当前位置:文档之家› 概率论第3章习题详解

概率论第3章习题详解

概率论第3章习题详解
概率论第3章习题详解

习题三

1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与

出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.

2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.

3.设二维随机变量(X ,Y )的联合分布函数为

F (x ,y )=?????≤

≤≤≤.,

020,20,sin sin 其他ππy x y x

求二维随机变量(X ,Y )在长方形域?

??

?

??≤<≤<36,40πππy x 内的概率. 【解】如图πππ

{0,}(3.2)463

P X Y <≤

<≤公式 ππππππ(,)(,)(0,)(0,)434636

F F F F --+

ππππππ

sin sin sin sin sin0sin sin0sin

434636

2

(31).

4

=--+

=-

g g g g

题3图

说明:也可先求出密度函数,再求概率。

4.设随机变量(X,Y)的分布密度

f(x,y)=

?

?

?>

>

+

-

.

,0

,0

,0

,)4

3(

其他

y

x

A y

x

e

求:(1)常数A;

(2)随机变量(X,Y)的分布函数;

(3)P{0≤X<1,0≤Y<2}.

【解】(1)由-(34)

00

(,)d d e d d1

12

x y

A

f x y x y A x y

+∞+∞+∞+∞

+

-∞-∞

===

????

得A=12

(2)由定义,有

(,)(,)d d

y x

F x y f u v u v

-∞-∞

=??

(34)34

00

12e d d(1e)(1e)0,0,

0,

0,

y x u v

x y

u v y x

-+--

??-->>

?

==

??

?

??

??

其他

(3) {01,02}

P X Y

≤<≤<

12

(34)38

00

{01,02}

12e d d(1e)(1e)0.9499.

x y

P X Y

x y

-+--

=<≤<≤

==--≈

??

5.设随机变量(X,Y)的概率密度为

f(x,y)=

?

?

?<

<

<

<

-

-

.

,0

,4

2,2

),

6(

其他

y

x

y

x

k

(1)确定常数k;

(2)求P{X<1,Y<3};

(3)求P{X<};

(4)求P{X+Y≤4}.

【解】(1)由性质有

2

4

2

(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞

-∞

-∞

=--==??

?

?

故 18

R =

(2) 13

{1,3}(,)d d P X Y f x y y x -∞-∞

<<=??

1

3

0213

(6)d d 88

k x y y x =

--=?? (3) 1

1.5

{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=??

??如图

1.5

4

2127d (6)d .832

x x y y =

--=?

?

(4) 2

4

{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=??

??如图b

2

40

2

12d (6)d .83

x

x x y y -=

--=?

?

题5图

6.设X 和Y 是两个相互独立的随机变量,X 在(0,)上服从均匀分布,Y 的密度函数为

f Y (y )=?

??>-.,0,

0,55其他y y e

求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.

题6图

【解】(1) 因X 在(0,)上服从均匀分布,所以X 的密度函数为

1

,00.2,

()0.2

0,

.X x f x ?<

55e ,0,

()0,

.y Y y f y -?>=?

?其他 所以

(,),()()X Y f x y X Y f x f y g 独立

5515e

25e ,00.20,0.20,0,y

y x y --???<<>?==??

???

且其他. (2) 5()(,)d d 25e d d y y x D

P Y X f x y x y x y -≤≤=

??

??如图

0.2

0.2

-5500

-1

d 25

e d (5e 5)d =e 0.3679.

x

y

x x y x -==-+≈???

7.设二维随机变量(X ,Y )的联合分布函数为

F (x ,y )=???>>----.,

0,

0,0),1)(1(24其他y x y x e e

求(X ,Y )的联合分布密度.

【解】(42)28e ,0,0,

(,)(,)0,

x y x y F x y f x y x y -+?>>?==?

???其他. 8.设二维随机变量(X ,Y )的概率密度为

f (x ,y )= 4.8(2),01,0,

0,.y x x y x -≤≤≤≤??

?

其他

求边缘概率密度. 【解】()(,)d X f x f x y y +∞

-∞

=

?

x

204.8(2)d 2.4(2),01,

=0,.0,

y x y x x x ??--≤≤?=??

????其他 ()(,)d Y f y f x y x +∞

-∞

=

?

