当前位置:文档之家› 直流电机3

直流电机3

直流电机3
直流电机3

对于已经制造好的电动机,额定电压是定值。受绕组绝缘及换向器片间电压的限制,电动机不能过电压运转,所以只能降低电枢电压,因此改变电枢电压的人为特性全在固有特性的下方。

图2-8改变电枢电压时的人为特性图2-8减弱电机磁通时的人为特性

(3)减弱电机磁通时的人为特性:电枢不串电阻,,只改变励磁磁通的人为特性方程为

( 2-10 )

由式(2-10)可知,减弱磁通时,理想空载转速升高,转速降Δ增大,

而且与成反比,Δ与成反比,所以机械特性变软,如图2-8所示。

在设计电动机时,为节省磁性材料,减小电机体积,已使磁路接近饱和,所以只能减弱磁通。因此,改变磁通的人为特性都在固有特性的上方。 电动机的机械特性可用实验方法求得,也可用铭牌数据计算求得。

例2-2 一台直流电动机,=22kW ,=220V ,=116A ,=1500r/min , =0.174,试计算并绘制:

(1)固有机械特性;

U N U U =T C C R C U n T e a e N 2ΦΦ-=Φ0n n 0n Φn 2ΦN P N U N I N n a R

Ω

(2)电枢回路串电阻时的人为特性;

(3)电源电压降低为100V 时的人为特性;

(4)减弱磁通使时的人为特性;

解(1)固有机械特性

=

r/min

N?m

由1654 r/min ,0和=1500 r/min ,=147.3 N?m ,在坐标纸上绘出理想空载点和额定工作点,连成直线,如图2-9中直线1所示。

(2)串电阻时的人为特性

r/min 由1654 r/min ,0和=1153 r/min ,=147.3 N?m 两点在图2-9上画出直线2。

(3)降低电源电压的人为特性

r/min

此时Δ不变,所以对应的转速

=752-(1654-1500)=598 r/min 由752 r/min ,0和=598r/min ,=147.3 N?m 两点在图2-9上画出直线3。

(4)减弱磁通的人为特性

40.R P =ΩN .ΦΦ80=N a N N N e n R I U C -=Φ133.01500174.0116220=?-165413302200===.C U n N e N Φ31471161330559559...I C .T N N e N =??==Φ==0n n =T N n n =N T T =40.R P =Ω11533147133055940174016542201=??+-=+-=.....T C C R R n n N N

T e P

a Φ==0n n =T 1N n n =N T T =752133010002===.C U

n N e ΦN n N T T =N

n n n ?-=022==02n n =T 2N n n =N T T =

r/min

r/min

由2068 r/min ,0和

=1831r/min ,=147.3 N?m 两点在图1.4.4上画出直线4。注意减弱磁通时,

所对应的电枢电流大于额定电流。

图2-9例2-2固有特性和人为特性计算实例

1.串励电动机的机械特性

串励电动机的最大特点是励磁绕组与电枢绕组串联,I f =I a =I 。因此机械特性也与他励(并励)电动机有明显的不同。

在磁路不饱和时,Φ=k 1I ,T =C T ΦI =k 2I 2,机械特性表达式可写成

(2-11)

式中A 和B 分别是常数,所以串励电动机的机械特性是一条双曲线。 当磁路饱和时,Φ基本不变,机械特性与他励电动机类似。因此串励电动机的机械特性如图2-10所示。从机械特性曲线可知,串励电动机具有以下特性:空载转速极高,所以串励电动机不许空载或轻载运行,由于电磁转矩与电流平方成正比,因此起动和过载能力强。

20681330802208003=?==...U n N ΦN N e a

T C ..R n n 22203355980Φ??-=18313.147133.055.98.0174.0206822=???-===03n n =T 3N n n =N T T =N T T =N

I B T A k C C k R T k C k U T )I k (C C R I k C U n T e a e T e a e -=-=-=21212211

串励电动机接交流电源后,由于磁通Φ和电枢电流I a同时改变方向,所以电磁转矩方向不变,因此是一种交直流两用的电动机。

串励电动机广泛应用于电力牵引设备中,如工厂中的电瓶车,公共电车,电力机车等。平时电工常用的手电钻、电锤、家用绞肉机、吸尘器等也是用串励电动机。

图2-10串励电动机的机械特性

任务四直流电机的使用及维护

一、直流电动机的使用

1.电机的起动准备

电机在安装后投入运行前或长期搁置而重新投入运行前,需做下列起动准备工作。

(1)用压缩空气吹净附着于电机内部的灰尘,对于新电机应去掉在风窗处的包装纸。检查轴承润滑脂是否洁净、适量,润滑脂占轴承室的三分之二为宜。

(2)用柔软、干燥而无绒毛的布块擦拭换向器表面,并检视其是否光洁,如有油污,则可蘸汽油少许拭净之。

(3)检查电刷压力是否正常均匀,刷握的固定是否可靠,电刷在刷握内是否太紧或太松,电刷与换向器的接触是否良好。

(4)检查在刷杆座上是否标有电刷位置的记号。

(5)用手转动电枢,检查是否阻塞或在转动时是否有撞击或磨擦之声。

(6)接地装置是否良好。

(7)用500V兆欧表测量绕组对机壳的绝缘电阻,如小于1MΩ则必须进行干燥处理。

(8)电机出线与磁场变阻器,起动器等连接是否正确,接触是否良好。2.电动机的起动

(1)检查线路情况(包括电源、控制器、接线及测量仪表的连接等),起动器的弹簧是否灵活,接触是否良好。

(2)在恒压电源供电时,需用起动器起动。闭合电源开关,在电动机负载下,转动起动器,在每个触点上停留约2s时间,直至最后一点,转动臂被电磁铁吸住为止。

(3)电动机在单独的可调电源供电时,先将励磁绕组通电,并将电源电压降低至最小,然后闭合电枢回路接触器,逐渐升高电压,达额定值或所需转速。

(4)电机与生产机械的联轴器先别连接,输入小于10%的额定电枢电压,确定电机与生产机械转速方向是否一致,一致时表示接线正确。

(5)电动机换向器端带测速发电机时,电机起动后,应检查测速发电机输出特性,该极性与控制屏极性应一致。

(6)电机起动完毕后,应观察换向器上有无火花,火花等级是否超标,。3.电动机的调速

恒功率弱磁向上调速,可调节磁场调速器,直至转速达所需之值,但不得超过技术条件所允许的最高转速。恒转矩负载可以采用降压或电枢串电阻向下调速。

4.电动机的停机

(1)如为变速电动机,先将转速降到最低值。

(2)去掉电动机负载(除串励电动机外)后切断电源开关。

(3)切断励磁回路,励磁绕组不允许在停车后长期通额定电流。

二、维护

电动机在使用过程中定期进行检查时应特别注意下列事项:

1.电动机周围应保持干燥,其内外部均不应放置其他物件。电动机的清洁工作每月不得少于一次,清洁时应以压缩空气吹净内部的灰尘,特别是换向器、线圈连接线和引线部分。

2.换向器的保养

(1)换向器应是呈正圆柱形光洁的表面,不应有机械损伤和烧焦的痕迹。

(2)换向器在负载下经长期无火花运转后,在表面产生一层褐色有光泽的坚硬薄膜,这是正常现象,它能保护换向器的磨损,这层薄膜必须加以保护,不能用砂布磨擦。

(3)若换向器表面出现粗糙、烧焦等现象时可用“0”号砂布在旋转着的换向器表面进行细致研磨。若换向器表面出现过于粗糙不平、不圆或有部分凹进现象时应将换向器进行车削,车削速度不大于1.5m/s ,车削深度及每转进刀量均不大于0.1mm,车削时换向器不应有轴向位移。

(4)换向器表面磨损很多时,或经车削后,发现云母片有凸出现象,应以铣刀将云母片铣成1~1.5mm的凹槽。

(5)换向器车削或云母片下刻时,须防止铜屑、灰尘侵入电枢内部。因而要将电枢线圈端部及接头片覆盖。加工完毕后用压缩空气作清洁处理。

3.电刷的使用

(1)电刷与换向器的工作面应有良好的接触,电刷压力正常。电刷在刷握内

直流电机工作原理

第二章 直流电机 2.1 概述 2.1.1 直流电机的工作原理 首先,复习e=B δlv 公式,说明e 正比于B δ。结合图2.1解释v=2πRn/60 (m/s , n (r/min)); 机械角速度Ω=v/R=2πn /60 ( r/s); 电角速度ω=p Ω=p2πn/60 (rad/s) (记下来);导体或线圈。 将直流电机的简单工作原理图结构介绍清楚。包括:N 、S 磁极和A 、B 电刷静止,换向片、线圈(导体)以及电枢逆时针旋转。将其抽象成一个平面图。 假设磁力线进入磁极为正方向,离开磁极的磁通方向为负。得气隙磁密在空间得分布曲线 B δ(θ)(0≤θ=ωt ≤2π)。进而得到导体电势e(ωt)和线圈电势e AB (ωt)。 经过合理的多个线圈均匀分布设计,按照一定规律连接起来就组成电枢绕组,便可以获得近似直流电动势。 工作原理: (1) 发电机:电枢绕组中感应的交变电势,依靠换向器的换向作用,利用静止 的电刷把同一磁极 下导体电势引出,变为直流电势输出。(发电机惯例) (2) 电动机:通过电刷和换向器的共同作用,使得同磁极下的导体边流过的电 流方向不变,导体 受力方向不变,进而产生方向恒定的电磁转矩,使电机连续转动。 结论:(1)电机内部(电刷为界),线圈中产生的感应电势、流过的电流是交流量。 (2)电机外部(电刷两端),电动机运行外加直流电;发电机运行输出直流电 (3) 从原理上讲,同一台电机既可以作电动机运行又可以作发电机运行,是可逆的。 (4)电动机惯例 发电机惯例 i i u Motor u Generator

2.1.2 直流电机的主要结构部件 定子——起机械支撑,产生磁场的作用 机座、端盖、电刷、 轴承 直流电机结构 气隙——耦合磁场 转子——产生电磁转矩、产生感应电势 电枢铁心和电枢绕组 换向器、转轴、风扇 2.1.3 直流电机的额定值 额定值:指电机正常运行时各物理量的数值。此时亦称电机满载运行。否则为欠载或过载 额定功率:指输出功率W, kW 。 发电机P N =U N I N 电动机P N =ηU N I N 额定电压U N (V), 额定电流I N (A), 额定励磁电压U fN (V), 额定励磁电流I fN (A), 额定转速n N (r/min)

第2章 直流电机

第二章直流电机 内容提要 一、直流电机的工作原理 1、皮—萨电磁定律 f=其方向用左手定则确定。 Bil 2、直流电机电枢绕组内电流是交变的,直流电机具有可逆性。 二、直流电机的绕组 1、绕组的基本形式:单迭绕组和单波绕组。 2、单迭绕组的特点 a=a为支路对数,p为磁极对数。 p 3、单波绕组的特点 = a a为支路对数,即单波绕组的支路对数与磁极对数无关,总等于1。 1 三、直流电机的励磁方式 1、直流电机的励磁方式:分为他励、并励、串励和复励。 2、他励直流电机 他励直流电机是一种励磁绕组与电枢绕组无联结关系,而由其它直流电源对励磁绕组供电的直流电机,励磁电流与电枢电流无关。 3、串励直流电机 串励直流电机的励磁绕组与电枢绕组串联,电机的电枢电流与励磁电流相等。 4、并励直流电机 并励直流电机的励磁绕组与电枢绕组并联,励磁绕组上所加的电压就是电枢两端的电压。 5、复励直流电机 复励直流电机的主磁极上装有两个励磁绕组,一个与电枢电路并联(称为并励绕组),然后再和另一个励磁绕组串联(称为串励绕组)。也可以一个励磁绕组与电枢绕组串联后,再和另一个励磁绕组并联。 四、直流电机的磁场和电枢反应

1、直流电机的主磁路 分为五段:定子、转子之间的气隙;电枢齿;电枢磁轭;主磁路和定子磁轭。 2、直流电机的空载磁场 空载时,气隙磁场仅由主磁极上的励磁磁动势建立。 电机磁路中磁通数值不大时,磁动势随磁通成正比例地增加;当磁通达到一定数值后,磁动势的增加比磁通增加得快,磁化曲线呈饱和特性。 3、直流电机负载时的磁场及电枢反应 (1)负载时气隙磁场发生了畸变;(2)呈去磁作用; 五、并励直流电动机的基本方程 感应电动势 n C E e a ?= 电磁转矩 a T em I C T ?= 转矩方程 02T T T em += 电动势平衡方程 a a a R I E U += 功率平衡方程 N N N N I U P η= n T T I E p em em a a em 60 2π = Ω== N Fe c m ec Cuf Cua P p p p p p P +++++=1 六、直流电动机的工作特性 1、并励直流电动机的工作特性 (1)转速特性 当fN f N I I U U ==,时,()a I f n =的关系曲线。 a e a e I C R C U n ? ?-= ? e N C U n = 0,0n 为理想空载转速。 电动机的转速特性曲线是一根斜率为 ? e a C R 的直线。 (2)转矩特性 当fN f N I I U U ==,时,()a em I f T =的曲线。

