当前位置:文档之家› 光纤中受激布里渊散射

光纤中受激布里渊散射

光纤中受激布里渊散射
光纤中受激布里渊散射

在光纤中传播的光波,其大部分是前向传播的,但由于光纤的非结晶材料在微观空间存在不均匀结构,有一小部分光会发生散射。光纤中的散射过程主要有三种:瑞利散射、拉曼散射和布里渊散射,它们的散射机理各不相同。其中,布里渊散射是光波与声波在光纤中传播时相互作用而产生的光散射过程,在不同的条件下,布里渊散射又分别以自发散射和受激散射两种形式表现出来。

在注入光功率不高的情况下,光纤材料分子的布朗运动将产生声学噪声,当这种声学噪声在光纤中传播时,其压力差将引起光纤材料折射率的变化,从而对传输光产生自发散射作用,同时声波在材料中的传播将使压力差及折射率变化呈现周期性,导致散射光频率相对于传输光有一个多普勒频移,这种散射称为自发布里渊散射。自发布里渊散射可用量子物理学解释如下:一个泵浦光子转换成一个新的频率较低的斯托克斯光子并同时产生一个新的声子;同样地,一个泵浦光子吸收一个声子的能量转换成一个新的频率较高的反斯托克斯光子。因此在自发布里渊散射光谱中,同时存在能量相当的斯托克斯和反斯托克斯两条谱线,其相对于入射光的频移大小与光纤材料声子的特性有直接关系。

由于构成光纤的硅材料是一种电致伸缩材料,当大功率的泵浦光在光纤中传播时,其折射率会增加,产生电致伸缩效应,导致大部分传输光被转化为反向传输的散射光,产生受激布里渊散射。具体过程是:当泵浦光在光纤中传播时,其自发布里渊散射光沿泵浦光相反的方向传播,当泵浦光的强度增大时,自发布里渊散射的强度增加,当增大到一定程度时,反向传输的斯托克斯光和泵浦光将发生干涉作用,产生较强的干涉条纹,使光纤局部折射率大大增加。这样由于电致伸缩效应,就会产生一个声波,声波的产生激发出更多的布里渊散射光,激发出来的散射光又加强声波,如此相互作用,产生很强的散射,这就是受激布里渊散射(SBS)。相对于光波而言,声波的能量可忽略,因此在不考虑声波的情况下,这种SBS过程可以概括为频率较高的泵浦光的能量向频率低的斯托克斯光转移的过程。这样受激布里渊散射可以看成仅仅是在有泵浦光存在的情况下在电致伸缩材料中传播的斯托克斯光经历了一个光增益的过程。在受激布里渊散射中,虽然理论上反斯托克斯和斯托克斯光都存在,一般情况下只表现为斯托克斯光。

受激布里渊散射对光纤传输系统特性的影响

光 通 信 技 术V o l.23 O PT I CAL COMM U N I CA T I ON T ECHNOLO GY N o.1 中国电信技术类核心期刊 受激布里渊散射对光纤传输系统特性的影响α 王晖 谢世钟 谢 涌 吴小萍 孙成城 周炳琨(清华大学电子工程系北京100084) 摘要 受激布里渊散射(SB S)是光纤传输系统中一种重要的非线性效应,它限制了光纤中的光功率。文中主要讨论了SB S的阈值特性与光源静态线宽及光源调制类型的关系,并通过实验进行了验证。同时,还研究了SB S效应对系统误码率特性的影响。所得结果可为系统设计工作中考虑SB S的影响提供一定依据。 关键词 受激布里渊散射 光纤传输系统 Effect for Character istic of Optica l F iber Tran s m ission Syste m due to Sti m ula ted Br il-lou i n Sca tter i ng W ang Hu i,X ie Sh izhong,X ie Y ong,W u X i aop i ng,Sun Chengcheng, Zhou B i ngkun Tsi nghua Un iversity,Be ij i ng100084 Abstract Sti m u lated B rillou in Scattering(SB S)one of i m po rtan t non linear op tical ef2 fects in op tcal fiber tran s m issi on system,it li m its the op tical pow er that can be tran s m it2 ted th rough fiber.In th is p aper,the relati on sh i p of SB S th resho ld characteristic w ith linew idth of ligh t sou rce and m odu lati on typ es w as talked abou t,and w as app roved by exp eri m en ts.A t the sam e ti m e,w e have investigated the effects fo r b ite ero r rate charac2 teristic of system due to SB S. Keywords Sti m u lated b rillou in scattering Op tcal fiber tran s m issi on system 1 引言 在长距离光纤通信系统中,大功率半导体激光器和掺铒光纤放大器(ED FA)被广泛使用,使得传输线路中的光功率提高到很高的水平,最高点可达到50甚至100mW,这就可能导致产生各种光纤非线性效应,对系统传输质量产生较大影响。其中受激布里渊散射(SB S)因阈值较低,在窄线宽情况下可能达到仅仅几个mW的量级,而对系统的影响最大[1]。 SB S是一种在光纤内发生的非线性过程,一旦光纤中传输的光功率超过布里渊阈值,SB S将把部分输入功率转换为后向斯托克斯波,造成传输光强不稳定,从而引入噪声,影响接收灵敏度,而且SB S带来泵浦消耗,使接收端功率远小于无SB S效应时的功率,极大地恶化系统传输特性[2]。因此,在光通信系统中,必须保证进入光纤的功率低于SB S阈值。 本文研究了光源为连续光(C W)及光源 α

