当前位置:文档之家› YJK的消能减震设计和隔振设计0905

YJK的消能减震设计和隔振设计0905

YJK的消能减震设计和隔振设计0905
YJK的消能减震设计和隔振设计0905

浅述建筑结构减震与消能减震设计

浅述建筑结构隔震与消能减震设计 崔XX XX理工大学XX学院XX学员大队江苏XX 02XXXX 内容摘要 摘要:本文对建筑结构“隔震”与“消能减震”设计的基本原理及其特点进行简要的介绍和说明,并对结构抗震设计、隔震设计和消能减震设计进行分析和对比,供初学者参考。 主题词:抗震设计隔震设计消能减震设计 1 引言 地震是一种突发性的破坏性极强的自然灾害,罕遇的大地震会给建筑物及构筑物造成极大的破坏,造成极大的人员伤亡和经济财产损失。回顾21世纪发生的几次大地震如尼泊尔大地震,汶川大地震,智利地震等无一不对人们和社会造成不可估量的破坏和损失。当前的科技水平尚无法预测地震的到来,未来相当长的一段时间内,地震也是无法预测的。而且即使做到了震前预报,如果工程设施的抗震性能薄弱,也难以避免经济损失。地震时不可控的,但工程结构是可控的,因此,实施有效的抗震设防是当前防震抗灾的关键性工作,而隔震和消能减震技术在建筑结构中应得到广泛应用。 传统的建筑结构抗震设计是依靠增加结构的强度、刚度和延性来增加结构各构件的承载力和变形能力来抵御地震作用,,来实现“大震不倒,中震可修,小震不坏”的防御目标,立足于“抗”,是一种消极的设计方法。随着科技水平的发展和传统抗震结构在地震中的表现,传统建筑结构抗震设计暴露出很多问题,不能满足现代建筑在抗震设防方面的需求。所以抗震减灾事业的发展,不能局限于传统的建筑结构抗震设计,更应该搭上科技创新的这辆快车,用新技术来提高和改善建筑物的抗震性能。在建筑物中设置隔震层和消能减震装置来减轻地震的破坏这种新型结构体系就是其中之一。本文就这一新结构体系做一简要阐述。 2 “隔震设计”与“消能减震设计”的基本设计原理 2.1 隔震设计 “隔震”即隔离地震,分为基础隔震和层间隔震。在建筑物适当部位设置隔离装置,切断或削弱地面运动向上部结构的传递,并提供适当的阻尼,从而使上部结构的地震作用大大降低,耗能能力加强,达到预期的防震要求。如叠层橡胶垫支座、高阻尼橡胶垫支座、滑移隔震支座和混合隔震装置等。 2.2 消能减震设计 消能减震技术是把结构物某些部位(如支撑、剪力墙、连接缝或连接件)设置耗能 阻尼器,通过该装置产生摩擦,弯曲(或剪切、扭转)弹塑性(或粘弹性)直回变形来耗散或吸收地震输入结构的能量,以减小主体结构的地震反应,从而避免结构产生破坏或倒塌,达到减震控制的目的。 在消能减震结构体系中,消能(阻尼)装置在主体结构进入非弹性状态前率先进入耗能工作状态,充分发挥耗能作用,消耗掉输入机构体系的大量地震能量,式结构本身需消耗的

隔震和消能减震与常规抗震的对比分析

隔震和消能减震与常规抗震的对比分析 在实际的建筑行业发展中,為了有效避免地震对建筑以及人民生命财产安全带来的影响,要对相应的隔震、消能减震等情况进行分析,同时与常规的抗震进行有效对比,做好最佳的抗震预防。基于此,文章分别对三种防震方法进行分析,最后结合题目就隔震和消能减震与常规抗震之间进行对比分析,以期人们更好的开展防震工作。 标签:常规抗震;隔震;消能减震 随着经济的快速发展,建筑行业蒸蒸日上,且在国民经济的发展中也越来越重要。以此同时,随着建筑行业的发展,相关的安全预防措施也要予以充分的重视。在实际的生活当中,为了避免地震给人们以及建筑行业带来巨大的经济损失,要对相关的防震举措予以充分重视,如此才能将其更好的应用在实际的工程建筑当中,为人们提供更多的安全保障。 1、常规抗震分析 1.1原理 延性抗震设计主要是利用一些结构部件的塑性变形来对地震能量进行消耗,从而实现一定的抗震作用,该种抗震的能量表达为Ein =ER +ED +ES ,其中ES 是主体结构和承载构件的不变弹性所消耗的能量;Ein 是发生地震时输入的结构能量;ED 是阻尼消耗的能量;ER 地震反应能量。 1.2特点 (1)砌体结构。该种结构相对较脆,实际的抗拉、康佳能力相对较弱,实际地震中的抗震于延性能也不理想。砌体结构在地震中受到破坏的几率相对较大,具体因素主要与窗间承载力不足、施工不当、设计问题以及整体抗剪强度弱等有关。在5.12地震中,由于建筑物的抗震设防性能较差,致使其中的很多砌体结构出现了一定的倒塌。在海地的某些地区,由于实际砌体结构建筑并不具有一定的抗震措施,致使相关建筑出现了不同程度的坍塌。(2)钢结构。钢结构具有延性好、轻质高强以及环境污染小的特点,其缺点主要是很难确保实际施工质量,且有很多的节点。在5.12地震中由于钢结构而造成的危害相对较轻,很多的轻屋房建设由于实际的屋架与屋面之间没有明确的固定,进而使得屋面板出现脱落。 2、隔震与消能减震 2.1隔震 (1)隔震的基本原理。隔震是指隔离地震对实际建筑结构的影响,主要原