12y 4.8(2)d 2.4(34),01,

=0,.0,

y x x y y y y ?-?-+≤≤?

=??????其他

题8图 题9图

9.设二维随机变量(X ,Y )的概率密度为

f (x ,y )=???<<-.,

0,

0,其他e y x y

求边缘概率密度. 【解】()(,)d X f x f x y y +∞

-∞

=

?

e d e ,0,

=0,.0,

y x x y x +∞

--??>?=??

????其他 ()(,)d Y f y f x y x +∞

-∞

=?

0e d e ,0,

=0,.0,

y

y x x y y --??>?=??

????其他

题10图

10.设二维随机变量(X ,Y )的概率密度为

f (x ,y )=???≤≤.,

0,

1,22其他y x y cx

(1) 试确定常数c ;

(2) 求边缘概率密度. 【解】(1)

(,)d d (,)d d D

f x y x y f x y x y +∞+∞

-∞

-∞

??

??如图

21

1

2-1

4

=

d d 1.21

x

x cx y y c =

=?

? 得

214

c =

. (2) ()(,)d X f x f x y y +∞

-∞

=

?

2124

22121(1

),11,

d 84

0,0,

.x x x x x y y ??--≤≤??==???????其他 ()(,)d Y f y f x y x +∞-∞

=?

52

2217d ,01,

4

20,0,

.y y x y x y y -??≤≤??==???????其他 11.设随机变量(X ,Y )的概率密度为

f (x ,y )=??

?<<<.

,

0,

10,,1其他x x y

求条件概率密度f Y |X (y |x ),f X |Y (x |y ).

题11图

【解】()(,)d X f x f x y y +∞

-∞

=

?

1d 2,01,

0,

.x

x y x x -?=<

11

1d 1,10,

()(,)d 1d 1,01,0,

.y Y y x y y f y f x y x x y y -+∞

-∞

?=+-<

???

??

?其他

所以

|1

,||1,

(,)(|)2()0,

.Y X X y x f x y f y x x

f x ?<

?其他

|1

, 1,1(,)1

(|),1,()10,.X Y Y y x y f x y f x y y x f y y

?<

?=

=-<

其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大

的号码为Y .

(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表

3 4 5

{}i P X x =

1

3

511C 10

= 3

522C 10= 3

533C 10

= 610 2

35

11C 10= 3522

C 10= 310 3 0

2511C 10

= 110

{}i P Y y =

1

10 310 610

(2) 因6161{1}{3}{1,3},101010010

P X P Y P X Y ===

?=≠===g 故X 与Y 不独立

2 5 8

(2) X 与Y 是否相互独立? 2 5 8 P {Y=y i }

{}i P X x =

Y

X

X

Y

X

Y

(2) 因{2}{0.4}0.20.8P X P Y ===?g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.

14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为

f Y (y )=?????>

-.

,

0,0,

2

12/其他y y e

(1)求X 和Y 的联合概率密度; (2) 设含有a 的二次方程为a 2

+2Xa +Y =0,试求a 有实根的概率.

【解】(1) 因1,01,()0,X x f x <

1e ,1,

()20,y

Y y f y -?>?==???

其他.

故/2

1e

01,0,(,),()()2

0,

.

y X Y x y f x y X Y f x f y -?<<>?=???g 独立其他

题14图

(2) 方程2

20a Xa Y ++=有实根的条件是

2(2)40X Y ?=-≥

故 X 2

≥Y ,

从而方程有实根的概率为:

22{}(,)d d x y

P X Y f x y x y ≥≥=

??

2

1

/2001d e d 2

12[(1)(0)]0.1445.

x y x y

π-==-Φ-Φ=??

15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从

同一分布,其概率密度为

f (x )=?????>.,

0,

1000,10002其他x x

求Z =X /Y 的概率密度.

【解】如图,Z 的分布函数(){}{

}Z X

F z P Z z

P z Y

=≤=≤ (1) 当z ≤0时,()0Z F z =

(2) 当0

1000

z

)(如图a) 336

6

102222101010()d d d d yz Z z

x y z

F z x y y x x y x y +∞≥

=

=??

?? 33610231010=d 2z z

y y

zy +∞

??-= ????