直流电机工作原理

第二章直流电机的基本结构和运行分析 直流电机是电能和机械能相互转换的旋转电机之一。将机械能转换为直流电能的电机称为直流发电机;将直流电能转换为机械能的电机称为直流电动机。直流发电机可作为各种直流电源;直流电动机具有宽广的调速范围,较强的过载能力和较大的起动转矩等特点,广泛应用于对起动和调速要求较高的生产机械,如电力机车、内燃机车、工矿机车、城市电车、电梯、轧钢机等的拖动电机。 本章介绍直流电机的工作原理和基本结构;分析直流电机的磁路系统、电路系统和电磁过程;导出感应电势和电磁转矩的一般计算方法;得出直流电机在不同运行状态的各种平衡方程式和运行特性。 第一节直流电机基本工作原理 直流电机是直流发电机和直流电动机的总称。直流电机具有可逆性,既可作直流发电机使用,也可作直流电动机使用。作直流发电机使用时,将机械能转换成直流电能输出;作直流电动机使用时,则将直流电能转换成机械能输出。 一、直流电机的模型结构 图2—1所示为一台直流电机简单模型图。N、S为定子上固定不动的两个主磁极,主磁极可以采用永久磁铁,也可以采用电磁铁,在电磁铁的励磁线圈上通以方向不变的直流电流,便形成一定极性的磁极。 图2-1 直流发电机工作原理

在两个主磁极N 、S 之间装有一个可以转动的、由铁磁材料制成的圆柱体,圆柱体表面嵌有一线圈(称为电枢绕组),线圈首末两端分别连接到两个弧形钢片(称为换向片)上。换向片之间用绝缘材料构成一整体,称为换向器,它固定在转轴上(但与转轴绝缘),随转轴一起转动,整个转动部分称为电枢。为了接通电枢内电路和外电路,在定子上装有两个固定不动的电刷A 和B ,并压在换向器上,与其滑动接触。 二、直流发电机的工作原理 1.感应电势的产生 当直流发电机的电枢被原动机拖动,并以恒速v逆时针方向旋转时,如图2-2(a)所示,线圈两个有效边ab 和cd 将切割磁力线,而感应产生电势e。其方向用右手定则确定,导体ab 位于N 极下,导体cd 位于S 极下,产生电势方向分别为b →a ,d →c 。若接通外电路,电流从换向片1→A →负载→B →换向片2。电流从电刷A 流出,具有正极性,用“+”表示;从电刷B 流入,具有负极性,用“一”表示。 当电枢转到90o 时,线圈有效边ab 和cd 转到N 、S 极之间的几何中心线上,此处磁密为零,故这一瞬时感应电势为零。 当电枢转到180o 时,导体ab 和cd 及换向片1、2位置互换,如图2-1(b)所示。导体加位于S 极下,导体cd 位于N极下,线圈两个有效边产生的感应电势方向分别为a →b ,c →d ,电势方向恰与开始瞬时相反。外电路中流过的电流从换向片2→A →负载→B →换向片1。由此可见,电刷A(B)始终与转到N(S)极下的有效边所连接的换向片接触,故电刷极性始终不变A 为“+”,B 为“―”。 由以上分析可知,线圈内部为一交变电势,但电刷引出的电势方向始终不变,为一单方向的直流电势。 2.电势的波形 根据电磁感应定律,每根导体产生的感应电势e为: Lv B e X = (V ) (2-1) 式中x B ——导体所在位置的磁通密度(T ); L ——导体切割磁力线的有效长度(m); v ——导体切割磁力线的线速度(m/s)。 要想知道电势的波形,先得找出磁密的波形,前已设电枢以恒速v 旋转,v=常数,L 在电机中不变,则x B e ∝,即导体电势随时间的变化规律与气隙磁密的分布规律相同。设想将

无刷直流电机工作原理详解

无刷直流电机工作原理详解 日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 2.1 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2.1.1。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。

BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图2.1.2和图 2.1.3所示。

直流电机参数

一、概述 系列小型直流电机为中华人民共和国机械工业部JB1104-68部颁标准所规定的标准系列小型直流电机。 系列小型直流电机共分11个机座号,每个机座号有两种铁心长度,制造有直流电动机、直流发电机、直流调压发电机三种,适用于一般正常的工作环境。电动机作一般传动用,发电机作为一般直流电源用,调压发电机作蓄电池组充电用。 3.励磁方式:电动机为带有少量稳定绕组的并激或他激励磁。 发电机为复激或他激励磁(额定电压为230伏的发电机),调压发电机为并激励磁(不带串激绕组)。 电机的他激励磁电压制成有110伏或220伏二种。 电动机额定电压110伏的仅有他励电压110伏一种。 系列电机根据使用要求可制成湿热地区使用的具有防潮、防霉、防盐雾性能的湿热带型(T H)直流电机。 5.型号含义:Z表示“直”流,2表示第二次全国定型设计,横线后数字表示机座号与铁心长短,例如Z2-11前一个1代表1号机座,后一个1代表短铁心,而Z2-112中11代表11号机座,2代表长铁心。 二、结构型式 1.直流发电机或直流调压发电机仅制造卧式,机座带底脚的一种。 2.直流电动机可制成下表所示的结构型式。 三、Z2系列电动机 1.电动机可用三角皮带、正齿轮或弹性联轴器进行传动,不使电机轴承受轴向推力。 2.电动机可在正转或逆转情况下正常工作。 四、Z2系列发电机及调压发电机 系列发电机及调压发电机的旋转方向自换向器端看去为顺时针方向,根据使用要求亦可制成逆时针方向旋转的发电机或调压发电机。 系列发电机及调压发电机根据订货要求可制成与Y系列三相异步电动机配套成的发电机组成套供应。 3.调压发电机的额定功率为平均电压(对110/160伏的为135伏,对220/320伏的为270伏)时的功率,当电压高于平均电压时其输出功率不大于额定功率,当电压低于平均电压时其输出电流不大于额定电流。 五、订货须知 订货时须注明电机的型号及具体规格(包括励磁方式、旋转方向、出线盒位置、是否双轴伸、结构型式等),例如Z2-62 13千瓦220伏1500转/分他激电动机,他励电压220伏,卧式机座带底脚,端盖有凸缘。 配套的异步电动机、变阻器等附件,电刷、刷握等备件的供应,或有特殊要求(如供湿热带地区使用)和须外文说明文件者应在订货合同中注明。