建筑隔震与消能减震知识分享

第十五讲建筑隔震与消能减震设计规定 一、隔震与消能减震是减轻建 筑结构地震灾害的新技术 地震释放的能量以震动波为载体向地球表面传播。 通常的建筑物因和基础牢牢地连接在一起,地震波携带的能量通过基础传递到上部结构,进入到上部结构的能量被转化为结构的动能和变形能。在此过程中,当结构的总变形能超越了结构自身的某种承受极限时,建筑物便发生损坏甚至倒塌。 1、什么是房屋结构的“隔震设计” 《隔震》,即隔离地震。在建筑物基础与上部结构之间设置由隔震器、阻尼器等组成的隔震层,隔离地震能量向上部结构传递,减少输入到上部结构的地震能量,降低上部结构的地震反应,达到预期的防震要求。地震时,隔震结构的震动和变形均可只控制在较轻微的水平,从而使建筑物的安全得到更可靠的保证。表15.1列出了隔震设计和传统设计在设计理念上的区别。 表 15.1 隔震房屋和抗震房屋设计理念对比 隔震器的作用是支承建筑物重量、调频滤波,阻尼器的作用是消耗地震能量、控制隔震层变形。隔震器的类型很多。目前,在我国比较成熟的是“橡胶隔震支座”。因此,本《规范》所指隔震器系指橡胶隔震支座(规范12.1.1条注1)。在隔震设计中采用其他类型隔震器时,应作专门研究。 2、什么是房屋建筑的“消能减震设计” 在建筑物的抗侧力结构中设置消能部件(由阻尼器、连接支撑等组成),通过阻尼器局部变形提供附加阻尼,吸收与消耗地震能量。这样的房屋建筑设计称“消能减震设计”。 采用消能减震设计时,输入到建筑物的地震能量一部分被阻尼器所消耗,其余部分则转换为结构的动能和变形能。这样,也可以达到降低结构地震反应的目的。阻尼器有粘弹性阻尼器、粘滞阻尼器、金属阻尼器、电流变、磁流变阻尼器等。 3、隔震和消能减震设计的主要优点

消能减震装置及其在工程中的应用

消能减震装置及其在工程中的应用 【摘要】针对传统结构抗震思路,详细介绍了结构的消能减震是结构抗震的新思路,以及目前常用的消能减震装置及其适用对象,阐述了工程结构中的应用并列举大量实例。分析表明,消能减震结构具有优良的抗震性能,具有广阔的应用前景。 【关键词】结构抗震;消能减震;耗能装置 1 引言 我国是一个多地震国家,地震灾害给我们带来巨大的伤害和损失,如唐山大地震、汶川大地震等。传统的抗震设计是利用结构本身的抗震性能抵御地震作用,以达到抗震的目的,是一种消极被动的抗震方法,不具备自我调节与自我控制的能力,因此在地震作用下,结构很可能不满足安全性的要求,而产生严重破坏。国内外开展了消能减震技术的研究,即在结构上安装消能装置,以减小结构的动力反应。本文就消能减震结构的思想及其在工程中的应用进行了研究。 2 消能减震结构的概念 消能减震结构的基本思想就是在结构中设置一些一般情况下不承担垂直接荷载作用的耗能部件,当结构受到水平荷载作用时,这些部件分担部分荷载,并通过部件内部的零部件之间的相互运动耗散外荷载作用的动能,减小结构对其作用的效应。 消能减震的力学原理就是在结构会产生相对运动的部位增设一些阻尼器之类的消能装置,当结构受到地震作用时,这些阻尼器在结构相对运动的强迫作用下,产生抵抗结构相对运动的阻力运动,这些阻尼力在运动过程中做功,通常以导致阻尼器发热而耗散掉部分结构相对运动的能量,从而减小结构的地震响应,即减小结构的损坏或保证结构的正常使用功能。 3 消能减震产品的种类 3.1金属屈服阻尼器 金属屈服阻尼器是用软钢或其它软金属材料做成的各种形式的阻尼器,机理是将结构振动的部分能量通过金属的屈服滞回耗能耗散掉,从而达到减小结构反应的目的,具有滞回特性稳定、耗能能力大、低周疲劳性能好、长期性能可靠、对环境和温度的适应性强等优点。 3.2摩擦阻尼器 摩擦阻尼器是由受有预紧力的金属或其它固体元件构成,这些元件之间能够相互滑动并且产生摩擦力。减震机理是通过摩擦耗能耗散结构的振动能量,耗能明显,可提供较大的阻尼,且造价低廉、取材容易、构造简单。 3.3铅挤压阻尼器 铅挤压阻尼器由外筒、可动轴和铅组成,当发生塑性变形时,铅的晶格被拉长并错动,一部分能量被转化为热能,而另一部分能量为促进再结晶而耗散使金属返回非变状态。当结构变位使外壁筒与可动轴产生相对位移时,铅发生塑性流动,起到耗能阻尼的作用。结晶易在常温下进行,所耗时间很短且无疲劳现象,具有稳定的耗能能力。 3.4黏弹性阻尼器 黏弹性阻尼器由黏弹性材料和约束钢板组成。它由2个T形约束钢板夹1块矩形钢板组成,T形约束钢板与中间钢板之间有一层黏弹性阻尼材料(常用有机硅或