题15图 (3) 当z ≥1时,(这时当y =103时,x =103

z )(如图b )

336

6

222210101010()d d d d zy Z x

y z

F z x y y x x y

x y +∞≥

=

=??

?? 336231010101

=d 12y y zy z +∞

??-=- ???

?

即 11,1,2(),01,20,

.Z z z z

f z z ?

-≥???=<

???其他

故 21

,1,21

(),01,20,

.Z z z f z z ?≥???=<

???

其他

16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202

)分布.随机地选取4 只,

求其中没有一只寿命小于180的概率.

【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202

),

从而

123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立

34{180}{180}P X P X ≥≥g

1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-

g g 4

4144180160[1{180}]120[1(1)](0.158)0.00063.

P X ?-?

??=-<=-Φ ??????

?=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为

P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….

证明随机变量Z =X +Y 的分布律为

P {Z =i }=∑=-i

k k i q k p 0

)()(,i =0,1,2,….

【证明】因X 和Y 所有可能值都是非负整数,

所以 {}{}Z i X Y i ==+=

{0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U 于是

0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0

{}{}i

k P X k P Y i k ===-∑g

()()i

k p k q i k ==

-∑

18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参

数为2n ,p 的二项分布.

【证明】方法一:X +Y 可能取值为0,1,2,…,2n .

{}{,}k

i P X Y k P X i Y k i =+====-∑

00202(){}

2k

i k

i n i k i n k i

i k k n k i k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-????= ? ?-????

????= ???-????

??= ???

∑∑∑g

方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则

X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,

所以,X +Y 服从参数为(2n ,p )的二项分布.

(1) 求{=2|=2},{=3|=0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}

{2|2}{2}

P X Y P X Y P Y =====

=

5

{2,2}

0.051

,0.252

{,2}

i P X Y P X i Y ====

=

===∑ {3,0}

{3|0}{0}P Y X P Y X P X =====

=

3

{0,3}

0.011

;0.033

{0,}

j P X Y P X Y j ====

=

===∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤=

10

{,}{,},i i

k k P X i Y k P X k Y i -===

==+==∑∑ 0,1,2,3,4,5i =

所以V

的分布律为

V =max(X ,Y ) 0 1 2 3 4 5 P 0

(3) {}{min(,)}P U i P X Y i ===

3

5

1

{,}{,}

{,}{,}

k i

k i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+

==∑∑

0,1,2,3,i =

于是

U =min(X ,Y ) 0 1 2 3 P W =X +Y 0 1 2 3 4 5 6 7 8 P

(1) 求P {Y >0|Y >X };

(2) 设M =max{X ,Y },求P {M >0}.

题20图

【解】因(X ,Y )的联合概率密度为

22221,,

(,)π0,

.x y R f x y R

?+≤?=???其他 (1){0,}

{0|}{}

P Y Y X P Y Y X P Y X >>>>=

>

0(,)d (,)d y y x

y x

f x y f x y σσ

>>>=

????

π

2π/405π42π/401

d d π1

d d πR

R r r

R r r

R θθ=??

??

3/83

;

1/24

=

= (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤

00

131{0,0}1(,)d 1.44

x y P X Y f x y σ≤≤=-≤≤=-

=-

=??

21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2

所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?

题21图

【解】区域D 的面积为 2

2e e 01

1

1

d ln 2.S x x x

=

==?

(X ,Y )的联合密度函数为

2

11,1e ,0,

(,)20,.

x y f x y x ?≤≤<≤?=???其他

(X ,Y )关于X 的边缘密度函数为

1/20

1

1d ,1e ,()220,

.x X y x f x x

?=≤≤?=????其他 所以1

(2).4

X f =

22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和

Y 的边缘分布律中的部分数值.试将其余数值填入表中的空白处.

y 1 y 2 y 3

P {X =x i }=p i

x 1 x 2

1/8

1/8

P {Y =y j }=p j

1/6

1

【解】因2

1

{}{,}j j i

j

i P Y y P P X x Y y ====

==∑,

故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824

P X x Y y ===

-= Y

X

而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====g ,

从而11111{}{,}.624P X x P X x Y y =?