受激布里渊散射相位共轭激光组束规律的研究

第14卷 第3期 2002年5月 强激光与粒子束 H IGH POW ER LA SER AND PA R T I CL E B EAM S V o l.14,N o.3  M ay,2002  文章编号:100124322(2002)0320353204 受激布里渊散射相位共轭激光组束规律Ξ 丁迎春, 吕志伟, 何伟明 (哈尔滨工业大学光电子技术研究所,黑龙江哈尔滨150001) 摘 要: 提出了一种新的SBS激光组束的方法。此方法中,一束按时间分布的激光脉冲序列作为泵浦光 从SBS放大池的一端入射,另一束Stokes频移种子光从SBS池的另一端入射,Stokes种子光在SBS池的相互 作用区提取泵浦光能量。研究了组束效率和输出脉宽随脉冲串个数、间隔和泵浦功率密度等的变化规律。研究 结果表明种子注入型泵浦脉冲串的受激布里渊散射相位共轭组束是一种高效的组束方法。 关键词: 相位共轭;受激布里渊散射;组束效率;脉冲串 中图分类号:O433.5 文献标识码:A 受激布里渊散射是最早被证明能够产生相位共轭的非线性光学技术。从此人们进行了大量的SB S应用的研究,其中包括利用SB S相位共轭技术进行激光组束的研究[1~4]。这种研究的目的是把多束激光合并成具有均匀波前的单一相干光束。文献报道SB S相位共轭激光组束得到标定能量,打破了传统的由单一激活介质得到的最大能量的限制[5]。SB S相位共轭激光组束有两种方法,一种是重叠耦合组束,另一种是后向注入种子光组束。在重叠耦合组束中,多束入射光交叉在SB S波导中或者是SB S池的远场相互作用区。在这种情况下所有光束的布里渊声场都是共同的,导致了Stokes输出光束是入射光束的共轭。也就是说在重叠耦合组束中不仅入射光束的相位彼此锁定(即在两光束间建立起固定的位相关系),而且两光束间的相对位相被共轭,返回光束有零的相位延迟。在后向注入种子光组束中,把一束与入射光方向相反的种子光注入到被组束的入射光束的相互作用区,种子光束的功率低于SB S的峰值功率,尽管如此,但它也比通常激发共轭光束的任意声场噪声的自发辐射要大,所以只要控制种子光束的相就可以控制Stokes输出光束的相。也就是说,在后向注入种子光组束中,SB S返回光(Stokes输出)的位相被外部提供的低功率的种子光束锁定。在以上两种组束方法中,两束激光要同时到达SB S池,因此调整精度要求较高;多束激光同时入射到SB S池,使得这种组束方法不能承受大能量负载;组束效率较低,为了弥补上述组束方法的不足,我们研究了串脉冲的SB S相位共轭组束。 F ig.1 Physical model of beam com binati on by sti m ulated B rillouin scattering 图1 SBS相位共轭组束的物理模型 1 理论模型 1.1 物理模型 图1是串脉冲的SB S相位共轭组束的物理模型。在SB S放大器模型中,泵浦脉冲串从z=L处入射到放大池,Stokes种子从z=0处入射到放大池,Stokes种子光与泵浦脉冲串在放大池中相互作用,Stokes种子光束从泵浦脉冲串提取能量并从z=L处出射。 1.2 数学模型 斯托克斯场和抽运场由麦克斯韦波动方程描述,介质中的声波场由纳维2斯托克斯(N avier2Stokes)能量传 Ξ收稿日期:2001204205; 修订日期:2002201215 基金项目:1999年教育部“跨世纪优秀人才培养计划”基金;国家863惯性约束聚变领域资助课题;国家自然科学基金(60088001)资助作者简介:丁迎春(19662),女,副教授,哈尔滨工业大学物理电子学专业博士研究生,现从事非线性光学方面的研究。

布里渊散射激光雷达探测技术研究

布里渊散射激光雷达探测技术研究 【摘要】基于布里渊散射的激光雷达探测技术是一种新型的探测技术,已经在大气国防、环境监测、气象保障、等领域受到越来越多的关注。在20km以下,较长波长的激光能分辨出更明显的布里渊频移,利用该频移,可进行空气中隐身目标的探测。此外,还可以用布里渊信号来精确测量大气不同高度的温度、压强等物理参数。 【关键词】激光雷达;布里渊散射;频移;高度 引言 激光雷达在目标跟踪与识别,导航制导、大气探测等领域发挥着重要作用。常规的激光雷达是通过测量目标的反射回波信号幅度来获得目标的参数信息,近年来,基于调频的探测方法越来越受重视,特别是瑞利、布里渊散射探测技术在星载、机载大气探测系统中的成功应用,已显示出高灵敏度、高信噪比,探测系统结构简单,适用范围广等优点。马泳等人用大气布里渊散射来探测大气温度,该方法测量大气温度的不确定度小于0.4256K[1]。用探测布里渊散射频移信号来探测水下隐身目标,该方法不是探测隐身目标本身的回波信号,而是通过探测隐身目标周围环境的布里渊信号变化来发现和跟踪隐身目标。实验证明基于布里渊散射的探测方法具有很好的反隐身性[2]。大气层内飞行器周围大气温度低、高压、气体分子扰动剧烈,存在很强空气激波等特征,这些特征使利用隐身飞行器周围大气布里渊散射来探测隐身目标成为可能。 用布里渊散射来探测水下隐身目标时,水中发生的布里渊频移约为7.5GHz,用高光谱分辨率探测器能直接分辨出布里渊散射频移信号,在探测点附近有目标时,布里渊信号消失或变得极不明显,无目标时无此现象[3]。在大气中,由于散射介质和水中不同,大气布里渊散射频移大约在 1.03~1.3GHz,以目前的技术很难把布里渊信号和瑞利信号分开,这给利用布里渊散射进行大气探测带来了很大困难,我们首次提出通过预先建立大气布里渊散射模型,然后借助模型对实际探测信号进行布里渊特征频谱分析来探测大气中的隐身目标。 1.大气布里渊散射理论基础 大气布里渊散射和水的布里渊散射的原理相同,只是介质不同,根据布里渊散射探测水下隐身目标的实验结果:当激光探测点附近存在隐身目标时,布里渊峰会消失或变得不明显,无目标时,布里渊峰比较稳定的对称分布在瑞利峰的两侧。在大气高度小于20km的标准大气中,激光波长越长,两侧对称的布里渊峰越明显;温度越低,压强越大,布里渊峰越明显。在同一波长条件下,离海平面越近,布里渊峰越强。这些特征不仅使利用大气布里渊散射探测20km以下的空中隐身目标成为可能,而且更有利于海面上的隐身舰船等目标的探测。20km及以上,由于压强急剧下降,空气气体分子密度小,不同激光波长的布里渊散射峰变得不明显,且几乎隐藏在瑞利散射谱内,不利于隐身目标的探测。

