当前位置:文档之家› 概率论与数理统计第三章课后知识题目解析

概率论与数理统计第三章课后知识题目解析

概率论与数理统计第三章课后知识题目解析
概率论与数理统计第三章课后知识题目解析

习题三

1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数

与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 222??222

??=

2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 324

C 35= 32

4

C 35= 322

4

C 35= 11322

4

C C 12C 35=132

4

C 2C 35

= 21322

4

C C 6C 35

= 2324

C 3

C 35

=

3.设二维随机变量(X ,Y )的联合分布函数为

F (x ,y )=?????≤

≤≤≤.,

020,20,sin sin 其他ππy x y x

求二维随机变量(X,Y)在长方形域

?

?

?

?

?

?

<

<

3

6

,

4

π

π

π

y

x内的概率. 【解】如图

πππ

{0,}(3.2)

463

P X Y

<≤<≤公式

ππππππ

(,)(,)(0,)(0,)

434636

F F F F

--+

ππππππ

sin sin sin sin sin0sin sin0sin

434636

2

(31).

4

=--+

=-

题3图

说明:也可先求出密度函数,再求概率。

4.设随机变量(X,Y)的分布密度

f(x,y)=

?

?

?>

>

+

-

.

,0

,0

,0

,)4

3(

其他

y

x

A y

x

e

求:(1)常数A;

(2)随机变量(X,Y)的分布函数;

(3)P{0≤X<1,0≤Y<2}.

【解】(1)由-(34)

00

(,)d d e d d1

12

x y

A

f x y x y A x y

+∞+∞+∞+∞

+

-∞-∞

===

????

得A=12

(2)由定义,有

(,)(,)d d

y x

F x y f u v u v

-∞-∞

=??

(34)340012e

d d (1

e )(1e )0,0,

0,0,

y y

u v x y u v y x -+--??-->>?==??

?????其他

(3) {01,02}P X Y ≤<≤<

12

(34)3800

{01,02}12e d d (1e )(1e )0.9499.

x y P X Y x y -+--=<≤<≤==--≈?

?

5.设随机变量(X ,Y )的概率密度为

f (x ,y )=?

?

?<<<<--.,0,

42,20),6(其他y x y x k

(1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有

2

4

2

(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞

-∞

-∞

=--==??

?

?

故 1

8

R =

(2) 13

{1,3}(,)d d P X Y f x y y x -∞-∞

<<=??

1

3

0213

(6)d d 88

k x y y x =

--=?? (3) 1

1.5

{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=??

??如图

1.5

4

2127d (6)d .832

x x y y =

--=?

?

(4) 2

4

{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=??

??如图b

2

40

2

12d (6)d .83

x

x x y y -=

--=?

?

题5图

6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为

f Y (y )=???>-.,

0,

0,55其他y y e

求:(1) X 与Y 的联合分布密度;(2) P {Y

≤X }.

题6图

【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为

1

,00.2,

()0.2

0,

.X x f x ?<

55e ,0,()0,

.y Y y f y -?>=??其他

所以

(,),()()X Y f x y X Y f x f y 独立

5515e

25e ,00.20,0.20,0,y

y x y --???<<>?==??

???

且其他.

(2) 5()(,)d d 25e

d d y

y

x

D

P Y X f x y x y x y -≤≤=

????如图

0.2

0.2

-550

-1d 25e d (5e 5)d =e 0.3679.

x

y x x y x -==-+≈???

7.设二维随机变量(X ,Y )的联合分布函数为

F (x ,y )=???>>----.,

0,

0,0),1)(1(24其他y x y x e e

求(X ,Y )的联合分布密度.

【解】(42)28e ,0,0,

(,)(,)0,x y x y F x y f x y x y -+?>>?==?

???

其他. 8.设二维随机变量(X ,Y )的概率密度为

f (x ,y )= 4.8(2),01,0,

0,.y x x y x -≤≤≤≤??

?

其他

求边缘概率密度. 【解】()(,)d X f x f x y y +∞

-∞

=?

x

204.8(2)d 2.4(2),01,

=0,.0,

y x y x x x ??--≤≤?=??

????其他 ()(,)d Y f y f x y x +∞

-∞

=

?