==== 即:1111

{}/.2464

P X x ===

又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==

即1,3111{},4248

P X x Y y =++== 从而131

{,}.12P X x Y y ===

同理21{},2P Y y == 223

{,}8

P X x Y y ===

3

1

{}1j j P Y y ===∑,故3

111

{}1623P Y y ==--=. 同理23

{}.4

P X x == 从而

23313111

{,}{}{,}.3124

P X x Y y P Y y P X x Y y ====-===-=

23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概

率为p (0

【解】(1) {|}C (1),0,0,1,2,m m n m

n P Y m X n p p m n n -===-≤≤=L .

(2) {,}{}{|}P X n Y m P X n P Y m X n ======g

e C (1)

,,0,1,2,.!

m m n m

n

n

p p n m n n n λλ--=-≤≤=g L 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~?

??

?

??7.03.021

,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).

【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为

(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=

0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=

由于X 和Y 独立,可见

()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-

0.3(1)0.7(2).F u F u =-+-

由此,得U 的概率密度为

()()0.3(1)0.7(2)g u G u F u F u '''==-+-

0.3(1)0.7(2).f u f u =-+-

25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.

解:因为随即变量服从[0,3]上的均匀分布,于是有

1, 03,()3

0, 0,3;x f x x x ?≤≤?=??<>? 1, 03,

()30, 0, 3.

y f y y y ?≤≤?=??<>? 因为X ,Y 相互独立,所以

1

, 03,03,

(,)9

0, 0,0,3, 3.

x y f x y x y x y ?≤≤≤≤?=??<<>>? 推得 1{max{,}1}9

P X Y ≤=

. 26. 设二维随机变量(X ,Y )的概率分布为

其中a ,,为常数,且的数学期望()=??,{≤0|≤0}=,记=+.求:

(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.

解 (1) 由概率分布的性质知,

a+b+c +=1 即 a+b+c = .

由()0.2E X =-,可得

0.1a c -+=-.

再由 {0,0}0.1

{00}0.5{0}0.5

P X Y a b P Y X P X a b ≤≤++≤≤=

==≤++,

得 0.3a b +=.

解以上关于a ,b ,c 的三个方程得

0.2,0.1,0.1a b c ===.

(2) Z 的可能取值为?2,?1,0,1,2,

{2}{1,1}0.2P Z P X Y =-==-=-=,

{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,

{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,

{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,

{2}{1,1}0.1P Z P X Y =====,

即Z

(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12 (34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k (1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}. 【解】(1)由性质有

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

概率论习题第三章答案

第三章连续型随机变量 3、1设随机变量 ξ 的分布函数为F(x),试以F(x)表示下列概率: 。 )()4();()3();()2();()1(a P a P a P a P >≥≤=ξξξξ 。 )(解:)0(1)()4(); (1)()3(); 0()(P 2); ()0()()1(+-=>-=≥+=≤-+==a F a P a F a P a F a a F a F a P ξξξξ 3、2函数x 211 F(x)+=就是否可以作为某一随机变量的分布函数,如果 在其它场合恰当定义。 在其它场合恰当定义;)(,0)3(,0)2(1<<∞-∞<<∞ <<∞-x x x 解:(1)F(x)在),(∞-∞内不单调,因而不可能就是随机变量的分布函数; (2)F(x)在)0∞,(内单调下降,因而也不可能就是随机变量的分布函数; (3)F(x)在) ,(-0∞内单调上升、连续且,若定义 ???≥<<∞=01 0)()(~x x X F x F - 则)(~ x F 可以就是某一随机变量的分布函数。 3、3函数 sinx 就是不就是某个随机变量ξ的分布函数?如果ξ的取值范围为 []。,);(,);(,)(?? ??????????πππ230302201 解:(1)当?? ????∈2,0πx 时,sinx 0≥且1sin 20=?πxdx ,所以 sinx 可以就是某个随机变量的分布密度; (2) 因为12sin 0≠=?πxdx ,所以sinx 不就是随机变量的分布密度; (3) 当 ?????? ∈23, ππx 时,sinx<=0所以sinx 不就是随机变量的分布密度。 3、4设随机变量ξ具有对称的分布函数p(x),即p(x)=p(-x) 证明:对任意的a>0,有