基于瑞利散射的分布式光纤传感技术

光纤中的散射光 当光(电磁)波射入介质时,若介质中存在某些不均匀性(如电场、相位、粒子数密度n、声速v等)使光(电磁)波的传播发生变化,有一部分能量偏离预定的传播方向而向空间中其他任意方向弥散开来,这就是光散射。光的散射现象的表现形式是多种多样的,从不同的角度出发,可有不同的分类,但从产物的物理机制来看,可以分为两大类: 第一类是非纯净介质中的光散射,该散射现象不是介质本身所固有的,而强烈地依赖于掺杂进来的散射中心的性质或介质本身的纯净度。其规律主要表现为:散射光的频率与入射光的频率相同;散射光的强度与入射波长成一定关系。 第二类是纯净介质中的散射,即使所考虑的介质是由成分相同的纯物质组成,其中不含有外来掺杂的质点、颗粒或结构缺陷等,仍然有可能产生光的散射现象,这些散射现象是介质本身所固有的,与介质本身的纯净度没有本质上的关系。属于这类纯净介质的散射现象有如下几种: 1)瑞利散射设介质是由相同的原子或分子组成,由于这些原子或分子空间分布的随机性的统计起伏(密度起伏),造成与电极化特性相应的随机性起伏,而形成入射光的散射。这种散射现象的特点是频率与入射光频率相同,在散射前后原子或分子内能不发生变化,散射光强度与入射光波长的四次方成反比。 2)拉曼散射这种散射现象通常发生在由分子组成的纯净介质中,组成戒指的分子是由一定的原子或离子组成的,它们在分子内部按一定的方式运动(振动或转动),分子内部粒子间的这种相对运动将导致感生电偶极矩随时间的周期性调制,从而可以产生对入射光的散射作用;在单色光入射的情况下,这将是散射光的频率相对于入射光发生一定的移动,频移量正好等于上述调制频率,亦即与散射分子的组成和内部相对运动规律有关。 3)布里渊散射对于任何种类的纯净介质来说,由于组成介质的质点群连续不断的做热运动,使得在介质内始终存在着不同程度上的弹性力学振动或声波场。连续介质的这种宏观弹性力学振动,意味着介质密度(从而也是折射率)随时间和空间的周期性起伏,因而可对入射光产生散射作用,这种作用类似于超声波对光的衍射作用,并且散射光的频移大小与散射角及介质的声波特性有关。