12y 4.8(2)d 2.4(34),01,

=0,.0,

y x x y y y y ?-?-+≤≤?

=??????其他

题8图 题9图

9.设二维随机变量(X ,Y )的概率密度为

f(x,y)=

?

?

?<

<

-

.

,0

,

,

其他

e y

x

y

求边缘概率密度.

【解】()(,)d

X

f x f x y y

+∞

-∞

=?

e d e,0,

=

0,.

0,

y x

x

y x

+∞-

-

??>

?

=

??

?

??

?

其他

()(,)d

Y

f y f x y x

+∞

-∞

=?

e d e,0,

=

0,.

0,

y y

x

x y y

--

??>

?

=

??

?

??

?

其他

题10图

10.设二维随机变量(X,Y)的概率密度为

f(x,y)=

?

?

?≤

.

,0

,1

,2

2

其他

y

x

y

cx

(1)试确定常数c;

(2)求边缘概率密度.

【解】(1)(,)d d(,)d d

D

f x y x y f x y x y

+∞+∞

-∞-∞

????

如图

2

11

2

-1

4

=d d 1.

21

x

x cx y y c

==

??

得21

4

c=.

(2) ()(,)d

X

f x f x y y

+∞

-∞

=?

2

124

2

21

21

(1),11,

d

8

4

0,0,.

x

x x x

x y y

?

?

--≤≤

??

==

??

??

??

?

其他

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

知识点汇总和思维导图

第九单元知识点汇总和思维导图【一轮复习】 一、溶液的形成 1、溶液概念:一种或几种物质分散到另一种物质里形成的均一的、稳定的混合物,叫做溶液 溶液的基本特征:均一性、稳定性 注意: a、溶液不一定无色,如CuSO4溶液为蓝色 FeSO4溶液为浅绿色 Fe2(SO4)3溶液为黄色 b、溶质可以是固体、液体或气体;水是最常用的溶剂 c、溶液的质量 = 溶质的质量 + 溶剂的质量溶液的体积≠溶质的体积 + 溶剂的体积 d、溶液的名称:溶质的溶剂溶液(如:碘酒——碘的酒精溶液) 2、溶质和溶剂的判断 3、饱和溶液、不饱和溶液 ⑴概念:(略); ⑵注意:①条件:“在一定量溶剂里”“在一定温度下”;②甲物质的饱和溶液不是乙物质的饱和溶液,故甲物质的甲物质的饱和溶液还可以溶解乙物质。 ⑶判断方法:继续加入该溶质,看能否溶解; ⑷饱和溶液和不饱和溶液之间的转化 注:①Ca(OH)2和气体等除外,它的溶解度随温度升高而降低;②最可靠的方法是:加溶质、蒸发溶剂 ⑸浓、稀溶液与饱和不饱和溶液之间的关系 ①饱和溶液不一定是浓溶液; ②不饱和溶液不一定是稀溶液,如饱和的石灰水溶液就是稀溶液; ③在一定温度时,同一种溶质的饱和溶液要比它的不饱和溶液浓; ⑹溶解时放热、吸热现象 a.溶解吸热:如NH4NO3溶解; b.溶解放热:如NaOH溶解、浓H2SO4溶解; c.溶解没有明显热现象:如NaCl 二、溶解度 1、固体的溶解度定义:在一定温度下,某固态物质在100g溶剂里达到饱和状态时所溶解的质量

四要素:①条件:一定温度②标准:100g溶剂③状态:达到饱和④质量:溶解度的单位:克 (1)溶解度的含义:如20℃时NaCl的溶液度为36g含义: a.在20℃时,在100克水中最多能溶解36克NaCl。 b.或在20℃时,NaCl在100克水中达到饱和状态时所溶解的质量为36克。(2)影响固体溶解度的因素:①溶质、溶剂的性质(种类)②温度 a大多数固体物的溶解度随温度升高而升高;如KNO3 b少数固体物质的溶解度受温度的影响很小;如NaCl c极少数物质溶解度随温度升高而降低。如Ca(OH)2 (3)溶解度曲线 例: (a)t3℃时A的溶解度为 80g ; (b)P点的的含义在该温度时,A和C的溶解度相同; (c)N点为 t3℃时A的不饱和溶液,可通过加入A物质、降温、蒸发溶剂的方法使它变为饱和; (d)t1℃时A、B、C、溶解度由大到小的顺序C>B>A; (e)从A溶液中获取A晶体可用降温结晶的方法获取晶体; (f)从B的溶液中获取晶体,适宜采用蒸发结晶的方法获取晶体; (g)t2℃时A、B、C的饱和溶液各W克,降温到t1℃会析出晶体的有A和B 无晶体析出的有 C ,所得溶液中溶质的质量分数由小到大依次为 A