概率论与数理统计练习题1

《概率论与数理统计》练习题一一、判断正误,在括号内打√或× 1.是取自总体的样本,则服从分布; 2.设随机向量的联合分布函数为,其边缘分布函数是; 3.设,,,则表示; 4.若事件与互斥,则与一定相互独立; 5.对于任意两个事件,必有; 6.设表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为“甲种产品滞销或乙种产品畅销”; 7.为两个事件,则; 8.已知随机变量与相互独立,,则; 9.设总体, ,,是来自于总体的样本,则是的无偏估计量; 10.回归分析可以帮助我们判断一个随机变量和另一个普通变量之间是否存在某种相关关系。 二、填空题 1.设是3个随机事件,则事件“和都发生而不发生”用表示为;2.设随机变量服从二项分布,则; 3.是分布的密度函数; 4.若事件相互独立,且,,,则= ; 5.设随机变量的概率分布为 -4-1024 则; 6.设随机变量的概率分布为 012 0.50.30.2

则的概率分布为 7.若随机变量与相互独立,,则; 8.设与是未知参数的两个估计,且对任意的满足,则称比有效;9.设是从正态总体抽得的简单随机样本,已知,现检验假设,则当时,服从; 10.在对总体参数的假设检验中,若给定显著性水平(),则犯第一类错误的概率是。 三、计算题 1.已知随机事件的概率,事件的概率,条件概率,试求事件的概率。 2.设随机变量,且,试求,。 3.已知连续型随机变量,试求它的密度函数。 4.已知一元线性回归直线方程为,且,,试求。 5.设总体的概率密度为 式中>-1是未知参数,是来自总体的一个容量为的简单随机样本,用最大似然估计法求的估计量。 6.设是取自正态总体的一个样本,其中未知。已知估计量是的无偏估计量,试求常数。 7.设有10个零件,其中2个是次品,任取2个,试求至少有1个是正品的概率。 四、证明题 1.设二维连续型随机向量的联合密度函数为 证明:与相互独立。 2. 1.若事件与相互独立,则与也相互独立。 2.若事件,则。

第一章概率论习题解答附件

教 案 概率论与数理统计 (Probability Theory and Mathematical Statistics ) Exercise 1.1 向指定目标射三枪,观察射中目标的情况。用1A 、2A 、 3A 分别表示事件“第1、2、3枪击中目标” ,试用1A 、2A 、3A 表示以下各事件: (1)只击中第一枪; (2)只击中一枪; (3)三枪都没击中; (4)至少击中一枪。 Solution (1)事件“只击中第一枪”,意味着第二枪不中,第三枪也不中。所以,可以表示成 1A 32A A 。 (2)事件“只击中一枪”,并不指定哪一枪击中。三个事件“只击中第一枪”、“只击中第二枪”、“只击中第三枪”中,任意一个发生,都意味着事件“只击中一枪”发生。同时,因为上述三个事件互不相容,所以,可以表示成 123A A A +321A A A +321A A A . (3)事件“三枪都没击中”,就是事件“第一、二、三枪都未击中”,所以,可以表示成 123A A A . (4)事件“至少击中一枪”,就是事件“第一、二、三枪至少有一次击中”,所以,可以表示成 321A A A 或 123A A A +321A A A +321A A A +1A 32A A +321A A A +321A A A + 321A A A . Exercise 1.2 设事件B A ,的概率分别为 21,31 .在下列三种情况下分别求)(A B P 的值: (1)A 与B 互斥; (2);B A ? (3)81)(=AB P . Solution 由性质(5),)(A B P =)()(AB P B P -. (1) 因为A 与B 互斥,所以φ=AB ,)(A B P =)()(AB P B P -=P(B)= 21 (2) 因为;B A ?所以)(A B P =)()(AB P B P -=)()(A P B P -= 6 13121=-

概率论与数理统计习题及答案第三章

习题3-1 1. 而且12{P X X =. 求X 1和X 2的联合分布律. 解 由12 {0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布必形 于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律