布里渊散射分布式光纤传感器综述

基于布里渊散射的分布式光纤传感器综述 一引言 光纤传感器具有无辐射干扰、抗电磁干扰性好、化学稳定性好等优点,受到越来越多的重视。其中分布式光纤传感器(DOFS)不仅具有一般光纤传感器的优点,而且可以在沿光纤的路径上同时得到被测量场在时间和空间上的连续分布信息。能做到对大型基础工程设施的每一个部位都象人的神经系统一样进行远程监控。因此具有广范的应用前景,在民用和国防诸如城市煤气管道、城市输电/通信缆线、海底输油气管道、海底电缆、水库水坝、桥梁、隧道、高速公路、大型设施等建筑物的应力温度检测方面有独特的优势,因此受到越来越多的重视。 由于分布式光纤传感器具有其它传感技术无法比拟的优点,因此成为目前传感技术研究领域的热点之一。目前对它的研究主要集中在以下三个方面:(1) 基于瑞利散射的分布式光纤传感技术; (2) 基于拉曼散射的分布式光纤传感技术; (3) 基于布里渊散射的分布式光纤传感技术。 瑞利散射是入射光与介质中的微观粒子发生弹性碰撞所引起的,散射光的频率与入射光的频率相同.在利用后向瑞利散射的光纤传感技术中,一般采用光时域反射(OTDR)结构来实现被测量的空间定位,基于瑞利散射的研究已经趋于成熟, 并逐步走向实用化。基于后向瑞利散射的传感技术是现代分布式光纤传感技术的基础,它在80年代初期得到了广泛的发展.然而由于该技术难以克服测量精度低、传感距离短的缺陷,目前在这方面的研究已鲜有报道.拉曼散射DOFS利用的是光纤中的自发拉曼散射光,信号微弱,较自发布里渊散射信号约低一个数量级,因此传感性能较低且难以实现几十公里以上的长距离传感;另外拉曼散射只对温度敏感,难以用于地质、建筑结构等的健康检测。而光纤的布里渊散射对温度和应变都敏感,通过检测来自传感光纤的布里渊散射光的频移和强度,布里渊散射DOFS得到沿光纤分布的温度或应变信息;并且工作于1.55μm波长附近的布里渊散射DOFS,光信号受到的衰减和色散较小,从而使得布里渊散射DOFS适合于长距离(大于几十千米)分布式传感。 虽然基于布里渊散射的分布传感技术的研究起步较晚, 但由于它在温度、应变测量上达到的测量精度、测量范围以及空间分辨率均高于其他传感技术, 因此这种技术目前得到广泛关注与研究。 布里渊散射DOFS主要有布里渊光时域反射计(BOTDR)、布里渊光时域分析(BOTDA)、布里渊光频域分析(BOFDA)三种,由于具有不同的光信号处理结构和布里渊散射作用机制,因此他们具有不同的性能特点和适用场合。另外日本的保利和夫教授提出的基于基于布里渊相关域分析(BOCDA、BOCDR)的光纤传感技术也有自己独到的地方。 基于自发布里渊散射的BOTDR,拥有单端光信号处理的优点,但由于自发布里渊散射光较微弱,传感器的分辨率和响应时间受到很大的制约。 基于受激布里渊散射的BOTDA,具有检测信号较强的优点,相对于BOTDR,传感器的分辨率和响应时间可得到有效的改善,但BOTDA一般需要对传感光纤的两端进行光信号处理,使用场合受到一定的限制。 基于布里渊光频域分析的BOFDA,和BOTDR、BOTDA相比,BOFDA同

单模光纤中受激布里渊散射阈值研究

文章编号:025827025(2005)0420497204 单模光纤中受激布里渊散射阈值研究 沈一春,宋牟平,章献民3,陈抗生 (浙江大学信息与电子工程学系,浙江杭州310027) 摘要 分析和讨论了受激布里渊散射(SBS )阈值计算的Smith 模型和K üng 模型,研究了更为准确估算光纤中布里渊散射阈值的方法,通过布里渊增益系数与光纤长度的关系,发现对于较短长度光纤,其布里渊增益系数随着光纤长度变化范围较大,仅在长距离光纤时,布里渊增益系数才可以近似为常数。实验测量了25km 单模光纤的受激布里渊散射阈值,推导出用布里渊时域反射仪(BO TDR )测量受激布里渊散射阈值计算公式,最后用布里渊时域反射仪测量了不同长度光纤受激布里渊散射阈值,实验结果与理论分析吻合。关键词 光电子学;单模光纤;布里渊时域反射仪;受激布里渊散射中图分类号 TN253 文献标识码 A Analysis and Measurement of Stimulated Brillouin Scattering Threshold in Single Mode Fiber SH EN Y i 2chun ,SON G Mu 2ping ,ZHAN G Xian 2min ,C H EN Kang 2sheng (De partment of I nf ormation and Elect ronic Engineering ,Zhej iang Universit y ,H angz hou ,Zhej iang 310027,China ) Abstract The Smith ′s model and K üng ′s model for calculating the threshold of stimulated Brillouin scattering (SBS )are analyzed and discussed.The more exact method is investigated.The relationship between critical gain coefficient and fiber length is obtained ,which shows that the critical gain coefficient can be considered as constant only when fiber length is long enough.The SBS threshold of 25km single mode fiber is measured by experiment.Finally ,the experiment to measure SBS threshold using Brillouin optical 2time 2domain reflectometer (BO TDR )is done.The results are well agreed with the theoretical predication. K ey w ords optoelectronics ;single mode fiber ;Brillouin optical 2time 2domain reflectometer ;stimulated Brillouin scattering 收稿日期:2004202217;收到修改稿日期:2004207206 基金项目:浙江省自然科学基金(M603127)资助项目。 作者简介:沈一春(1979— ),男,江苏南通人,浙江大学信息与电子工程学系博士研究生,主要从事光纤光子学方面的研究。E 2mail :syczju @https://www.doczj.com/doc/cf7765543.html,  3通信联系人。E -mail :zhangxm @https://www.doczj.com/doc/cf7765543.html, 1 引 言 受激布里渊散射(SBS )是一种光纤内发生的非线性过程,抽运波通过电致伸缩产生声波,然后引起介质折射率的周期性调制。抽运引起的折射率光栅通过布拉格衍射抽运光,由于多普勒位移与声速移动的光栅有关,散射光产生了频率下移,形成了斯托克斯波[1]。受激布里渊散射是光纤中的一种常见的非线性现象,通常会对光通信系统造成危害[2~4]。但近些年来,光纤中的受激布里渊散射在激光器、放大器、滤波器、传感器等许多领域的应用引起了人们 极大的关注[5~9]。光纤中布里渊散射一旦达到阈 值,受激布里渊散射将把绝大部分输入功率转换为后向斯托克斯波。因而研究光纤中的布里渊散射阈值显得十分必要。Smit h 提出了布里渊散射阈值的理论估算法[10],由于当时光纤损耗较大,这样的理论估算法应用于现在低损耗光纤并不准确。传统上测量光纤中布里渊散射阈值的系统搭建比较复杂,而且不适合野外作业。C. C.Lee 等[11]提出了使用布里渊时域反射仪(BO TDR )测量光纤中布里渊散射阈值的简单方法,但使用的理论模型中将布里渊   第32卷 第4期2005年4月 中 国 激 光 C H IN ESE J OU RNAL O F L ASERS Vol.32,No.4 April ,2005