《地球和地球仪》思维导图及知识点解析教学内容

《地球和地球仪》思维导图及知识点解析

收集于网络,如有侵权请联系管理员删除 《地球和地球仪》思维导图及知识点解析 一、思维导图 答案:(1)不规则球体(2)6371(3)4万(4)5.1亿(5)赤道(6)缩短(7)东西(8)赤道(9)垂直(10)半圆(11)南北(12)0°(13)20°W 和160°E(14)经线(15)纬线

二、知识点解析 知识点梳理(基础知识、基本方法、思维拓展)例题解析基础知识点一、地球的形状和大小 (1)认识过程 人类对地球形状的认识,经历了漫长而艰难的探索过程。 天圆地方我国古代有“天圆如张盖,地方如棋局”的说法 太阳和月亮人们根据太阳、月亮的形状,推测地球也是个球体,于是就有了“地球”的概念 麦哲伦环球航行路线图1519~1522年,葡萄牙航海家麦哲伦率领的船队,首次实现了人类环绕地球一周的航行,证实了地球是一个球体 地球卫星照片20世纪,人类进入了太空,从太空观察地球,并且从人造卫星上拍摄了地球的照片,确证地球是一个球体 (2)地球的大小 随着科学的发展,人们利用科学仪器,精确地测量出了地球的大小,下面是一组数据。【例1】下列可以说明地球的形状为球体的是()。 ①人造卫星拍摄的地球照片 ②远航的船舶逐渐消失在地平线以下 ③麦哲伦环球航行 ④环太平洋地带多火山和地震 ⑤流星现象 A.①②③B.②③④ C.③④⑤D.②③⑤ 解析:人造卫星拍摄的地球照片是地球形状的最直观、最有力的证据;远航船舶消失在地平线以下说明地球是一个球体;麦哲伦环球航行也证明了地球是球体。而火山、地震、流星现象与地球的形状无关。 答案:A 收集于网络,如有侵权请联系管理员删除

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

概率论与数理统计初步综合练习卷

概率论与数理统计初步综合练习 一.填空题 1设事件A 、B 、C , 则三个事件中至少有一个事件发生表示为 2. 设()3.0=A P ,()15.0=AB P ,且A 与B 相互独立,则()=?B A P ____________ 3. 设]5,1[~U X ,则X 落入[2,4]的概率为 4. 若).(~p n B X ,且 2=EX , 2.1=DX , =n 5. 已知()2=X E ,() 52=X E ,()=+12X D _____________。 6. 设1X ,2X ,……,n X 是总体()2 ,σμN 的样本,X ,2 S 分别是样本平均值和样本方 差, 则 n S X μ -服从 分布 二.选择题 1. 将一枚硬币连掷三次, 至少出现一次正面的概率为 ( ) A. 21 B. 43 C. 87 D 3 2 2 )(x F 是分布函数,则)2 3(F = ( ) A.0.1 B.0.3 C.0.6 D.1 3. 二维离散型随机变量 X 与Y 相互独立同分布, 且已知其边缘分布律为 {}{ }2111=-==-=Y P X P , {}{ }2 1 11====Y P X P 则 ==+)0(Y X P ( ) A. 21 B. 4 1 C.1 D .0 4. 如果X 与Y 满足)()(Y X D Y X D -=+,则必有( ) A. Y X 与独立 B. Y X 与不相关 C. 0(=) Y D D. 0)()(=Y D X D

