,徐景坤2 ,杜玉扣 13 1.苏州大学化学化工学院,江苏苏州 215006 2.江西科技师范学院省有机功能分子重点实验室,江西南昌 330013 摘 要 制备了负载不同大小Pt 纳米颗粒的TiO 2薄膜。利用TEM 测定了Pt 粒子的大小,XRD ,UV 2Vis 和测量光电流等方法对TiO 2复合膜进行了表征,以亚甲基蓝降解反应评价了Pt ΠTiO 2薄膜的光催化活性。结果表明,在负载相同物质的量的Pt 情况下,Pt 颗粒的大小直接影响TiO 2薄膜的性能,显示较强的粒径效应,当负载平均粒径约5nm 的Pt 粒子后,薄膜具有最高的光电流和光催化活性。主题词 Pt 纳米粒子;TiO 2薄膜;光催化降解;亚甲基蓝 中图分类号:TQ42618 文献标识码:A 文章编号:100020593(2005)1121861204  收稿日期:2004212226,修订日期:2005204220  基金项目:国家自然科学基金(90207026)和江苏省教委自然科学基金项目(04K JB150120)资助 作者简介:华南平,1946年生,苏州大学化学化工学院副研究员 3通讯联系人 引 言 纳米TiO 2作为一种稳定,无毒的高效光催化剂而被广泛研究。但其禁带宽度仅为E g =312eV ,只有在波长小于 387nm 的紫外光辐射激发下,价带电子才能跃迁到导带上, 形成光生电子2空穴对的分离,因此对太阳能的利用率不高。 另外,光生载流子很容易重新复合,影响光催化活性。因此, 人们采取了半导体复合[1,2],过渡金属离子掺杂[326] ,贵金属 沉积[7213] 等手段对TiO 2光催化剂进行表面修饰以提高其光催化活性。在催化剂表面沉积贵金属相当于在TiO 2表面构成一个以TiO 2和金属为电极的短路微电池,降低电子和空穴的复合率,提高催化剂的催化活性[14]。 K amat [10,11] 等系统研究了TiO 2ΠAu 催化剂,发现Au 沉积于TiO 2表面后,提高了光电流和光电压,加速了电子转移过程;同时还探讨了Au 纳米粒子的大小对TiO 2费米能级的影响。Alexander [12] 等研究了Pt 的价态对TiO 2光催化氧化 丙酮和CO 的影响;Bo [13]等研究了Pt 的含量对TiO 2光催化氧化苯酚的影响。但Pt 颗粒的大小对TiO 2光电性质和光催化性能的影响,还未见报道。相比Au 颗粒而言,Pt 纳米粒 子大小的控制手段相对缺乏。本工作通过化学还原法得到Pt 溶胶,再利用吸氢还原法得到不同大小的Pt 纳米粒子,将Pt 溶胶和TiO 2溶胶进行混合即可得到Pt ΠTiO 2光催化剂。本文研究了Pt 纳米颗粒的大小对TiO 2薄膜光电流的影响,以亚甲基蓝降解反应评价了Pt ΠTiO 2薄膜的光催化活性,研究了光催化活性和金属Pt 颗粒大小之间的关系。1 实验部分 111 Pt 纳米粒子的制备 将一定量的PVP (聚乙烯吡咯烷酮)溶于H 2PtCl 6溶液中,混合均匀。在剧烈搅拌下滴入新鲜配制的NaBH 4溶液 (PVP ∶H 2PtCl 6∶ NaBH 4=15∶1∶15),继续搅拌3h ,即可得到黑色透明的Pt 溶胶。用透析的方法可除去多余的无机离子。 取出一定量的Pt 溶胶,充分吸氢之后,转移至另一容器,加入适量的H 2PtCl 6溶液共搅拌,充分反应后即可得到长大的Pt 纳米颗粒。重复此步骤,能得到不同生长次数后的Pt 纳米颗粒。本工作中选用未经生长(平均粒径约2nm )、经8次生长(平均粒径约5nm )、15次生长(平均粒径约8nm )之后的Pt 纳米颗粒。 用溶胶2凝胶法制备TiO 2纳米薄膜。1mL 的Ti (OBu )4溶于20mL 异丙醇中,在剧烈搅拌下逐滴滴入50mL PVP 的水溶液(用1mol ?L -1 HNO 3调节至p H ≈115)中,继续搅拌6h 得透明无色的TiO 2胶体溶液。 将一定量的Pt 溶胶与TiO 2溶胶混合(ω(Pt )=011%),即可得到负载不同大小Pt 纳米粒子的二氧化钛溶胶。 采用浸渍2提拉法制备薄膜,先对普通玻片和石英玻片进行如下处理:先用铬酸洗液浸泡,自来水冲洗,再进行超声清洗,最后用去离子水冲洗。掺In 导电玻璃片经超声清洗和去离子水多次冲洗。将洁净的基片浸泡在溶胶中015h ,然后以一定的速度将基片垂直提起,接着在100℃的环境中干燥10min ,即完成一次镀膜过程。在此膜上再镀一层,在

相关主题
文本预览
相关文档 最新文档