SR 121-2012 单模光纤的受激布里渊散射阈值测试方法

目 录 1 概述 ..................................................................... 1 2 缩略语 ................................................................... 1 3 SBS理论 (1) 3.1 物理过程 ............................................................ 2 3.2 阈值特性 ............................................................ 2 4 SBS阈值功率的测试装置 . (3) 4.1 光源 ................................................................ 4 4.2 掺铒光纤放大器 ...................................................... 4 4.3 可变光衰减器 ........................................................ 4 4.4 光纤偏振控制器 ...................................................... 4 4.5 耦合器和环形器 ...................................................... 5 4.6 耦合器尾纤与接续 .................................................... 5 4.7 端口C光纤连接 ....................................................... 5 4.8 功率计 .............................................................. 6 5 测试程序 .. (6) 5.1 反射功率测试 ........................................................ 6 5.2 输入功率测试 ........................................................ 7 6 系统测试的重复性 ......................................................... 7 7 SBS阈值定义 .. (7) 7.1 定义A ............................................................... 9 7.2 定义B ............................................................... 9 8 测试结果的分析和计算 .. (9) 8.1 采用定义A时的数据分析 ............................................... 9 8.2 采用定义B时的数据分析 .............................................. 10 8.3 测试和计算的重复性 ................................................. 10 8.4 试验数据与理论计算 ................................................. 11 8.5 dBm与mW的转换 ...................................................... 11 8.6 长度归一化 ......................................................... 11 8.7 衰减归一化 ......................................................... 13 9 结果 .................................................................... 13 参考文献 (14) 电话:82054513 h t t p ://w w w .p t s n .n e t .c n

基于布里渊散射的分布式光纤监测系统在管道安全监测中的应用

Journal of Oil and Gas Technology 石油天然气学报, 2019, 41(6), 80-82 Published Online December 2019 in Hans. https://www.doczj.com/doc/cf7765543.html,/journal/jogt https://https://www.doczj.com/doc/cf7765543.html,/10.12677/jogt.2019.416100 Application of Distributed Optical Fiber Sensing Technology Based on Brillouin Scattering in Pipeline Safety Monitoring Tao Wang1, Hao Lu2, Yu Bai2, Xiaoke Li2 1Design Branch of China Petroleum Pipeline Engineering Co. Ltd., Langfang Hebei 2China Petroleum Pipeline Engineering Co. Ltd., International, Langfang Hebei Received:Aug. 20th, 2019; accepted: Oct. 18th, 2019; published: Dec. 15th, 2019 Abstract This paper introduces the distributed optical fiber sensing technology principle of temperature and strain measurement through combining the pipeline security monitoring method. The DiTeSt distributed optical fiber monitoring system based on brillouin scattering principle is used for im-plementing the pipeline safety monitoring of pipe deformation, pipe pushing mobile, pipeline leak and erosion in the pipeline monitoring project of the Andes pipeline. The pipeline monitoring system can provide warning of pipeline disaster events timely and effectively, improve the effi-ciency of the pipeline safety monitoring, ensure the normal and safety operation of pipelines and reduce the pecuniary loss of operators. Keywords Pipeline Safety Monitoring, Brillouin Scattering, Distributed Optical Fiber Sensing System, Safe Operation

光纤中受激布里渊散射

在光纤中传播的光波,其大部分是前向传播的,但由于光纤的非结晶材料在微观空间存在不均匀结构,有一小部分光会发生散射。光纤中的散射过程主要有三种:瑞利散射、拉曼散射和布里渊散射,它们的散射机理各不相同。其中,布里渊散射是光波与声波在光纤中传播时相互作用而产生的光散射过程,在不同的条件下,布里渊散射又分别以自发散射和受激散射两种形式表现出来。 在注入光功率不高的情况下,光纤材料分子的布朗运动将产生声学噪声,当这种声学噪声在光纤中传播时,其压力差将引起光纤材料折射率的变化,从而对传输光产生自发散射作用,同时声波在材料中的传播将使压力差及折射率变化呈现周期性,导致散射光频率相对于传输光有一个多普勒频移,这种散射称为自发布里渊散射。自发布里渊散射可用量子物理学解释如下:一个泵浦光子转换成一个新的频率较低的斯托克斯光子并同时产生一个新的声子;同样地,一个泵浦光子吸收一个声子的能量转换成一个新的频率较高的反斯托克斯光子。因此在自发布里渊散射光谱中,同时存在能量相当的斯托克斯和反斯托克斯两条谱线,其相对于入射光的频移大小与光纤材料声子的特性有直接关系。 由于构成光纤的硅材料是一种电致伸缩材料,当大功率的泵浦光在光纤中传播时,其折射率会增加,产生电致伸缩效应,导致大部分传输光被转化为反向传输的散射光,产生受激布里渊散射。具体过程是:当泵浦光在光纤中传播时,其自发布里渊散射光沿泵浦光相反的方向传播,当泵浦光的强度增大时,自发布里渊散射的强度增加,当增大到一定程度时,反向传输的斯托克斯光和泵浦光将发生干涉作用,产生较强的干涉条纹,使光纤局部折射率大大增加。这样由于电致伸缩效应,就会产生一个声波,声波的产生激发出更多的布里渊散射光,激发出来的散射光又加强声波,如此相互作用,产生很强的散射,这就是受激布里渊散射(SBS)。相对于光波而言,声波的能量可忽略,因此在不考虑声波的情况下,这种SBS过程可以概括为频率较高的泵浦光的能量向频率低的斯托克斯光转移的过程。这样受激布里渊散射可以看成仅仅是在有泵浦光存在的情况下在电致伸缩材料中传播的斯托克斯光经历了一个光增益的过程。在受激布里渊散射中,虽然理论上反斯托克斯和斯托克斯光都存在,一般情况下只表现为斯托克斯光。