结构消能减震技术

结构消能减震技术 1、结构消能减震的基本概念 地震发生时地面震动引起结构物的震动反应,地面地震能量向结构物输入。结构物接收了大量的地震能量,必然要进行能量转换或消耗才能最后终止震动反应。 消能减震技术是将结构的某些构件设计成消能构件,或在结构的某些部位装设消能装置。在风或小震作用时,这些消能构件或消能装置具有足够的初始刚度,处于弹性状态,结构具有足够的侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形的增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构的地震或风振能量,使主体结构避免出现明显的非弹性状态,且迅速衰减结构的地震或风振反

应(位移、速度、加速 度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震的目的。消能部件(消能构件或消能装置及其连接件)按照不同“构件型式”分为消能支撑、消能剪力墙、消能支承或悬吊构件、消能节点、消能连接等。消能部件中的消能器(又称阻尼器)分为速度相关型如黏滞流体阻尼器、黏弹性阻尼器、黏滞阻尼墙、黏弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等,和其它类型如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。采用消能减震技术的结构体系与传统抗震结构体系相比,具有大震安全性、经济性和技术合理性。 技术指标:建筑结构消能减震设计方案,应根据建筑抗震设防类别、抗震设防

烈度、场地条件、建筑结构方案和建筑使用要求,与采用抗震设计的设计方案进行技术、经济 可行性的对比分析后确定。采用消能减震技术结构体系的计算分析应依据《建筑抗震设计规范》GB50011 进行,设计安装做法应遵循国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合《建筑消能阻尼器》JG/T209 的规定。 适用范围:消能减震技术主要应用于高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑的抗震(或抗风)性能的改善等。 传统抗震结构体系,容许结构及承重构件(柱、粱、节点等)在地震中出现损坏结构及承重构件地震中的损坏过程,就是

12 隔震和消能减震设计

12 隔震和消能减震设计 12.1 一般规定 12.1.1本章适用于设置隔震层以隔离水平地震动的房屋隔震设计,以及设置消能部件吸收与消耗地震能量的房屋消能减震设计。 采用隔震和消能减震设计的建筑结构,应符合本规范第3.8.1条的规定,其抗震设防目标应符合本规范第3.8.2条的规定。 注:1,本章隔震设计指在房屋基础、底部或下部结构与上部结构之间设置由橡胶隔震支座和阻尼装置等部件组成具有整体复位功能的隔震层,以延长整个结构体系的自振周 期,减少输入上部结构的水平地震作用,达到预期防震要求。 2,消能减震设计指在房屋结构中设置消能器,通过消能器的相对变形和相对速度提供附加阻尼,以消耗输入结构的地震能量,达到预期防震减震要求。 12.1.2建筑结构隔震设计和消能减震设计确定设计方案时,除应符合本规范第3.5.1条的规定外,尚应与采用抗震设计的方案进行对比分析。 12.1.3建筑结构采用隔震设计时应符合下列各项要求: 1,结构高宽比宜小于4,且不应大于相关规范规程对非隔震结构的具体规定,其变形特征接近剪切变形,最大高度应满足本规范非隔震结构的要求;高宽比大于4或非隔震结构相关规定的结构采用隔震设计时,应进行专门研究。 2,建筑场地宜为I、Ⅱ、Ⅲ类,并应选用稳定性较好的基础类型。 3,风荷载和其他非地震作用的水平荷载标准值产生的总水平力不宜超过结构总重力的10%。 4,隔震层应提供必要的竖向承载力、侧向刚度和阻尼;穿过隔震层的设备配管、配线,应采用柔性连接或其他有效措施以适应隔震层的罕遇地震水平位移。 12.1.4消能减震设计可用于钢、钢筋混凝土、钢-混凝土混合等结构类型的房屋。 消能部件应对结构提供足够的附加阻尼,尚应根据其结构类型分别符合本规范相应章节的设计要求。 12.1.5隔震和消能减震设计时,隔震装置和消能部件应符合下列要求: 1,隔震装置和消能部件的性能参数应经试验确定。 2,隔震装置和消能部件的设置部位,应采取便于检查和替换的措施。 3,设计文件上应注明对隔震装置和消能部件的性能要求,安装前应按规定进行检测,确保性能符合要求。 12.1.6建筑结构的隔震设计和消能减震设计,尚应符合相关专门标准的规定;也可按抗震性能目标的要求进行性能化设计。 12.2 房屋隔震设计要点 12.2.1隔震设计应根据预期的竖向承载力、水平向减震系数和位移控制要求,选择适当的隔震装置及抗风装置组成结构的隔震层。 隔震支座应进行竖向承载力的验算和罕遇地震下水平位移的验算。 隔震层以上结构的水平地震作用应根据水平向减震系数确定;其竖向地震作用标准值,8度(0.20g)、8度(0.30g)和9庋时分别不应小于隔震层以上结构总重力荷载代表值的20%、30%和40%。 12.2.2建筑结构隔震设计的计算分析,应符合下列规定: 1,隔震体系的计算简图,应增加由隔震支座及其顶部梁板组成的质点;对变形特征为剪切型的结构可采用剪切模型(图12.2.2);当隔震层以上结构的质心与隔震层刚度中心不重合时,应计入扭转效应的影响。隔震层顶部的梁板结构,应作为其上