直流电机的基础知识-第三部分

直流电机的基础知识/第三部分 ——直流调速的主电路形式和整机电路构成 直流电机需要直流电源的供给,这要求一个能将交流电转变为直流电的电源装置。另外,直流电机的起/停、保护、调速等控制电路,也常常与直流电源集成于一体,称为直流调速装置或直流调速器。 早期对直流电机的调速控制,用直流发电机作直流电机的直流电源,用接触器配合变阻箱实现直流电机的启/停控制和调速,系统繁杂、造价高。后期由于晶闸管等电力电子器件的成熟应用,出现了静止式直流调速装置,系统配置变得精简,而控制性能大幅度提升。国内外,有一些专业厂家,专门生产了专用于直流电机调速的系列产品,进口产品如英国欧陆传动系统有限公司生产的《590+直流数字式调速器》、ABB(瑞典阿西亚公司和瑞士的布朗勃法瑞公司合并而成)集团公司生产的《DCS400晶闸管变流器直流传动系统》等,国内生产厂家更是林林总总,不下百家。其产品范围囊括了大、中、小功率,他励、自励直流电机的调速控制。 1、小功率直流电机调速器的主电路形式: DC+(A1) SCR2 SCR1 DC-(A2) DC+(F1) DC-(F2)(a)主电路形式1(b)主电路形式2(c)主电路形式3 DC-(A2) L N L N 图1 小功率电机调速器的主电路形式 小功率直流电机,串、并励结构都有,上图(a)、(b)为串励直流电机所用的调压电路,电枢和励磁采用同一电源供电。(a)电路,当电源L端为电压极性为正时,形成SCR1→电机绕组回路→D2,回到电源N端;L端为电压极性为负时,形成SCR2→电机绕组回路→D1→电源N端的电流通路。从分析得出,SCR1与D2相串联,故控制SCR1的导通角,即可实现可控整流。这种由二极管和晶闸管构成的整流桥电路,又称半控桥调压电路。假定两只晶闸管处于最大导通角,电路形同一个桥式整流器,输入AC220V,输出整流电压为220V×0.9=198V,故调压范围约为0~198V;(b)电路,两只可控硅位于整流桥的上桥臂,仍呈现SCR1、D2和

电机与拖动基础习题1(第3-6章)

第三章:直流电机原理 一、简答题: 1、换向器在直流电机中起什么作用? 在直流发电机中,换向器起整流作用,即把电枢绕组里交流电整流为直流电,在正、负电刷两端输出。在直流电动机中,换向器起逆变作用,即把电刷外电路中的直流电经换向器逆变为交流电输入电枢元件中。 2、直流电机铭牌上的额定功率是指什么功率? 直流电机铭牌上的额定功率:对直流发电机而言,指的是输出的电功率的额定值;对直流电动机而言,指的是电动机轴上输出的机械功率的额定值 3、直流电机主磁路包括哪几部分? 磁路未饱和时,励磁磁通势主要消耗在哪一 部分? 直流电机的主磁路主要包括;主磁极、定、转子之间的气隙电枢齿、电枢磁轭、定子磁轭。磁路未饱和时,铁的磁导率远大于空气的磁导率,气隙的磁阻比磁路中的铁心部分大得多,所以,励磁磁通势主要消耗在气隙上。 4、如何改变他励直流发电机的电枢电动势的方向? 如何改变他励直流电动机空 载运行时的转向? 通过改变他励直流发电机励磁电流的方向,继而改变主磁通的方向,即可改变电枢电动势的方向;也可以通过改变他励直流发电机的旋转方向来改变电枢电动势的方向。 改变励磁电流的方向,继而改变主磁通的方向,即可改变电动机旋转方向;也可通过改变电枢电压的极性来改变他励直流电动机的旋转方向。 5、直流发电机的损耗主要有哪些? 铁损耗存在于哪一部分,它随负载变化吗? 电枢铜损耗随负载变化吗? 直流发电机的损耗主要有:(1)励磁绕组铜损耗;(2)机械摩擦损耗;(3)铁损耗;(4)电枢铜损耗;(5)电刷损耗;(6)附加损耗。铁损耗是指电枢铁心在磁场中旋转时硅钢片中的磁滞和涡流损耗。这两种损耗与磁密大小以及交变频率有关。当电机的励磁电流和转速不变时,铁损耗也几乎不变。它与负载的变化几乎没有关系。电枢铜损耗由电枢电流引起,当负载增加时,电枢电流同时增加,电枢铜损耗随之增加。电枢铜损耗与电枢电流的平方成正比。

直流电动机工作原理

7.2.2 直流电动机工作原理与结构 图7-4 直流电动机模型 图7-4是一个最简单的直流电动机模型。在一对静止的磁极N和S之间,装设一个可以绕Z-Z'轴而转动的圆柱形铁芯,在它上面装有矩形的线圈abcd。这个转动的部分通常叫做电枢。线圈的两端a和d分别接到叫做换向片的两个半圆形铜环1和2上。换向片1和2之间是彼此绝缘的,它们和电枢装在同一根轴上,可随电枢一起转动。A和B是两个固定不动的碳质电刷,它们和换向片之间是滑动接触的。来自直流电源的电流就是通过电刷和换向片流到电枢的线圈里。

图7-5 换向器在直流电机中的作用 当电刷A和B分别与直流电源的正极和负极接通时,电流从电刷A流入,而从电刷B流出。这时线圈中的电流方向是从a流向b,再从c流向d。我们知道,载流导体在磁场中要受到电磁力,其方向由左手定则来决定。当电枢在图7-5(a)所示的位置时,线圈ab边的电流从a流向b,用表示,cd边的电流从c流向d,用⊙表示。根据左手定则可以判断出,ab边受力的方向是从右向左,而cd边受力的方向是从左向右。这样,在电枢上就产生了反时针方向的转矩,因此电枢就将沿着反时针方向转动起来。 当电枢转到使线圈的ab边从N极下面进入S极,而cd边从S极下面进入N极时,与线圈a端联接的换向片1跟电刷B接触,而与线圈d端联接的换向片2跟电刷A接触,如图7-5(b)所示。这样,线圈内的电流方向变为从d流向c,再从b流向a,从而保持在N极下面的导体中的电流方向不变。因此转矩的方向也不改变,电枢仍然按照原来的反时针方向继续旋转。由此可以看出,换向片和电刷在直流电机中起着改换电枢线圈中电流方向的作用。

电机及拖动 第二章习题答案

第二章 直流电动机的电力拖动 2.1 答:由电动机作为原动机来拖动生产机械的系统为电力拖动系 统。一般由电动机、生产机械的工作机构、传动机构、控制设备及电源几部分组成。电力拖动系统到处可见,例如金属切削机床、桥式起动机、电气机车、通风机、洗衣机、电风扇等。 2.5 T I 空载转速;是I a = I a0实际空载,对应的转速n 0’的称为实际空载转速,实际空载转速略低于理想空载转速。 T C C R C U I C R C U n N T e a N e N a N e a N e N 2 Φ ΦΦ Φ-=-='