基于布里渊散射光的分布式光纤传感技术

基于布里渊散射的分布式光纤传感技术 1.引言 光导纤维在通信系统中的应用早已为人熟知,如今全世界高速便捷的网络也离不开光纤的发展。除了光纤通信以外,还有另一类针对光纤的重要研究方向——光纤传感。 与传统的电类传感器相比,光纤传感器具有抗电磁干扰、重量轻、易于嵌入、成本低等优点。这些优势使得光纤传感技术在实际工程中的应用拥有非常乐观的前景。例如,在一些环境恶劣,如强磁场的检测条件下,电类传感器可能无法正常工作或者损坏,但是光纤传感器受到外界影响较小,仍能保持稳定的工作状态。在对建筑结构的检测中,光纤传感器同样是较佳的选择。由于光纤本身重量轻且纤细,可以方便地分布在建筑结构中,对结构的各个部位进行全面的监控。另外光纤嵌入后不会对结构造成较大的影响,使结构保持其原有的状态。 分布式光纤传感是光纤传感技术中的一个研究热点,其优势是能够测试光纤沿线各点处的传感参量。虽然一般情况下其测试精度不如高精度的点式传感器,如光纤布拉格光栅(Fiber Bragg Grating, FBG),但是其利用光纤的特性真正实现了“全分布式”的传感。前述对建筑结构的检测,即是分布式光纤传感的一个重要应用。 基于布里渊散射的分布式传感技术是分布式传感中的研究热点,因其能够对应变与温度实现较高精度的单参量或双参量同时测量,在实际应用中亦有广阔的前景。本文仅关注其中的一种——布里渊光时域反射技术(Brillouin Optical Time-domain Reflectometry, BOTDR)。布里渊光时域反射技术是最简单的一种形式,其空间分辨率、测量精度等不如其他更为复杂的布里渊传感技术,但是拥有更简单的系统结构和单端测量的优势,且其性能指标已经可以满足许多应用的要求,因此在实际应用中更受欢迎。 由于布里渊光时域反射技术测量的是自发布里渊散射,其信号微弱,信噪比较低。并且其各项性能指标之间相互制约,难以得到同时提高,例如空间分辨率和频移精度之间存在的权衡问题。为了试图解决或改善这些问题,本文对其重要的性能参数进行详尽分析,将对布里渊光时域反射技术中的信号处理技术和编码

拉曼散射与布里渊散射

拉曼散射与布里渊散射 拉曼散射和布里渊散射都属于非弹性散射,它是光场经过非弹性散射将能量传递给介质产生的效应。非弹性散射的一个特点就是它的散射频率不等同于入射频率。 布里渊散射 布里渊散射是泵浦光子、斯托克斯光子与声子间的相互作用,其过程是一个泵浦光子转换成一个新的频率较低的斯托克斯光子并同时产生一个新的声子。不过与此同时,一个泵浦光子也可以吸收一个声子的能量转换成一个新的频率较高的反斯托克斯光子。因此在自发布里渊散射光谱中,同时存在能量相当的斯托克斯和反斯托克斯两条谱线。受激布里渊散射的具体过程是:当泵浦光在光纤中传播时,其自发布里渊散射光沿泵浦光相反的方向传播,当泵浦光的强度增大时,自发布里渊散射的强度增加,当增大到一定程度时,反向传输的斯托克斯光和泵浦光将发生干涉作用,产生较强的干涉条纹,使光纤局部折射率大大增加。这样由于电致伸缩效应,就会产生一个声波,声波的产生激发出更多的布里渊散射光,激发出来的散射光又加强声波,如此相互作用,产生很强的散射。 布里渊散射在分布式光纤传感器、光纤陀螺、光纤相位共轭镜、布里渊放大器等领域有重要的应用。受激布里渊散射光纤陀螺的基本原理是:经过分束的两束激光沿不同的方向在光纤环中传播,其产生的SBS光的频率与系统三角速度有关,测量SBS光的拍频,即可得到系统的角速度。 拉曼散射 光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。其物理意义是入射光波的一个光子被一个分子散射成为另一个低频光子,同时分子完成振动态之间的跃迁。拉曼散射光谱中同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,斯托克斯线比反斯托克斯线的强度大。拉曼散射分为两种,表面增强拉曼散射与共振拉曼散射。共振拉曼散射是当一个化合物被入射光激发,激发线的频率处于该化合物的电子吸收谱带以内时,由于电子跃迁和分子振动的耦合,使某些拉曼谱线的强度陡然增加,这个效应被成为共振拉曼散射。表面增强拉曼散射是当一些分子被吸附到某些粗糙的金属,如金、银或铜的表面时,它们的拉曼谱线强度会得到极大地增强,这种不寻常的拉曼散射增强现象被称为表面增强拉曼散射效应。 拉曼散射技术可以提供快速、简单、可重复、无损伤的物质定性定量分析。由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。重要的拉曼散射技术有单道检测的拉曼光谱分析技术、以CCD为代表的多通道探测器、采用傅立叶变换技术的FT-Raman光谱分析技术、共振拉曼光谱分析技术等。 利用拉曼散射还可以制成拉曼光纤放大器,该放大器的物理实现方法是:受激拉曼散射将一小部分入射光功率转移到频率比其低的斯托克斯波上;如果一个弱信号与一强泵浦光波同时在光纤中传输,并使弱信号波长置于泵浦光的拉曼增益带宽内,弱信号光即可以得到放大。根据增益介质的不同,又可分为分布式拉曼放大器(DRA)和分离式拉曼放大器(LRA)。