(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04 P X P X =?== ≠, 所以X 1和X 2 不独立. 2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律. 解 从7只球中取4球只有354 7 =C 种取法. 在4只球中, 黑球有i 只, 红 球有j 只(余下为白球4i j -- 只)的取法为 4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4. 于是有 022 322 1{0,2}35 35 P X Y C C C ====,111322 6{1,1}35 35 P X Y C C C ====, 121322 6 {1,2}35 35 P X Y C C C ====,202322 3 {2,0}35 35 P X Y C C C ==== , 211 322 12{2,1}35 35P X Y C C C ==== ,220 322 3{2,2}35 35P X Y C C C === = , 301 322 2 {3,0}3535P X Y C C C === =, 310 322 2 {3,1}3535 P X Y C C C ====, {0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============. 3. (,)(6),02,24, 0,.f x y k x y x y =--<<<

考研概率论与数理统计题库-题目

概率论与数理统计 第一章 概率论的基本概念 1. 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(以百分制记分) (2)生产产品直到得到10件正品,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生 (2)A ,B 都发生,而C 不发生 (3)A ,B ,C 中至少有一个发生 (4)A ,B ,C 都发生 (5)A ,B ,C 都不发生 (6)A ,B ,C 中不多于一个发生 (7)A ,B ,C 中不多于二个发生 (8)A ,B ,C 中至少有二个发生。 3. 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最 大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 4. 设A ,B ,C 是三事件,且0)()(,4/1)()()(=====BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 5. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4个数 中的每一个数都是等可能性地取自0,1,2……9)

6. 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的 号码。 (1)求最小的号码为5的概率。 (2)求最大的号码为5的概率。 7. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺 脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少? 8. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 (2)至少有2个次品的概率。 9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 10. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概 率各为多少? 11. 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ?===求。 12. )(,2 1 )|(,31)|(,41)(B A P B A P A B P A P ?=== 求。 13. 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球, 今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少? (2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。 14. 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人 群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 15. 一学生接连参加同一课程的两次考试。第一次及格的概率为P ,若第一次及格则第 二次及格的概率也为P ;若第一次不及格则第二次及格的概率为2/P

概率论(计算)习题

概率论计算: 1.已知在10只晶体管中有2只次品,在其中取两次,作不施加抽样,求下列事件的概率。(1)两只都是正品?(2)两只都是次品?(3)一只是正品,一只是次品?(4)第二次取出的是次品? 解:设A1、A2表示第一、二次取到正品的事件,由等可能概型有:(1) 45 2897108)1|2()1()21(=?==A A P A P A A P (2) 45 191102)1|2()1()2,1(=?= =A A P A P A A P (3) 45 169810292108)1|2()1()1|2()1() 21()21(=???=+=+A A P A P A A P A P A A P A A P (4) 5 19110292108)1|2()1()1|2()1() 2(=???=+=A A P A P A A P A P A P 2.某电子设备制造厂所用的晶体管是由三家元件厂提供的,根据以往记录有如下数据~~~设三家工厂的产品在仓库中是均匀混合的,且无区别的标志。(1)在仓库中随机地取一只晶体管,求它是次品的概率。(2)在仓库中随机地取一只晶体管,发现是次品,问此次品是一厂产品的概率? 解:设Bi (I=1,2,3)表示任取一只是第I 厂产品的事件,A 表示任取一只是次品的事件。 (1)由全概率公式 0125 .003.005.001.080.002.05.0)3|()3()2|() 2()1|()1()(=?+?+?=++=B A P B P B A P B P B A P B P A P (2)由贝叶斯公式 24 .00125.002.015.0) () 1|()1()|1(=?== A P B A P B P A B P 3.房间里有10个人,分别佩戴从1号到10叼的纪念章,任选三人记录其纪念章的号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率。 解:由等可能概型有: (1)12110 25== C C P ; (2) 1 10 24 ==C C P 4.6件产品中有4件正品和2件次品,从中任取3件,求3件中恰为1件次品的概率。 解:设6件产品编号为1,2……6,由等可能概型 5336 1224== C C C P 5.设随机变量X 具有概率密度???? ?≤>-=0, 00 , 3)(x x x ke x f 。(1)确定常数k ;(2)求P (X>0.1) 解:(1)由1)(=∞ -+∞ ?dx x f 有33 3303301==-+∞ =-+∞-??k k x d x e k dx x ke 所以(2) 7408 .0331 .0)1.0(=-+∞=>? dx x e x P 6.一大楼装有5个同类型的供水设备,调查表明,在任一时刻t ,每个设备被使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少?(2)至多有3个设备被使用的概率是多少?(3)至少有1个设备被使用的概率是多少? 解:由题意,以X 表示任一时刻被使用的设备的台数,则X~b(5,0.1),于是 (1) 0729.039.021.025 )2(===C X P (2) 9995 .051.0559.041.045[1)]5()4([1) 3(1)3()2()1()0()3(=+-==+=-=>-==+=+=+==≤C C X P X P X P X P X P X P X P X P