建筑隔振消能减震技术探析(精)

浅析建筑隔振消能减震技术 1 地震的危害 建筑物除了承受竖向荷载外, 还要承担风和地震水平荷载的作用, 建筑物越高,这个水平荷载效应就越明显。我国 41%的国土、 50%以上的城市位于地震烈度 7度以上的地区, 面临的地震灾害形势非常严峻。地震是人类面临的最严重的突发性的自然灾害之一, 对人民的生命和财产安全造成很大的危害。 1.1 造成大量人员伤亡 1976年唐山发生的 7.8级强烈地震, 顷刻间, 百余万人口工业城市被夷为平地,造成 24.2万人死亡, 16.4万余人重伤。自 1900年有记录以来,我国死于地震的人数达 55万之多,占全球地震死亡人数的 53%。 1.2 破坏人类赖以生存的环境 自我国 1900年有记录以来,地震成灾面积达 30多万平方公里, 房屋倒塌达 700万间。 1.3 冲击人类社会的正常运行秩序和造成大量的经济损失 唐山地震的直接经济损失近百亿元,震后重建投资达百亿元。 1995年,日本阪神地震中经济损失超过 1000亿美元。随着经济的高速发展, 城市化使人口和财富高度密集, 强烈地震造成的伤亡和损失将越来越大, 地震后的修复和城市的复兴就越有难度, 对国家经济发展和社会稳定的冲击也将更为剧烈。 2 传统抗震方法 地震造成的破坏给人类留下的烙印是深刻的。而我们结构工程师 们一直没有停止过对建筑物抗震的研究。建造抗强烈地震的建筑物和构筑物成为建筑工程领域重要的课题。为了抵御地震灾害, 通常的建筑结构设计采用的是

抗震设计,强调的是“ 抗” ,即采用“ 延性结构体系” 适当控制结构物的刚度,但容许结构构件(如梁、柱、墙、节点等等在地震时,进入非弹性状态,并且具有较大的延性,以消耗地震能量,减轻地震反映,使结构物“ 裂而不倒” 。 这种体系在很多情况下是有效的,但也存在很多局限性:首先, 由于结构物的承重构件在地震时进入非弹性状态, 对某些重要的结构物是不容许的(纪念性建筑、装饰昂贵的现代化建筑、原子能发电站等 ;其次,对于一般性建筑,当遭遇超过设防烈度地震时,由于主体结构已发生严重非弹性变形, 在地震后难以修复或在强地震中严重破坏, 甚至倒塌, 其破坏程度难以控制; 再次, 随着地震强度的增大, 结构的断面和配筋都相应增大,造成经济的“ 浪费” 。 3 隔震、消能减震 3.1 隔震与消能减震原理 隔振、减震控制的基本原理是在结构构件之间或建筑物与基础之间设置隔震、减震装置,通过隔震、减震装置的耗能特性,减小振动能量向周围环境的传递,达到减小振动对周围环境影响的目的。 3.2 隔震与减震方法 3.2.1 粘弹性阻尼结构 粘弹性阻尼结构的风洞试验、地震模拟振动台试验及大量的结构分析表明,在结构中安装粘弹性阻尼器可减小风振反应和地震反应 40%~80%,可确保主体结构在强风和强震中的安全性,并使结构在 强风作用下, 结构的舒适度控制在规定的范围内。西雅图哥伦比亚中心大厦起初是因为在风振的影响下,顶部几层有明显的不舒适感,安上粘弹性阻尼器后,不再有不舒适感,效果良好。若采用加大刚度的方法来获得同样的效果, 需要把现有的柱尺寸扩大一倍, 粗算价值约 800万美元,显然采用增加刚度的办法是难以接受的,而采用粘弹性阻尼器所用的试验及安装费用仅 70万美元。在北京的银泰中心也设置了粘滞阻尼器,试验结构证明有很好的减振效果。由此可见,采用粘弹性阻尼器减小建筑的风振或地震效应在经济上是相当可观的。 3.2.2 吸能减震