基于布里渊散射的多波长光纤激光器及分布式光纤传感研究

基于布里渊散射的多波长光纤激光器及分布式光纤传感研究随着信息容量需求的日益增长,高速大容量长距离将成为下一代全光通信网络的发展趋势。为了有效的利用光纤中有限的频率资源,频率间隔20GHz,甚至10GHz将是未来密集波分复用技术发展方向之一。 多波长的布里渊掺铒光纤激光器(MBEFL)具有窄线宽、宽调谐性、低阈值、低强度噪声、低成本,频率间隔固定,在室温下稳定的单纵模运转等特点,将可能成为未来最佳的通信光源之一。另外,布里渊光纤激光器(BFL)在光纤传感网络、频谱分析、RF等领域存在潜在的应用价值。 分布式布里渊光纤温度与应变传感器具有分布式光纤传感器优点的同时,还具有其它光纤传感无法媲美的显著特点,能同时测量温度与应变,可以应用于电力,石油化工、核电站、公路、桥梁、隧道、大坝、铁路、航天航空等各行业,受到国外内广泛关注。然而分布式布里渊光纤传感存在系统复杂,技术不成熟,成本高,测试时间长等问题而难以广泛应用。 本论文在佛山市禅城区工业公关计划,国家自然科学基金和国家863计划支持下,围绕多波长布里渊光纤激光器(MBFL)和分布式布里渊光纤传感两个方向进行初步的理论和实验研究,概括全文的研究成果和贡献,有如下几个方面:(1)根据布里渊耦合强度方程,推导出求解布里渊强度耦合方程一种快速有效近似解析方法,并数值解进行比较。分析了在四种情况下,光纤中的受激布里渊散射(SBS)阈值大小,用实验验证了光纤中的布里渊阈值与理论的一致性。 研究了脉冲形式的布里渊泵浦光在光纤中的Stokes与泵浦光强演变,对光纤中的温度或应变引起的频率失谐对泵浦光与探测光光强的影响进行仿真研究,检测出失谐处的位置与失谐量。(2)基于135m的高非线性光纤(HNLF),利用光纤

受激布里渊散射中弛豫振荡研究

受激布里渊散射中弛豫振荡研究 受激布里渊散射(SBS)的动态响应具有很多有趣的特征。尽管当泵浦脉冲 宽度T0远远大于声子寿命T B时,声学动态的影响很小。已有研究表明,斯托克斯 光的功率并非单调地趋近某个稳态值,而是呈现出周期为2T r的弛豫振荡特点,?为在长度L光纤中的传输时间。这种振荡的示例如图1所示,其中泵T r=L v g 浦脉冲宽度为1 us。当存在外部反馈情况时,弛豫振荡可以变为稳定振荡,即泵 浦和斯托克斯波发展为自强度调制。 图1 (a)泵浦脉冲的输入和输出强度(b)斯托克斯脉冲的强度 即使泵浦和斯托克斯波的群速度v g相同,由于两者反向传播而相对速度为2v g,这种等效群速度失配导致了弛豫振荡的出现。获得这种弛豫振荡的频率和延时的方法是对耦合传播方程的稳态解进行线性稳定性分析,类似与对调制不稳定性(MI)的分析。外部反馈的影响可通过设定光纤为一个封闭腔并使用恰当的边界条件进行等效。这种线性稳定性分析方法同时可以得到由稳态变为非稳态的临界条件。 设稳态时延的微小扰动为e??t,复数h可由(1)式线性求得。 (1) 如果h的实部为正,扰动的时延随时间呈指数增长,频率为υr=Im(?)/2π。

相反,如果h的实部为负,扰动随时间增长,稳态变为非稳态。对于CW泵浦情况,SBS也可导致泵浦和斯托克斯强度的时域调制。图2表示反馈随增益因子g0L变化的稳定和非稳定区域,与泵浦功率的关系是g0=g B P p/A eff。参数b0表示泵浦功率转变为斯托克斯功率的占比。 图2 存在反馈时,SBS的稳态和非稳态区域 图3表示通过数值求解(1)式得到的斯托克斯和泵浦强度的时间演变。上排为g0L=30情况,无反馈时出现弛豫振荡,振荡周期为2T r。物理上,弛豫振荡的起因可以解释为:在光纤输入端附近斯托克斯功率的快速增长使泵浦功率快速消耗,这引起增益下降直至泵浦的消耗部分从光纤传出,然后增益重新不断增加,该过程不断重复。 图3的下排对应弱反馈情况,其中R1R2=5×10?5,R1、R2分别是光纤两端的反射率,增益因子g0L=13低于布里渊阈值。尽管如此,由于反馈降低了布里渊阈值,所以斯托克斯波仍会产生。然而,并未达到稳态,是因为图2中所示的非稳定性,取而代之,光纤两端的泵浦输出和斯托克斯输出表现出稳定振荡。如果反馈增加使得R1R2≥2×10?2,同样能达到稳态。这是因为该反馈的b0值在图2中的稳态区域。SBS的所有这些动态特征都已在相关实验中观察到。