5. 21,X X 为取自正态总体()2 ,~σμN X 的一个样本以下四个关于μ的无偏估计量中,方 差最小的是 ( ) A. 1X B. ()2121 X X +, C. 214341X X + D. 213 132X X + 6. 设总体X 服从正态分布,E(X)=2,E(X 2 )=8, X 1,X 2,…,X n 是X 的样本,1 1n i i X X n ==∑,则X 的分布为( ) A. 4(2,)N n B. (2,1)N C. 2(,4)N n D. 24(,)N n n 三.计算题1. 两台车床加工同样的零件,第一台加工的废品率为0.05,第二台加工的 废品率为0.06,加工出来的零件放在一起,已知这批零件中,由第一台车床加工和由第二台加工的各占一半,从这批零件中任取一件。 求:(1)取到合格品的概率。(2)取到的合格品是由第一台车床加工的概率。 设随机变量X 的密度函数?????=0 )(2x k x f 其他2 1<

地球和地球仪思维导图及知识点解析

1 / 13 《地球和地球仪》思维导图及知识点解析 一、思维导图 答案:(1)不规则球体(2)6371(3)4万(4)5.1亿(5)赤道(6)缩短(7)东西(8)赤道(9)垂直(10)半圆(11)南北(12)0°(13)20°W 和160°E(14)经线(15)纬线

二、知识点解析 知识点梳理(基础知识、基本方法、思维拓展)例题解析基础知识点一、地球的形状和大小 (1)认识过程 人类对地球形状的认识,经历了漫长而艰难的探索过程。 天圆地方我国古代有“天圆如张盖,地方如棋局”的说法 太阳和月亮人们根据太阳、月亮的形状,推测地球也是个球体,于是就有了“地球”的概念 麦哲伦环球航行路线图1519~1522年,葡萄牙航海家麦哲伦率领的船队,首次实现了人类环绕地球一周的航行,证实了地球是一个球体 地球卫星照片20世纪,人类进入了太空,从太空观察地球,并且从人造卫星上拍摄了地球的照片,确证地球是一个球体 (2)地球的大小 随着科学的发展,人们利用科学仪器,精确地测量出了地球的大小,下面是一组数据。【例1】下列可以说明地球的形状为球体的是()。 ①人造卫星拍摄的地球照片 ②远航的船舶逐渐消失在地平线以下 ③麦哲伦环球航行 ④环太平洋地带多火山和地震 ⑤流星现象 A.①②③B.②③④ C.③④⑤D.②③⑤ 解析:人造卫星拍摄的地球照片是地球形状的最直观、最有力的证据;远航船舶消失在地平线以下说明地球是一个球体;麦哲伦环球航行也证明了地球是球体。而火山、地震、流星现象与地球的形状无关。 答案:A 2 / 13

谈重点:地球的基本数据可以证明地球的形状 地球的赤道半径比极半径长约21千米,可以证明:地球是一个两极稍扁、赤道略鼓的不规则球体。 析规律:歌谣记忆地球的基本数据 3 / 13

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

1.4《地形图的判读》思维导图及知识点解析

. 《地形图的判读》思维导图及知识点解析 一、思维导图 答案:(1)海平面(2)垂直(3)闭和(4)相等(5)密集(6)稀疏(7 )降低(8)降低(9)海拔低处(10)海拔高处(11)

. 重叠相交(12)平原(13)海洋(14)等高线地形图 二、知识点解析 知识点梳理 例题解析 知识点一、等高线地形图 (1)地面高度的计算 ①海拔:地面某个地点高出海平面的垂直距离。 ②相对高度:某个地点高出另一个地点的垂直距离。 辨误区:海拔和相对高度的参照点不同 (2)等高线 ①含义:在地图上,把海拔相同的各点连接成线,叫等高线。 ②特点:除陡崖外,等高线一般不相交;同一条等高线上的各点,海拔相等;等高线有无数条。 析规律:等高距的含义及特点 任意相邻的两条等高线之间的距离,叫等高距。同一幅等高线地形图上,等高距相等。 【例1-1】世界最高峰珠穆朗玛峰海拔约8 844米,我国陆地最低的地方吐鲁番盆地在海平面以下155米,两地相对高度约是( )。 A .8689米 B .9003米 C .8999米 D .9009米 解析:首先确定所求两点的海拔。然后计算二者海拔之差就是相对高度。 答案:C 【例1-2】读图(单位:米),完成下列问题。