结构消能减震技术

结构消能减震技术 1、结构消能减震得基本概念 地震发生时地面震动引起结构物得震动反应,地面地震能量向结构物输入。结构物接收了大量得地震能量,必然要进行能量转换或消耗才能最后终止震动反应。 消能减震技术就是将结构得某些构件设计成消能构件,或在结构得某些部位装设消能装置。在风或小震作用时,这些消能构件或消能装置具有足够得初始刚度,处于弹性状态,结构具有足够得侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形得增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构得地震或风振能量,使主体结构避免出现明显得非弹性状态,且迅速衰减结构得地震或风振反应(位移、速度、加

速度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震得目得。消能部件(消能构件或消能装置及其连接件)按照不同“构件型式”分为消能支撑、消能剪力墙、消能支承或悬吊构件、消能节点、消能连接等。消能部件中得消能器(又称阻尼器)分为速度相关型如黏滞流体阻尼器、黏弹性阻尼器、黏滞阻尼墙、黏弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等,与其它类型如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。采用消能减震技术得结构体系与传统抗震结构体系相比,具有大震安全性、经济性与技术合理性。 技术指标:建筑结构消能减震设计方案,应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案与建筑使用要求,

与采用抗震设计得设计方案进行技术、经济可行性得对比分析后确定。采用消能减震技术结构体系得计算分析应依据《建筑抗震设计规范》GB50011 进行,设计安装做法应遵循国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合《建筑消能阻尼器》JG/T209 得规定。 适用范围:消能减震技术主要应用于高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑得抗震(或抗风)性能得改善等。 传统抗震结构体系,容许结构及承重构件(柱、粱、节点等)在地震中出现损坏结构及承重构件地震中得损坏过程,就就是地震能量得“消能”过程。结构及构件得严重破坏或倒塌,就就是地震能量转换或消耗得最终完成。

消能减震技术

消能减震技术 9.1.1 技术内容 消能减震技术是将结构的某些构件设计成消能构件,或在结构的某些部位装设消能装置。在风或小震作用时,结构具有足够的侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形的增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构的地震或风振能量,使主体结构避免出现明显的非弹性状态,且迅速衰减结构的地震或风振反应(位移、速度、加速度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震的目的。 消能部件一般由消能器、连接支撑和其他连接构件等组成。 消能部件中的消能器(又称阻尼器)分为速度相关型如粘滞流体阻尼器、粘弹性阻尼器、粘滞阻尼墙、粘弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等和其它类型,如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。 采用消能减震技术的结构体系与传统抗震结构体系相比,具有更高安全性、经济性和技术合理性。 9.1.2 技术指标 建筑结构消能减震设计方案,应根据建筑抗震设防类

别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与采用抗震设计的设计方案进行技术和经济可行性的对比分析后确定。采用消能减震技术结构体系的设计、施工、验收和维护应按现行国家标准《建筑抗震设计规范》GB 50011和《建筑消能建筑技术规程》JGJ 297进行,设计安装做法可参考国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合现行行业标准《建筑消能阻尼器》JG/T 209的规定。 9.1.3 适用范围 消能减震技术主要应用于多高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑的抗震(或抗风)性能的改善,文物建筑及有纪念意义的建(构)筑物的保护等。 9.1.4 工程案例 江苏省宿迁市建设大厦、北京威盛大厦等新建工程,以及北京火车站、北京展览馆、西安长乐苑招商局广场4号楼等加固改造工程。