概率论与数理统计习题及答案__第一章

《概率论与数理统计》习题及答案 第 一 章 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况, A =‘甲盒中至少有一球’ ; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’, B =‘通过的汽车不少于3台’ 。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论套练习题及答案

《概率论与数理统计》 同步练习册 学号________ 姓名________ 专业________ 班级________

省电子技术学校继续教育部二O一O年四月

练习一 一、选择题 1.设A,B,C表示三个随机事件,则A B C表示 (A)A,B,C中至少有一个发生;(B)A,B,C都同时发生;(C)A,B,C中至少有两个发生;(D)A,B,C都不发生。2.已知事件A,B相互独立,且P(A)=0.5,P(B)=0.8,则P(A B)= (A) 0.65 ; (B) 1.3; (C)0.9; (D)0.3。3.设X~B(n,p),则有 (A)E(2X-1)=2np;(B)E(2X+1)=4np+1;(C)D(2X+1)=4np(1-p)+1;(D)D(2X-1)=4np(1-p)。4.X的概率函数表(分布律)是 xi -1 0 1 pi 1/ 4 a 5/12 则a=() (A)1/3;(B)0;(C)5/12;(D)1/4。5.常见随机变量的分布中,数学期望和差一定相等的分布是 (A)二项分布;(B)标准正态分布;(C)指数分布;(D)泊松分布。 二、填空题 6.已知:A={x|x<3} ,B={x|2

7. 已知电路由电池A 与两个并联电池B 和C 串联而成,各电池工作与否相互独立。设电池A ,B ,C 损坏的概率均为0.2。则整个电路断电的概率是______________________. 三、证明题 8. 设随机变数ξ具有对称的分布密度函数)(x p ,即),()(x p x p -=证明:对任意的,0>a 有(1)-= -=-2 1)(1)(a F a F ? a dx x p 0 )(; (2)P (1 )(2)-=ξ。

第一章 概率论的基本概念习题答案

第三章 多维随机变量及其分布习题答案 3. 220,(1)(1),4,(,),0.5940, x y x y e e c F x y --<<+∞?--==? ? 其它 . 4. 2012.4(2),()0,X x x x f x ≤≤?-=??,其它201 2.4(34),()0,Y y y y y f y ≤≤?-+=? ? 其它. 5. ???=,0,4),(y x f ,),(其它G y x ∈???+=,0,48)(x x f X ,05.0其它<≤-x ?? ?-=, 0,22)(y y f Y 其它10<≤y . 6. (1) (|)(1),0,1,;,m m n m n P Y m X n C p p n m n -===-=≤否则(|)0P Y m X n ===; (2)(,)(1)/!,0,1,;,m m n m n n P Y m X n C p p e n n m n λλ--===-=≤否则(|)0P Y m X n ===. 7. 10. ⑴0y ≥时|0 ,(|)0 0,x X Y x e f x y x -≥?=?

11. ⑴放回抽样 ⑵ 不放回抽样 X 的条件分布律与上相同,再结合联合分布律可以看出: 放回抽样时独立,不放回抽样时不独立。 12. 1c = ; 当10x -<<时,|1/2,||(|)0, Y X x y x f y x -<-?=? ? 其它 ; 当| |1y <时,|1/(1||),1|| (|)0,X Y y x y f x y --<<-?=? ? 其它 . 13. ⑴ (2|2)5/16,(3|0)1/5P X Y P Y X ====== ; ⑶ ⑷ . ;0.375 . 16. ? ? ?<≥-=--00 ,0,)1()(6/3/z z e e z f z z Z . 17. ⑴(2)30 3!,()00,t T t t e f t t ->?=?≤? ;⑵(3)50()00,t T t t e f t t ->?=?≤?.