2.7答:固有机械特性与额定负载转矩特性的交点为额定工作点,额 定工作点对应的转矩为额定转矩,对应的转速为额定转速。理想空载转速与额定转速之差称为额定转速降,即: 2.8 答:电力拖动系统稳定运行的条件有两个,一是电动机的机械 L)处,,(转 2.9 2.10 可见,电枢电流I a与设计参数U、C eΦ、R a有关,当这些设计参数一定时,电枢电流的大小取决于电动机拖动的负载大小, 轻载时n高、I a小,重载时n低、I a大,额定运行时n=n N、 I a=I N。当恒转矩负载下,电枢回路串入电阻或改变电源电压 进行调速,达到稳定后,电枢电流仍为原来的数值,但磁通减 T C C R n n n N N T e a N N2 0Φ = - = ? a a

小时,电枢电流将增大。 2.11 答:起动瞬间转速n=0,电动势E a =C e Φn=0,最初起 动电 流 。 若直接起动,由于R a 很小,I st 会达到十几倍 甚至几十倍的额定电流,造成电机无法换向,同时也会过热,因此不能直接起动。 2.12 答:将处于电动状态运行的他励直流电动机的电枢两端从电 由于R ’两个公式可知,电压反接制动时的制动电流I aB ’约为能耗制动时的制动电流I aB 的2倍,故电压反接制动时应串入较大的制动电阻。 2.14 答:这两种制动方式的实现都是以位能性负载为前提条件, 当电枢回路串入较大的电阻,使电动机的机械特性与位能性负载转矩特性的交点(工作点)处于第四象限时,电动机便 R U I a N st =

直流电机工作原理

第三章直流电机的原理 本章主要介绍直流电机的结构和基本工作原理、直流电机绕组的构成、直流电机的电枢反应、直流电机绕组的电动势和电磁转矩、直流发电机和直流电动机的功率转矩等内容。本章共有10节课,内容和时间分配如下: 1.掌握直流电机的结构及工作原理。(2节) 2.掌握直流电机绕组有关的结构。(2节) 3.掌握直流电机绕组的电枢反应。(1节) 4.掌握直流电机的电枢电动势和电磁转矩。(1节) 5.掌握直流发电机的基本方程式和运行特性、并励发电机的条件。( 2.5节) 6.掌握直流电动机的基本方程式和运行特性。( 1.5节) 第一节直流电机的基本工作原理 一直流电机的用途 直流电动机的优点: 1 调速范围广,易于平滑调节 2 过载、启动、制动转矩大 3 易于控制,可靠性高 4 调速时的能量损耗较小 缺点: 换向困难,容量受到限制,不能做的很大。 应用: 轧钢机、电车、电气铁道牵引、造纸、纺织拖动。 直流发电机用作电解、电镀、电冶炼、充电、交流发电机励磁等的直流电源。 二、直流电机的工作原理 原理:任何电机的工作原理都是建立在电磁感应和电磁力这个基础上。 为了讨论直流电机的工作原理,我们把复杂的直流电机结构简化为工作原理图。(一)直流发电机的工作原理 1.工作原理:导体在磁场中运动时,导体中会感应出电势e 。 e=Blv。 B:磁密l:导体长度;v:导体与磁场的相对速度。 正方向:用右手定则判断。电势e正方向表示电位升高的方向,与U相反。如果同一元件上e和U正方向相同时,e= -U。

理解:电磁感应原理的变形(变化的磁通产生感应电动势) 2 发电机工作过程分析:两磁极直流发电机的工作原理图。 (1)构成: 磁场:图中N和 S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。 励磁绕组——容量较小的发电机是用永久磁铁做磁极的。容量较大的发电机的磁场是由直流电流通过绕在磁极铁心上的绕组产生的。用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流If。 电枢绕组:在N极和 S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流Ia。 换向器:电枢绕组两端分别接在两个相互绝缘而和绕组同轴旋转的半圆形铜片——换向片上,组成一个换向器。换向器上压着固定不动的炭质电刷。 电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢。

项目3 直流电动机的拆装

《电机控制及拖动技术》课第3单元课程单元教学设计 (2012~ 2013学年第1学期) 单元名称:直流电动机的拆装 所属院部:工程学院 制定人:郭光振 合作人:张风明 制定时间: 2012年8月20日 聊城职业技术学院

电机控制及拖动技术课程单元教学设计

案例 和 教学 材料 (指教材或讲义、课件、参考资料、仪器、设备等) 一、直流电机到底是如何转起来的呢?(直流电机 的原理)(启发教学)(PPT及实物演示) 图中、为一对固定的磁极,是装在可 以转动的圆柱体表面上的一个线圈称为电枢,把线 圈的两端分别接到两个圆环(称为滑环)上,在滑 环上分别放上两个固定不动的由石墨制成的电刷 和。通过电刷和把旋转着的电路与外 部电路相联接。载流导体、上受到的电磁力为 导体受力的方向用左手定则确定,导体的受力方向是从右向左,导体的受力方 向是从左向右,如图所示。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转 电机里称为电磁转矩,转矩的方向是逆时针方向,电枢一经转动,由于换向器配合电刷 对电流的换向作用,直流电流交替地由导体和流入,使线圈边只要处于极下,其中通过电流的方向总是由电刷流入的方向,而在极下时,总是从电刷流出的 方向。这就保证了每个极下线圈边中的电流始终是一个方向,从而形成一种方向不变的 转矩,使电动机能连续地旋转。这就是直流电动机的工作原理。 二、电机的初步拆装操作(边拆边讲直流电机的结构及物理参数)(PPT及挂图) 1、结构: 直流电机是由静止的定子部分和转动的转子部分构成的,定、转子之间有一定大小的间隙(以后称为气隙)。 1、定子部分:直流电机定子部分主要由主磁极、换向极、机座和电刷装置等组成。 (1)主磁极又称主极。在一般大中型直流电机中,主磁极是一种电磁铁。 (2)换向极容量在1kw以上的直流电机,在相邻两主磁极之间要装上换向极。换向 极又称附加极或间极,其作用为了改善直流电机的换向。 1—换向器;2—电刷装置; 3—机座;4—主磁极; 5—换向极;6—端盖; 7—风扇;8—电枢绕组; 9—电枢铁心 (3)机座一般直流电机都用整体机座。所谓整体机座,就是一个机座同时起两方面 的作用:一方面起导磁的作用,一方面起机械支撑的作用。

第3章 直流电机 《电机学(第2版)》王秀和、孙雨萍(习题解答)