浅谈隔振与消能减震设计

浅谈隔震与消能减震设计 1 引言 地震是威胁人类安全的主要自然灾害之一,地震具有突发性强、破坏性大和比较难预测的特点。目前地震的监测预报还是世界性难题,很难做出准确的临震预报,而且即使做到了震前预报,如果工程设施的抗震性能薄弱,也难以避免经济损失。因此,实施有效的抗震设防是当前防震减灾的关键性工作。 抗震减灾事业的发展,离不开科技进步,提高建筑工程抗震设防水平是一项技术含量高,难度大的工作。从目前的抗震措施来看,主要是保证建筑物结构的抗震性能,达到“大震不倒,中震可修,小震不坏”这一防御目标。为此必须加强科技创新,用新技术来提高和改善建筑物的抗震性能才能达到这一目标。在建筑物中设置隔震层和消能装置来减轻地震破坏这种新型结构体系就是其中之一。本文就这一新结构体系作一简要阐述。 2 “隔震设计”与“消能减震设计”的基本设计原理 2.1 隔震设计 “隔震”即隔离地震。在建筑物基础与上部结构之间设置由隔震器、阻尼器等组成的隔震层,隔离地震能量向上部结构传递,减少输入到上部结构的地震能量,降低上部结构的地震反应,达到预期的防震要求。 2.2 消能减震设计 在建筑物的抗侧力构件中(由阻尼器、连接支撑等组成),通过阻尼器局部变形提供 附加阻尼,吸收与消耗地震能量,来控制预期的结构位移 (中震下或大震下的控制位 移要求),从而使主体结构构件在罕遇 地震下不发生严重破坏,达到减震的目的,这样的房屋建筑设计称“消能减震设计”。 采用消能减震设计时,输入到建筑物的地震能量一部分被阻尼器所消耗,其余部分则转 换为结构的动能和变形能,这样也可达到降低结构地震反应的目的。 3 “隔震设计”与传统抗震设计的区别 3.1 “隔震设计”与传统抗震设计理念的区别,见表 抗震房屋与隔振房屋设计理念对比表 抗震房屋隔振房屋结构体系上部结构与基础牢固连接削弱上部结构与基础的有关连接 科学思想提高结构的自身抗震能力隔离地震能量向建筑物输入 方法措施强化结构的刚度与延性滤波 通常的建筑物应和基础牢牢地连接在一起,地震波携带的能量通过基础传递到上 部结构,进入到上部结构的能量被转化为结构的动能和变形能,在此过程中,当结 构的总变形超越了结构自身的某种极限时,建筑物便发生损坏甚至倒塌。而隔震建筑 物在地震时,隔震结构的震动和变形均可只控制在较 轻微的水平,上部结构基本处于平动状态,因此,上部结构水平地震作用可采用矩形分布,从而使建筑物的安全得到更可靠的保证。 3.2 对隔震房屋,同样层数且无地下室的多层砖房将增加房屋造价 10 ,考虑隔震后可增加层数,减去土地分摊费用后,单位造价增加约为 5 ,对于框架结构,则因柱截面尺寸和配筋明显减少,房屋造价可减少 3 ~5 。

建筑消能减震-阻尼器

一、消能减震结构的发展与应用: 利用阻尼器来消能减震并不是什么新技术,在航天航空、军工枪炮等行业中早已得到应用。从20世纪70年代后,人们开始逐步地把这些技术专用到建筑、桥梁、铁路等工程中。 在美国,20世纪80年代开始,美国东西两个地震研究中心等单位做了大量试验研究,发表了几十篇有关论文。90年代美国科学基金会和土木工程协会组织了两次大型联合,给出了权威性的试验报告,供工程师参考。 在我国,1997年,沈阳市政府大楼的抗震加固中首次采用了摩擦耗能装置,其后北京饭店、北京火车站和北京展览馆等多座建筑中应用消能减震技术。 在日本,目前已有超过100多栋的建筑物采用消能减震技术。 现代高层建筑日益增多,结构受地震和风振影响十分明显,减小结构所受的地震和风振反应,成为结构设计的一个重要方面。消能减震阻尼器,通过增加结构阻尼,耗散结构的振动能量来达到减小结构所受振动。 (1)“阻尼”是指任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的振动幅度逐渐下降的特性,以此一特性的 量化表征。 (2)《高层建筑混凝土结构技术规程》JGJ3-2010中: 2.1.1 高层建筑:10层及10层以上或房屋高度大于28m的住宅 建筑和房屋高度大于24米的其他高层民用建筑。

(3)《民用建筑设计通则》GB50352-2005中: 3.1.2建筑高度大于1OOm的民用建筑为超高层建筑。 二、阻尼器耗能减震原理: 耗能减震的原理可以从能量的角度来描述。 传统结构:Ei =Er+Ed+Es 耗能结构:Ei =Er+Ed+Es+Ea Ei为地震时输入结构的总能量; Er为结构在地震过程中存储的动能和弹性应变能; Ed为结构本身阻尼消耗的能量; Es为结构产生弹塑性变形吸收的能量; Ea为耗能装置消耗的能量; (其中Er为能量转换,并不是能量的消耗。) (1)传统结构中: 构件在利用其自身弹塑性变形消耗地震能量的同时,构件本身将遭到损伤甚至破坏。 (2)在消能减震结构中: 耗能(阻尼)装置在主体结构进入耗能状态前率先进入耗能工作状态,耗散大量输入结构体系的地震、风振能量,则结构本身需消耗的能量很少,主体结构反应将大大减小,从而有效地保护了主体结构,使其不再受到损伤或破坏。 三、阻尼器的种类: 阻尼器种类繁多,我国将其分为位移相关型和速度相关型。