概率论第三章题库

第三章 多维随机变量及其分布 一、选择题 1、(易)设任意二维随机变量(X ,Y )的两个边缘概率密度函数分别为f X (x )和f Y (y ),则以 下结论正确的是( ) A.? +∞ ∞-=1)(dx x f X B. ? +∞ ∞ -= 2 1 )(dx y f Y C. ? +∞ ∞ -=0)(dx x f X D. ? +∞ ∞ -=0)(dx y f Y 2、(易)设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~( ) A. 211(,)N μσ B. 221(,)N μσ C. 2 12 (,)N μσ D. 2 22(,)N μσ 3、(易)设二维随机变量(X ,Y )服从区域D :x 2 +y 2 ≤1上的均匀分布,则(X ,Y )的概率密度为( ) A. f(x ,y)=1 B. 1(,)0, x y D f x y ∈?=? ?, (,),其他 C. f(x ,y)=1 π D. 1 (,)0, x y D f x y π?∈?=???, (,),其他 4、(中等)下列函数可以作为二维分布函数的是( ). A .1,0.8,(,)0, .x y F x y +>?=? ?其他 B .?????>>??=--.,0,0,0,),(00其他y x dsdt e y x F y x t s C . ??= ∞-∞ ---y x t s dsdt e y x F ),( D .? ????>>=--. , 0, 0,0,),(其他y x e y x F y x 5、(易)设二维随机变量(X ,Y )的概率密度为f (x ,y )=?????<<<<,, 0; 20,20,41 其他y x 则P{0

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率论第三章练习题

习 题 三 1.(1)盒子中装有3只黑球,2只红球,2只白球,在其中任取4只球.以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.(2)在(1)中求Y}-3P{X 3},Y P{X 2X},P{Y Y},P{X <=+=>. 2.设随机变量)Y X,(的概率密度为 ?? ?<<<<--=其他,0,42,20),6(),(y x y x k y x f (1) 确定常数k . (2)求3}Y 1,P{X <<. (3)求 1.5}P{X <. (4)求4}Y P{X ≤+. 3.设随机变量)Y X,(具有分布函数 ?? ?>>+--=----其他,0,0,0,1),(F y x e e e y x y x y x 求边缘概率密度. 4.将一枚硬币掷3次,以X表示前2次出现H的次数,以Y表示3次出现H的次数.求X,Y的联合分布律以及)Y X,(的边缘分布律. 5.设二维随机变量)Y X,(的概率密度为 ?? ?≤≤≤≤-=其他,0,0,10), 2(8.4),(x y x x y y x f 求边缘概率密度. 6.设二维随机变量)Y X,(的概率密度为 ?? ?≤≤=其他,0,1,),(22y x y cx y x f (1)确定常数C. (2)求边缘概率密度.

7.设二维随机变量)Y X,(的概率密度为 ?? ?<<=-其他,0,0,),(y x e y x f y 求边缘概率密度. 8.设X 和Y 是两个相互独立的随机变量,X 在区间)1,0(上服从均匀分布,Y 的概率密度为 ?????≤>=-.0,0,0,2 1)(2Y y y e y f y 求X 和Y 的联合概率密度. 9.设X 和Y 是两个相互独立的随机变量,其概率密度分别为 ?? ?≤≤=.,0,10,1)(X 其他x x f ???>=-.,0,0,)(Y 其他y e y f y 求随机变量Y X Z +=的概率密度. 10. 设随机变量X 和Y 相互独立,且具有相同的分布,它们的概率密度均为 ?? ?>=-.,0,1,)(1其他x e x f x 求随机变量Y X Z +=的概率密度. 11. 设二维随机变量)Y X,(的概率密度为 ?????>>+=+-其他,0,0,0,)(2 1),()(y x e y x y x f y x (1) 问X 和Y 是否相互独立? (2) 求Y X Z +=的概率密度. 12. 某种商品一周的需求量是一个随机变量,其概率密度为 ?? ?≤>=-.0,0,0,)(t t e t t f t 设各周的需求量是相互独立的.求 (1) 两周的需求量的概率密度. (2) 三周的需求量的概率密度.

相关主题
文本预览
相关文档 最新文档