(3)等高线地形图 ①含义:用等高线表示地形的地图,叫等高线地形图。 等高线地形图实际上是将不同高度的等高线投影到同一平面上来表示起伏的地形。 ②等高线地形图的判读 在等高线地形图上,可以根据等高线的疏密状况判断地面的高低起伏。坡陡的地方,表示等高线密集;坡缓的地方,表示等高线稀疏。山体的不同部位,等高线形态也不一样。 山体不同部位的等高线分布特点,如下表: 地形部位等高线分布特点 山峰等高线封闭,数值从中间向四周逐渐降低,常用“”表示 山脊等高线的弯曲部分向海拔低处凸出 山谷等高线的弯曲部分向海拔高处凸出 鞍部两个山顶之间相对低洼的部分 陡崖等高线重叠、相交处,常用符号表示 (4)等深线 (1)写出图中字母所代表的地形名称。 A________,B______,C______,D_______,E________。 (2)H点与G点的相对高度是________米。 (3)沿B虚线和C虚线登山,较容易的是________,其原因是_______________。 (4)山峰M与A,较高的是________。 解析:第(1)题,根据图中等高线的分布特点可知,A处等高线封闭,数值从中间向四周逐渐降低,为山峰;B处等高线的弯曲部分向海拔低处凸出,为山脊;C处等高线的弯曲部分向海拔高处凸出,为山谷;D处位于两个山顶之间相对低洼的部分,为鞍部;E处有几条海拔不同的等高线重叠相交,为陡崖。第(2)题,H点所在的等高线是400米,G点处在200米等高线上,二者相对高度是200米。第(3)题,沿B处虚线的等高线稀疏,说明坡度较缓,易攀登。第(4)题,根据等高线地形图中数据变化规律,A、M两点海拔高,是山峰,且M峰多了 .

概率论与数理统计基本知识

概率论与数理统计基本知识点 一、概率的基本概念 1.概率的定义: 在事件上的一个集合函数P ,如果它满足如下三个条件: (1)非负性 A A P ?≥,0)( (2)正规性 1)(=ΩP (3)可列可加性 若事件,...,2,1,=n A n 两两互斥 则称P 为概率。 2.几何概型的定义: 若随机试验的样本空间对应一个度量有限的几何区域S ,每一基本事件与S 内的点一一对应,则任一随机事件A 对应S 中的某一子区域D 。(若事件A 的概率只与A 对应的区域D 的度量成正比,而与D 的形状及D 在S 中的位置无关。)==(每点等可能性)则称为几何概型。 的度量 对应区域的度量 对应区域S D )()()(Ω=Ω= A m A m A P 3.条件概率与乘法公式: 设A,B 是试验E 的两个随机事件,且0)(>B P ,则称) () ()|(B P AB P B A P = 为事件B 发生的条件下,事件A 发生的条件概率。(其中)(AB P 是AB 同时发生的概率) 乘法公式:)|()()|()()(B A P B P A B P A P AB P == 4.全概率公式与贝叶斯公式: (全概率公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则有∑== n i i i A B P A P B P 1 )|()()(。 (贝叶斯公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则∑== =?n k k k i i A B P A P A B P A P B A P n i 1 ) |()() |()()|(,,...,2,1。 5.事件的独立性: 两事件的独立性:(定义)设A 、B 是任意二事件,若P(AB)= P(A)P(B),则称事件A 、B 是相互独立的。(直观解释)A 、B 为试验E 的二事件,若A 、 B 的发生互不影响。 二、随机变量和分布函数:

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

概率论与数理统计复习汇总

第一章:概率论初步 基本概念:随机事件、古典概率、条件概率、事件的独立性 事件的关系与运算(结合集合论和文氏图来学习) 子事件(子集)、积事件(交集)、和事件(并集)、对立事件AB A B ∪A (补集)、 差事件 ;A B AB A AB ?==? 互斥事件 AB =Φ 事件发生:事件A 中至少有一个样本点出现. 处理技巧:把稍微复杂点事件处理成简单的互斥事件的和 []A B A B A =?∪∪运算规律:德摩根律 ; AB A B A B AB ==∪∪ 加法原理:(分类),乘法原理:12m n n n +++ 12m n n n ??? (分步) 排列: 全排列:; 组合:,m m n n A P ,!n ,! m m m n n n P C C C m n m n ?== 古典概型: 满足以下两个特点的随机试验 ()A n P A n Ω = 1. 试验的样本空间中有有限的样本点; 2. 每个样本点发生的可能性是相等.(对称性和均衡性) 例题1 计算下列概率题 (求概率前先设事件) 1. 抛两颗骰子,观察他们点数出现的情况, (1) 写出试验的样本空间; (2) 设两颗骰子点数相同,:A :B 两颗骰子点数和为5,求 (),().P A P B 2. 袋子中有a 只白球,b 只红球,2个人依次在袋子中取一球, (1) 做有放回的抽样,求第二个人取得白球的概率;()a P A a b =+ (2) 做无放回的抽样,求第二个人取得白球的概率; 1(1)()11()(1)b a a a a b a a P A a b a b a b a b a b a b a b () ?+?= ?+?==++?++?++?+ 注:当箱子中奖券足够多时,摸奖不分先后; 概率的公理化定义 设E 是一个随机试验,S 是它的样本空间,对于E 中的每一个事件A 赋予一个实数,记为,称为事件的概率,如果他满足下列的假设: ()P A A (1) (2) 对于0()P A ≤≤1;S 有()1;P S = (3) 设 两两互不相容,则有 12,,,,n A A A 1212()()()n n P A A A P A P A P A =+++∪∪ ∪∪ ()

基于思维导图的知识点

1. 函数、极限与连续 重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。 2. 一元函数微分学 重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。 3. 一元函数积分学 重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。 4. 向量代数与空间解析几何(数一) 主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等。该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。 5. 多元函数微分学

重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。 6. 多元函数积分学 重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。 7. 无穷级数(数一、数三) 重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。 8. 常微分方程及差分方程 重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。数一还要求会伯努利方程、欧拉公式等。

《概率论与数理统计》习题 第五章 数理统计的基本概念

第五章 数理统计的基本概念 一. 填空题 1. 设X 1, X 2, …, X n 为来自总体N(0, σ2 ), 且随机变量)1(~) (22 1 χ∑==n i i X C Y , 则常数 C=___. 解. ∑=n i i X 1 ~ N(0, n σ2 ), )1,0(~1 N n X n i i σ ∑= 所以 2 1,1σ σ n c n c = = . 2. 设X 1, X 2, X 3, X 4来自正态总体N(0, 22)的样本, 且2 43221)43()2(X X b X X a Y -+-=, 则a = ______, b = ______时, Y 服从χ2分布, 自由度为______. 解. X 1-2X 2~N(0, 20), 3X 3-4X 4~N(0, 100) )1,0(~2022 1N X X -, )1,0(~1004343N X X - 20 1 ,20 1 = = a a ; 100 1,100 1 = = b b . Y 为自由度2的χ2分布. 3. 设X 1, X 2, …, X n 来自总体χ2(n)的分布, 则._____)(______,)(==X D X E 解. 因为X 1, X 2, …, X n 来自总体χ2(n), 所以 E(X i ) = n, D(X i ) = 2n (i = 1, 2, …, n) ,)(n X E = 22) ()(2 2 1=?= =∑=n n n n X D X D n i i 二. 单项选择题 1. 设X 1, X 2, …, X n 为来自总体N(0, σ2 )的样本, 则样本二阶原点矩∑==n i i X n A 1 2 21的方差为 (A) σ2 (B) n 2 σ (C) n 42σ (D) n 4 σ 解. X 1, X 2, …, X n 来自总体N(0, σ2), 所以