高层剪力墙结构消能减震设计

高层剪力墙结构消能减震设计 发表时间:2019-07-24T11:40:13.370Z 来源:《基层建设》2019年第10期作者:宋潇薇陈绍琼 [导读] 摘要:由于地震是自然灾害,具有不可避免和不可预测性的特点,所以在设计高层建筑结构的抗震性能时,会存在很多未知的影响因素,会增加抗震精准计算的难度,因此,若要增加高层建筑结构的抗震强度,不但要借助精确定位抗震技术的计算分析,同时,也要高度重视起高层建筑结构的设计方案。 中国有色金属工业昆明勘察设计研究院有限公司云南昆明 650000 摘要:由于地震是自然灾害,具有不可避免和不可预测性的特点,所以在设计高层建筑结构的抗震性能时,会存在很多未知的影响因素,会增加抗震精准计算的难度,因此,若要增加高层建筑结构的抗震强度,不但要借助精确定位抗震技术的计算分析,同时,也要高度重视起高层建筑结构的设计方案。因此,在进行具体设计时,要充分利用结构规则的有关体系,综合评价施工场地中的地质条件,这样,有利于做好地震设防工作,提高防震措施,从而最终保证高层建筑结构具有最理想的抗震能力。 关键词:高层剪力墙;结构;消能减震;设计 前言: 当前,由于高层建筑技术的逐渐成熟,加之抗震设计水平的持续提高,也使得高层建筑抗震设计方案更加的合理科学,并随着新材料和新技术的应用,使得高层建筑抗震性能得以显著提升,当地震发生时,建筑将增加一定的安全系数。 1高层住宅结构抗震设计目标、原则 1.1目标 在设计高层住宅抗震性能时,要确保小地震发生时住宅不会被损坏,有一定的安全性;中级地震发生时,住宅不会有太大的损坏,也不会威胁到居民的安全,并保证可以修复住宅结构的损坏,并可持续使用;发生大地震时,高层住宅不倒塌,为人们提供足够的时间和空间逃脱。从整体而言,高层住宅结构设计目标是:小震可靠、中震损坏可修、大震高楼不倒。 1.2原则 在设计及高层住宅结构时,为了保证结构抗震设计最优,有几个因素需要引起注意。一,保证设计的住宅结构有良好的弹塑性和刚性,当有地震力影响住宅时,不会由于过于刚性或弹塑性大,导致结构出现不能修复的形变。二,因强震同时还有余震相伴,此时,就不需要住宅结构对抗震能力太过注意,否则会使得住宅刚性太大,对余震带来的压力无法承受,所以,需要涉及高层住宅抗震性能时既要对强震的破坏力进行抵制,同时还要对多次余震侵扰加以承受。三,想要防止高层住宅有太小的刚性,避免住宅结构在余震下过大变形而不能修复,因此,需要高层住宅具有延性较好的分体系,避免在强震下住宅整体坍塌。 2高层建筑抗震设计中常出现的问题 2.1建筑平面、竖向不规则 这就使得建筑的抗震性能有很大的削弱。由于经济水平的提升和人们对流动艺术的追求,建筑师创作的平面和立面日趋复杂。导致了立面、平面的规律性超限状况日渐普遍。这将极大的削弱了建筑物的抗震性。 2.2地基的不科学选取 不同类型的地基在地震力传递中具特点有所不同,由于高层建筑的垂直高度高、重量大,故选择高层建筑的位置,对于土壤硬度、密实度、地形开阔度、平整度的要求很高,应远离河岸,躲避地震危险地段。只有这样,才能保证高层建筑的地基的抗震性能良好,并能在地震力作用下更加稳固。然而,由于城市发展的加快和城市人口的增加,大量的房地产开发商在选择高层建筑的位置时,会更多地考虑自己的商业利益和商业发展空间,这使得高层建筑地基选择更具适应性和不科学性,降低了其抗震性能,在地震发生会严重破坏高层建筑的基础。 2.3材料的不科学选取 最近几年,我国较频繁的发生地震,在地震多发地区高层建筑设计中,必须保证结构体系的合理性,对结构材料合理选择。然而,由于受经济、施工等因素限制,并未合理的应用轻质高强度材料,还通过增加钢筋、水泥、加大横截面积的感性上提升结构安全性,很少使用隔震、减震、新材料等。 2.4 抗震设防烈度不高 因我国经济发展水平较低,所以当前我国建筑抗震设防的烈度也不高,中等地震是指在规定的设计基准期内发生概率超过10%的地震的强度,抗震设防烈度低,导致高层建筑的抗震要求降低。 3高层建筑结构的抗震性能设计 3.1 地基的选择 建筑物会在地震力的作用下发生倒塌,而除了会受到地震这个直接影响因素外,还要对地质条件因素进行充分的考虑。在对场地进行选择时,需要综合评定地质条件。第一,需要优选对高层建筑结构抗震有利的坚硬的土质地区,不要选择土质软化的场地。但原因特殊真的无法规避,则需要采用一定抗震措施,特别是地震高发的地区,甲乙丙三种建筑是绝对不可以建设的,经过一些研究和调查,可知,地震会对那些覆盖层厚、土质软地区的建筑有较大的影响,其一旦发生地震后果将不堪设想。 3.2抗震体系的选择 建筑的抗震性会受诸多因素的影响,如,抗震体系选择、施工因素等,均会对抗震性能产生严重的影响。一,不要设计太过复杂的高层建筑结构体型,并且保证空间布置具有一定的规则性,只有这样在设计方案时,会因建筑的受力明确,如果发生地震,就能够很好的分析出高层建筑结构的实际内力和受力状况。这样也就更容易设计建筑结构细部。所以,在发生地震时,也不会对该种结构物造成太严重的损伤。二,建筑的空间规则性和地震作用的传递紧密相连,且抗震延性也会受到选择的建材影响。因此,如果高层建筑结构体型复杂且空间结构规则性不佳,必须要科学设置相应的防震缝从而降低地震的影响力。若高层建筑结构的平面设计也缺乏规则性,也需要将科学有效的方针措施设置在薄弱的位置。若高层建筑结构平面设计不规则,则必须在薄弱位置应用有效的防震措施。而那些体型复杂的高层建筑结构,若未对防震缝进行设置,想要提高抗震性,那么,想要使抗震性能切实提高,就要针对具体结构准确的设计一定的模型,以此为基础将抗震分析准确做好,并且要有针对性的重点分析容易出现损害的位置,若防震缝已经科学的进行了设置,则就说明建筑结构划分成立结