第三章 直流电机 习题解答 3-1 直流电机铭牌上的额定功率是指输出功率还是输入功率?对发电机和电动机有什么不同? 答:输出功率;对于电动机指轴上的输出机械功率,对于发电机指线段输出的电功率。 3-2. 一台p 对极的直流电机,采用单叠绕组,其电枢电阻为R ,若用同等数目的同样元件接成单波绕组时,电枢电阻应为多少? 答:P 2R . 解析:设单叠绕组时支路电阻为R 1 ,考虑到并联支路数2a =2p ,故有: 1 2R R P = ,则12R PR = ,单波绕组时,并联支路数2a=2,每条支路有p 个R 1 , 则每条支路电阻为22p R ,并联电阻为2p R 。 3-3.直流电机主磁路包括哪几部分?磁路未饱和时,励磁磁通势主要消耗在哪一部分? 答:(N 极),气隙,电枢齿,电枢磁轭,下一电枢齿,气隙,(S 极),定子磁轭,(N 极); 主要消耗在气隙。 3-4. 在直流发电机中,电刷顺电枢旋转方向移动一角度后,电枢反应的性质怎 样?当电刷逆电枢旋转方向移动一角度,电枢反应的性质又是怎样?如果是电动机,在这两种情况下,电枢反应的性质怎样? 答:当电刷偏离几何中性线时,除产生交轴电枢磁动势外,还会产生直轴磁动势。对于发电机,当电刷顺电枢旋转方向移动一角度后,产生的交轴磁动势F aq 对主磁场的影响与电刷位于中性线时的电枢反应磁动势相同,产生的直轴电动势F ad 有去磁作用。当电刷逆电枢旋转方向移动一角度后,产生的交轴磁动势F aq 对主磁场的影响与电刷位于中性线时的电枢反应磁动势相同,产生的直轴电动势F ad 有助磁作用。如果是电动机,两种情况下的影响与发电机恰好相反。 3-5. 直流电机电枢绕组元件内的电动势和电流是交流还是直流?为什么在稳态 电压方程中不考虑元件本身的电感电动势?

第二章 直流电机

第二章直流电机 2.1直流电机的基本工作原理及结构 授课班级:06金盘电器授课时数:6课时授课方法:举例、实物演绎讲授教具:实物、幻灯片课件授课教师:邓小军审批签字: 教学目的:了解直流电机的主要构成及分类和工作原理。 一、基本工作原理 (一)直流电机的构成 (1)定子:主磁极、换向磁极、机座、端盖、电刷装置; (2)转子:电枢铁心、电枢绕组、换向装置、风扇、转轴 (3)气隙 **注意:同步电机—旋转磁极式;直流电机—旋转电枢式。 1.直流发电机的工作原理:实质上是一台装有换向装置的交流发电机; (1)原理:导体切割磁力线产生感应电动势 (2)特点:e=BLV; a、电枢绕组中电动势是交流电动势 b、由于换向器的整流作用,电刷间输出电动势为直流(脉振)电动势 c、电枢电动势——原动势;电磁转矩——阻转矩(与T、n反向) 2.直流电动机的工作原理:实质上是一台装有换向装置的交流电动机; (1)原理:带电导体在磁场中受到电磁力的作用并形成电磁转矩,推动转子转动起来 (2)特点:f=BiL a、外加电压并非直接加于线圈,而是通过电刷和换向器再加到线圈 b、电枢导体中的电流随其所处磁极极性的改变方向,从而使电磁转矩 的方向不变。 c、电枢电动势——反电势(与I反向);电磁转矩——驱动转矩(与n 同向) **说明:直流电机是可逆的,它们实质上是具有换向装置的交流电机。 3、脉动的减小——电枢绕组由许多线圈串联组成 (二)直流电机的基本结构 1、主磁极——建立主磁场(N、S交替排列)

a、主极铁心——磁路,由1.0~1.5mm厚钢板构成 b、励磁绕组——电路、由电磁线绕制 2、机座——磁路的一部分(支承)框架,钢板焊接或铸刚 3、电枢铁心——磁路,0.5mm厚硅钢片叠压而成(外圆冲槽) 4、电枢绕组——电路。电磁线绕制(闭合回路,由电刷分成若干支路) 5、换向器——换向片间相互绝缘(用云母或塑料) 6、电刷装置 a、电刷——石墨或金属石墨 b、刷握、刷杆、连线(铜丝辨) 7、换向极——改善换向,由铁心、绕组构成(放置于主极之间或绕组与电 枢绕组串联) (三)励磁方式 1.定义:主磁极的激磁绕组所取得直流电源的方式; 2.分类:以直流发电机为例 分为:他励式和自励式(包括并励式、串励式和复励式)

三相无刷直流电机系统结构及工作原理

三相无刷直流电机系统结构及工作原理 2.1电机的分类 电机按工作电源种类可分为: 1.直流电机: (1)有刷直流电机: ①永磁直流电机: ·稀土永磁直流电动机; ·铁氧体永磁直流电动机; ·铝镍钴永磁直流电动机; ②电磁直流电机: ·串励直流电动机; ·并励直流电动机; ·他励直流电动机; ·复励直流电动机; (2)无刷直流电机: 稀土永磁无刷直流电机; 2.交流电机: (1)单相电动机; (2)三相电动机。 2.2无刷直流电机特点 ·电压种类多:直流供电交流高低电压均不受限制。 ·容量范围大:标准品可达400Kw更大容量可以订制。 ·低频转矩大:低速可以达到理论转矩输出启动转矩可以达到两倍或更高。 ·高精度运转:不超过1 rpm.(不受电压变动或负载变动影响)。 ·高效率:所有调速装置中效率最高比传统直流电机高出5~30%。 ·调速范围:简易型/通用型(1:10)高精度型(1:100)伺服型。 ·过载容量高:负载转矩变动在200%以内输出转速不变。 ·体积弹性大:实际比异步电机尺寸小可以做成各种形状。 ·可设计成外转子电机(定子旋转)。 ·转速弹性大:可以几十转到十万转。 ·制动特性良好可以选用四象限运转。 ·可设计成全密闭型IP-54IP-65防爆型等均可。 ·允许高频度快速启动电机不发烫。 ·通用型产品安装尺寸与一般异步电机相同易于技术改造。

2.3无刷直流电机的组成 直流无刷电动机的结构如图2.1所示。它主要由电动机本体、位置传感器和电子开关线路三部分组成。电动机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他起动装置。其定子绕组一般制成多相(三相、四相、无相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。 图2.1 直流无刷电动机的结构原理图 当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生的转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关电路,从而使定子各相绕组按一定顺序导通,定子相电流随转子位置转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换相作用。如图2.2所示。 图2.2 无刷直流电动机基本结构图 因此,所谓直流无刷电动机,就其基本结构而言,可以认为是一台由电子开关线路、永磁式同步电动机以及位置传感器三者组成的“电动机系统”。其原理框图如图2.3所示。