基于布里渊散射的分布式光纤传感技术研究

基于布里渊散射的分布式光纤传感技术研究本文针对布里渊散射分布式光纤传感系统中的受激布里渊散射过程进行了 理论研究和数值模拟,并对布里渊散射分布式光纤温度传感系统进行了实验研究。在理论研究和数值模拟方面,根据布里渊散射分布式传感系统建立了其受激布里渊散射过程的物理模型,给出了与之对应的简化光纤耦合波方程组,采用时域有 限差分方法给出耦合波方程的离散化表达式;同时详细推导了布里渊频移与温度/应变的非线性关系,并给出具体理论表达式;根据受激布里渊散射耦合波方程的离散化公式和相应的边界条件及初始条件,编写了布里渊散射过程中各光场的数值解的Matlab程序,计算求解出布里渊散射分布式传感系统中光纤中各光波场 随时间和空间的变化,并研究改变入射泵浦光波能量对布里渊散射光波波形的影响。 考虑温度对布里渊频移的影响,利用近似条件下的稳态耦合波方程,编写相 应的布里渊散射增益随温度变化的Matlab程序,计算了布里渊分布式光纤传感 系统中的泵浦光强和信号光光强随其在传感光纤中的传输距离的变化,并数值仿真模拟了传感光纤处于不同温度时的布里渊增益谱的空间分布情况。数值计算和模拟结果表明,泵浦光光强沿光纤随着传输距离的增加而逐渐减弱,Stokes散射 光光强沿光纤随着传输距离的增加而逐渐加强。 在入射泵浦光和Stokes散射光之间的能量转化关系方面,随着入射泵浦光 能量的增强,Stokes散射光能量的绝对增加量迅速增加,峰值脉冲宽度变窄。在 光纤各性能参数对布里渊频移的影响中,杨氏模量的温度/应变特性对布里渊频 移的贡献最大,并由这些性能参数的实验数据确定出布里渊频移随温度/应变变 化的关系系数;传感光纤处于不同温度时,给出Stokes散射光的光功率沿光纤随

受激布里渊散射介绍

受激布里渊散射介绍 印新达 武汉光迅科技股份有限公司 简述。在向较长的光纤中发射激光时,如果超过了某个最大临界功率,则由于线宽和光纤类型的原因,可能会发生强烈的反射,从而导致在光纤另一端所观测到的功率达到最大极限值,这就是受激布里渊散射(SBS)。显而易见,受激布里渊散射(SBS)现象将对传输功率产生限制,并且引发信号噪声。该现象起源于光纤中的声波对信号光的反向散射。在较短的光纤中,也会发生这种现象,但程度要轻微得多。被散射的光将产生一个等于布里渊散射漂移频率的偏移,变为较低的光频(较长的波长),这是光纤材料的一项固有特性。普通单模石英光纤的漂移频率约为11GHz(波长0.09nm)。如果光纤中前向和反向传输的光之间的频率差恰好等于布里渊散射漂移频率,则反向散射光将引起更多的前向传输的光信号被反向散射。因此,如果信号功率足够大,由该受激反向散射所导致的反向散射光功率,可能会超过因为光纤衰减而损失的功率。 为了实现更大距离与更高速率的传输,现代传输系统的光发射功率越来越大。因此,人们不得不考虑非线性效应,特别是受激布里渊散射(SBS)等现象,而系统设计者们也需要在功率分配要求与由SBS等非线性效应所引起的信号损失这两者之间进行平衡。 为了使光纤放大器的高输出功率能够有效地注入单模光纤,必须提高SBS门限功率。采用的方法主要是对信号光源作附加调制或对外调制器作附加调相,使入射光的谱宽增大。 1 SBS的产生和物理现象 当注入光纤中的光功率从0开始增加,在光功率很小时,光纤中不产生非线性过程。当注入光纤功率增加到超过某一阈值光功率后,光纤中出现非线性过程。该非线性过程产生的物理现象是:绝大部分输入光功率转换为后向散射的斯托克斯光波。这一非线性过程称为受激布里渊散射。产生SBS的阈值光功率与入射光波的谱宽有关。对连续光波或相对较宽的脉冲光波(≥1Ixs),SBS 的阈值光功率可低至lmW(0dBm);而对脉冲宽度<1Ons的短脉冲光波,SBS几乎不会发生。 2 SBS产生机理及减小SBS对光纤传输影响的方法 2.1 SBS产生机理 SBS过程可经典地描述为泵浦光波(即注入光纤的信号光)、斯托克斯光波和声波之问的参量相互作用。泵浦光波通过对光纤的电致伸缩产生声波,该声波对光纤的折射率周期性调制,在光纤中产生折射率光栅。泵浦光通过该光栅时,由于光栅的布喇格散射,使泵浦光后向散射产生斯托克斯光。斯托克斯光的频率比泵浦光下移,频移 B为: 式中n为光纤折射率,V A为声波速度,入P为泵浦光波长。石英光纤中声波速度V =5.95km/s, n=1.45,则在入 =1550nm 附近斯托克斯光波的频移 =11.1GHz,即斯托克斯光波频率比波长为1550nm 的光波频率低11.1GHz,二者的波长相差不到0.1nm。

相关主题
文本预览
相关文档 最新文档