概率论与数理统计学1至7章课后答案

一、第六章习题详解 6.1 证明(6.2.1)和(6.2.2)式. 证明: (1) ∑∑∑===+=+==n i i n i i n i i nb X a n b aX n Y n Y 1 11)(1 )(11 b X a b X n a n i i +=+=∑=1 )1( (2) ∑∑==+-+=--=n i i n i i Y b X a b aX n Y Y n S 1 212 2 )]()[(1)(11 221 2212)(1)]([1X n i i n i i S a X X n a X X a n =-=-=∑∑== 6.2设n X X X ,,,21 是抽自均值为μ、方差为2 σ的总体的样本, X 与2S 分别为该样本均值。证明与2 (),()/E X Var X n μσ==. 证:()E X =12121 1 1 [()]()()n n E X X X E X X X n n n n μμ++ = ++== ()Var X =22 1212221 1 1[()]()()n n Var X X X E X X X n n n n n σσ++ =++ == 6.3 设n X X X ,,,21 是抽自均值为μ、方差为2 σ的总体的样本,2 21 1()1n i i S X X n ==--∑, 证明: (1) 2 S =)(11 21 2X n X n n i i --= ∑= (2) 2()E S =2σ= 证:(1) ∑∑==+--=--=n i i i n i i X X X X n X X n S 1 2212 2 )2(11)(11 ]2)([112112X n X X X n n i i n i i +--=∑∑== ])(2)([11212X n X n X X n n i i +--=∑= )(1121 2X n X n n i i --=∑=

概率论与数理统计知识点汇总(详细)

概率论与数理统计知识点汇总(详细)

————————————————————————————————作者:————————————————————————————————日期:

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

(完整版)概率论与数理统计第一章测试题.doc

第一章随机事件和概率 一、选择题 1.设 A, B, C 为任意三个事件,则与 A 一定互不相容的事件为 (A)A B C (B) AB AC (C)ABC (D)A(B C) 2. 对于任意二事件A和 B,与A B B 不等价的是 (A)A B (B)B A (C) AB (D) AB 3.设A、B是任意两个事件, A B,P B 0 ,则下列不等式中成立的是()A. P( A) P(A B) B. P( A) P(A B) C. P( A) P(A B) D. P(A) P(A B) 4.设0 P A 1,0 PB 1,P(A B) P( A B) 1,则() A. 事件 A与 B互不相容 B. 事件 A与 B 相互独立 C. 事件 A与 B相互对立 D. 事件 A与 B互不独立 5.设随机事件A与B互不相容,且P A p, P B q ,则 A 与 B 中恰有一个发生的概率等于() A. p q B. p q pq C. 1 p 1 q D. p 1 q q 1 p 6.对于任意两事件A与B,P A B () A.PA PB B. PA PB PAB C.PA P AB D. P A P A P AB 7.若A、B互斥,且P A 0,P B 0 ,则下列式子成立的是() A. P(A B) P(A) B. P(B A) 0 C.PAB PAPB D. P(B A) 0 8.设P( A) 0.6, P( B) 0.8, P( B A) 0.8 ,则下列结论中正确的是() A. 事件 A、 B互不相容 B. 事件 A、 B互逆

C. 事件 A 、 B 相互独立 D. A B 9.设 A 、 B 互不相容, P A 0,P B 0 ,则下列结论肯定正确的是( ) A. A 与 B 互不相容 B.PBA 0 C.PAB PAPB D.PAB PA 10.设 A 、 B 、C 为三个事件, 已知 P B A 0.6, P C AB 0.4,则 P BC A ( ) A. 0.3 B. 0.24 C. 0.5 D. 0.21 11.设 A ,B 是两个随机事件,且 00 , P(B | A) P( B | A) ,则必有 (A ) P(A|B) P(A |B) (B ) P(A|B) P(A |B) (C ) P( AB) P(A)P(B) (D ) P(AB) P( A) P(B) 12.随机事件 A, B ,满足 P( A) P( B) 1 和P(A B) 1,则有 2 (A )A B (B ) AB (C ) P(A B ) 1 (D ) P(A B) 0 13.设随机事件 A 与 B 互不相容, P(A) 0, P(B) 0 ,则下面结论一定成立的是 (A )A , B 为对立事件 (B ) A , B 互不相容 (C ) A,B 不独立 (D )A, B 独立 14.对于事件 A 和 B ,设 A B , P(B)>0 ,则下列各式正确的是 (A ) P(B) ( B ) P( A) (C ) P( A B) P(B) (D )P( A B) P(A ) P(B | A) P( A| B) 15.设事件 A 与 B 同时发生时,事件 C 必发生,则 (A ) P(C) P( A) P(B) 1 (B ) P(C) P( A) P(B) 1 (C ) P(C) P( AB) ( D ) P(C) P( A B) 16.设 A,B,C 是三个相互独立的随机事件,且 0

相关主题
文本预览
相关文档 最新文档