《电机与拖动基础》第三版(林瑞光)课后习题答案

. 1-1.在直流电动机的电枢绕组中为什么也有感应电动势?其方向与电流方向有什么关系?在直流发电机空载即电枢电流为零时,是否电磁转矩?为什么? 答:不管有没有外部电源,只要是电枢绕组磁通发生变化,均会产生感应电动势。虽然直流电动机通入直流电以后才会旋转,但是在旋转过程中电枢绕组同样会切割定子磁场磁力线,符合电磁感应原理(楞次定律/右手定则)就会在电枢中感应出电动势。就是这个电势抵消部分外加电源电压,抑制了直流电动机电流,它与电流方向相反。如果没有这个感应电动势,电动机电流就=直流电源电电压/电枢绕组的直流电阻,这时候电枢绕组只是相当于一个发热的电阻丝。直流发电机空载时没有电流,则电磁转矩为零。因为f=Bli i=0 则f=0,电动机和发电机只是工作状态不同。 1-2.直流电机机座中的磁通是恒定不变还是大小正负交变还是旋转的?而电枢铁芯中的磁通又是什么性质? 答:机座(定子磁极)中的磁通是大小方向保持不变的。电枢铁芯中的磁通在空间上是不变的,相对转子是旋转的,也可以理解为正负交变的,不同电机不同。 1-3. 直流电机的电枢铁芯为什么必须采用硅钢片迭成而机座和主磁极可以采用整块的铁?为什么有的主磁极也采用薄钢板迭成? 答:电枢铁芯旋转,电枢铁芯内的磁场是交变的,为了减小铁耗,故要用硅钢片迭成。机座和主极中的磁场是恒定的,故可采用整块的铁。 但是,由于电枢齿槽的影响,电枢旋转时主磁极极靴表面磁场发生脉动,引起附加损耗,为了降低表面损耗,主磁极有时采用薄钢板迭成 1-4. 直流电机各个主磁极的励磁线圈为什么都互相串联成一条支路而不采用并联的方式?答:这是电机制造工艺方便考虑,励磁线圈串联接法,绕组是头尾相接,这样只需要用一根线连接,电机内部空间有限,对大电机及多极电机更显优点,因为这种电机励磁线圈导线都较粗一般都是用矩形线。小容量电机励磁线圈串联并联就无所谓了。 1-5. 什么是电机的可逆原理?接在直流电源上运行的直流电机,如何判别它是运行在发电状态还是运行在电动状态? 答:从原理上讲,一台直流电机既可作为电动机,把电能转换为机械能,也可作为发电机,把机械能转换为电能,这就是其可逆性。 当Ea>U,T与转速n反向,发电机。当Ea

直流无刷电机工作原理

直流无刷电机的优越性 直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。交流电机没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能达到。现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能。微处理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直交坐标系统中,适当控制交流电机在两轴电流分量,达到类似直流电机控制并有与直流电机相当的性能。 此外已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小;像模拟/数字转换器(analog-to-digital converter,adc)、脉冲宽度调制(pulse wide mo dulator,pwm)…等。直流无刷电机即是以电子方式控制交流电机换相,得到类似直流电机特性又没有直流电机机构上缺失的一种应用。 直流无刷电机的控制结构 直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(p)影响: n=120.f / p。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持 一定的转速。 直流无刷驱动器包括电源部及控制部如图(1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24v)或以交流电输入(110v/220 v),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(i nverter)一般由6个功率晶体管(q1~q6)分为上臂(q1、q3、q5)/下臂(q2、q4、q6)连接电机作为控制流经电机线圈的开关。控制部则提供pwm(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

直流电机3

对于已经制造好的电动机,额定电压是定值。受绕组绝缘及换向器片间电压的限制,电动机不能过电压运转,所以只能降低电枢电压,因此改变电枢电压的人为特性全在固有特性的下方。 图2-8改变电枢电压时的人为特性图2-8减弱电机磁通时的人为特性 (3)减弱电机磁通时的人为特性:电枢不串电阻,,只改变励磁磁通的人为特性方程为 ( 2-10 ) 由式(2-10)可知,减弱磁通时,理想空载转速升高,转速降Δ增大, 而且与成反比,Δ与成反比,所以机械特性变软,如图2-8所示。 在设计电动机时,为节省磁性材料,减小电机体积,已使磁路接近饱和,所以只能减弱磁通。因此,改变磁通的人为特性都在固有特性的上方。 电动机的机械特性可用实验方法求得,也可用铭牌数据计算求得。 例2-2 一台直流电动机,=22kW ,=220V ,=116A ,=1500r/min , =0.174,试计算并绘制: (1)固有机械特性; U N U U =T C C R C U n T e a e N 2ΦΦ-=Φ0n n 0n Φn 2ΦN P N U N I N n a R Ω

(2)电枢回路串电阻时的人为特性; (3)电源电压降低为100V 时的人为特性; (4)减弱磁通使时的人为特性; 解(1)固有机械特性 = r/min N?m 由1654 r/min ,0和=1500 r/min ,=147.3 N?m ,在坐标纸上绘出理想空载点和额定工作点,连成直线,如图2-9中直线1所示。 (2)串电阻时的人为特性 r/min 由1654 r/min ,0和=1153 r/min ,=147.3 N?m 两点在图2-9上画出直线2。 (3)降低电源电压的人为特性 r/min 此时Δ不变,所以对应的转速 =752-(1654-1500)=598 r/min 由752 r/min ,0和=598r/min ,=147.3 N?m 两点在图2-9上画出直线3。 (4)减弱磁通的人为特性 40.R P =ΩN .ΦΦ80=N a N N N e n R I U C -=Φ133.01500174.0116220=?-165413302200===.C U n N e N Φ31471161330559559...I C .T N N e N =??==Φ==0n n =T N n n =N T T =40.R P =Ω11533147133055940174016542201=??+-=+-=.....T C C R R n n N N T e P a Φ==0n n =T 1N n n =N T T =752133010002===.C U n N e ΦN n N T T =N n n n ?-=022==02n n =T 2N n n =N T T =

第二章习题电子教案

第二章习题

第二章直流电动机的电力拖动 思考题与习题 2.1 什么是电力拖动系统?举例说明电力拖动系统都由哪些部分组成。 2.2 写出电力拖动系统的运动方程式,并说明该方程式中转矩正、负号的方 法。 2.3 怎样判断运动系统是处于动态还是处于稳态? 2.4 生产机械的负载转矩特性常见的有哪几类?何谓反抗性负载,何谓位能性 负载? 2.5 电动机理想空载转速与实际空载转速有何区别? 2.6 什么是固有机械特性?什么是人为机械特性?他励直流电动机的固有特性 和各种人为特性各有何特点? 2.7 什么是机械特性上的额定工作点?什么是额定转速降? 2.8 电力拖动系统稳定运行的条件是什么?一般来说,若电动机的机械特性是 向下倾斜的,则系统便能稳定运行?这是为什么? 2.9 在下列的图中,哪些系统是稳定的?哪些系统是不稳定的?

2.10 他励直流电动机稳定运行时,其电枢电流与哪些因素有关?如果负载 转矩不变,改变电枢回路电阻,或改变电源电压,或改变励磁电流, 对电枢电流有何影响? 2.11 直流电动机为什么不能直接起动?如果直接起动会引起什么后果? 2.12 怎样实现他励直流电动机的能耗制动?试说明在反抗性恒转矩负载下, 能耗制动过程中的n、E a、I a、及T em的变化情况。 2.13 采用能耗制动和电压反接制动进行系统停车时,为什么要在电枢回路中 串入制动电阻?哪一种情况下串入的电阻大?为什么? 2.14 实现倒拉反转反接制动和回馈制动的条件各是什么? 2.15 当提升机下放重物时:(1)要使他励电动机在低于理想空载转速下运 行,应采用什么制动方法?(2)若在高于理想空载转速下运行,又应 采用什么制动方法? 2.16 试说明电动状态、能耗制动状态、回馈制动状态及反接制动状态下的能 量关系。 2.17 直流电动机有哪几种调速方法,各有什么特点? 2.18 什么是静差率?它与哪些因素有关?为什么低速时的静差率较大? 2.19 何谓恒转矩调速方式及恒功率调速方式?他励直流电动机的三种调速方 法各属于什么调速方式? 2.20 为什么要考虑调速方式与负载类型的配合?怎样配合才合理? 2.21 串励电动机为什么不能实现回馈制动?怎样实现能耗制动和反接制 怎样改变他励、并励、串励及复励电动机的转向? 2.23 串励电动机为何不能空载运行?

直流电机的基础知识 (2)

直流电机的基础知识(第2部分) ——晶闸管直流调速装置的电路原理分析与调试 (电子管)二极管的出现,使人们找到了控制电流方向的“钥匙”,(电子管)三极管的出现,使人们掌握了控制电流大小的奥妙,人类文明由此进入了电子时代的新纪元。做为“弱电”的电子元件,从来都希望并且也有能力在“强电领域”占有一席之地,晶闸管在工业控制领域得以广泛的应用,即是一个有力的证明。 电子器件的发展,经历了电子管、晶体管、(小、中、大规模)集成电路的三个阶段。其中电子管除在高频高压电路,得到极少数应用外,常规电路中已难见到它们的踪影。但晶体管电路的“阵地”随集成电路的“强势出击”虽有所缩小,但并示全盘“退却”,像上文所述的滑差电机调速盒,仍以由晶体管分立元件构成的电路为主流。 正在应用中的直流电机调速器,仍有部分由晶体管分立元件构成的整机电路,分析其原理和给出检修指导,仍具有实际意义,并且为进一步掌握由集成电路(或单片机)构成的直流调速电路,也相当于一个基础和原理性的铺垫。 N 图1 单相晶闸管直流电机调速器(整机电路) 该电路用于小功率他励直流电机的调速与起停控制。

〔主电路〕由单相半控整流桥、滤波电抗器L0构成,桥式整流电路的左侧由两只晶闸管串联而成,右则的两只串联二极管(2CZ50A)与两只晶闸管呈并联关系,两只二极管身兼双职,即可作为整流元件,又并接于电枢绕组两端,提供电枢绕组的反电势通路,起到为电枢绕组的“续流作用”,因而该电路省去了并接于电枢电源两端的续流二极管。电抗器L0可抑制整流后脉动成分,改善电机的换向并降低电机损耗和温升,同时起到提高电网侧功率因数的作用,减弱晶闸管与二极管非线性整流造成的谐波影响。 〔励磁电路〕由桥式整流器组成,电机励磁线圈并串有电流继电器LJ,当励磁电流消失时,主电路晶闸管的触发信号同时消失,电枢绕组同时断电,避免了电机超速(或飞车)运行。他励和和复励直流电机的调速控制电路,都设有励磁电流检测回路,以实现“失磁”时的停机保护。 〔移相触发电路〕由DW0、DW1、DW2、晶体管BG1~BG5、脉冲变压器B2等元件组成。电阻R1、稳压器WG1对70V绕组整流电压进行削波处理成梯形波电压,做为触冲功放级BG5、BG3的供电和电网过零同步信号,控制BG5在电网电压过零时处于截止状态;该梯形波直流电压又经D1隔离、C4滤波成平滑和稳定直流电压,用作移相电路的前级信号处理电路——BG1放大器的供电,以提高电路工作的稳定性。 R16、WG3对另一70V绕组整流电压,削波生成梯形波直流电压,该电压作为同步采样信号,经DW0、DW1、DW2三只电位器调整后,经R7、BG1的发射结、射极电流负反馈电阻R6、DW3、DW4等元件形成了BG1的Ib回路(或称为基极偏压回路),形成了速度给定信号。DW0、DW2用于用于调速范围的设定,D2、D3、D4三只二极管,起到BG1的be结正反向电压的限幅保护作用,将BG1的最大Ic(即BG2的最大Ib)限制于1.4V(两二极管串联压降)-0.7V(BG1发射结电压)/24kΩ=0.029Ma,从而限制了BG2的最小等效导通Rce电阻,限制了单结晶体管BG3形成直通而停振。串入DW3、DW4、DW5支路的目的,是引入电流、电压反馈信号,形成速度闭环控制及电流保护作用(见下文所述)。 当DW2活动臂上行时→BG1的Ub(Ib)上升→BG2的Ib/Ic上升→BG1的Rce(等效导通电阻)变小→C1上充电电压到达BG3基极峰点电压的时刻提前→BG3的导通提前→(在触发脉冲作用下)两只主电路晶闸管的导通时刻提前→半控桥整流电压升高→直流电机转速升高。 移相信号形成电路的主体为单结晶体管BG3、R3(包括BG2导通时的等效Rce)C1的定时电路所组成的张驰振荡器。BG5为脉冲功率放大电路,将输入移相触冲进行功率放大后,驱动脉冲变压器B2。而BG1、BG2两级放大器,组成了可控的变阻电路(BG2的等效导通Rce电阻),使之对C1的充电是可控的(可以调节RC时间常数),进而控制了张驰振荡器第一个脉冲出现的时刻。 注意:稳压二极管WG1两端形成的梯形波电压,为桥式整流所得的100个波头的削波电压,相邻两个波即对应电网电压的正负两个波,两只晶闸管的栅-阴极得到的实际为100Hz的

相关主题
文本预览
相关文档 最新文档