隔震和消能减震设计

隔震和消能减震设计 12.1 一般规定 12.1.1本章适用于在建筑上部结构与基础之间设置隔震层以隔离地震能量的房屋隔震设计,以及在抗侧力结构中设置消能器吸收与消耗地震能量的房屋消能减震设计。 采用隔震和消能减震设计的建筑结构,应符合本规范第3.8.1条的规定,其抗震设防目标应符合本规范第3.8.2条的规定。 注:1 本章隔震设计指在房屋底部设置的由橡胶隔震支座和阻尼器等部件组成的隔震层,以延长整个结构体系的自振周期、增大阻尼,减少输入上部结构的地震能量,达到预期防震要求。 2 消能减震设计指在房屋结构中设置消能装置,通过其局部变形提供附加阻尼,以消耗输入上部结构的地震能量,达到预期防震要求。 12.1.2建筑结构的隔震设计和消能减震设计,应根据建筑抗震设防类别、抗震

设防烈度、场地条件、建筑结构方案和建筑使用要求,与采用抗震设计的设计方案进行技术、经济可行性的对比分析,后确定其设计方案。 12.1.3需要减少地震作用的多层砌体和钢筋混凝土框架等结构类型的房屋,采用隔震设计时应符合下列各项要求: 1 结构体型基本规则,不隔震时可在两个主轴方向分别采用本规范第5.1.2条规定的底部剪力法进行计算且结构基本周期小于 1.0s;体型复杂结构采用隔震设计,宜通过模型试验后确定。 2 建筑场地宜为Ⅰ、Ⅱ、Ⅲ类,并应选用稳定性较好的基础类型。 3 风荷载和其他非地震作用的水平荷载标准值产生的总水平力不宜超过结构总重力的10%。 4 隔震层应提供必要的竖向承载力、侧向刚度和阻尼;穿过隔震层的设备配管、配线,应采用柔性连接或其他有效措施适应隔震层的罕遇地震水平位移。 12.1.4需要减少地震水平位移的钢和钢筋混凝土等结构类型的房屋宜采用消能

结构设计中的消能减震措施应用

结构设计中的消能减震措施应用 发表时间:2019-07-23T14:29:03.267Z 来源:《基层建设》2019年第13期作者:李武林[导读] 摘要:相比传统抗震结构体系,消能减震结构具有技术先进、经济合理、安全性好的优势,因此本文对结构设计中的消能减震措施应用进行了分析。 广东呈斯意特建筑设计有限公司 516000摘要:相比传统抗震结构体系,消能减震结构具有技术先进、经济合理、安全性好的优势,因此本文对结构设计中的消能减震措施应用进行了分析。 关键词:结构设计;消能减震;应用消能减震是指通过设置消能器吸收或耗散地震能量,以保护建筑主体结构不受到破坏。目前,消能减震技术在结构设计中已得到了不少应用,并收到明显效果。例如扇形铅粘弹性阻尼器(SLVD)用于钢筋混凝土框架结构的梁柱节点位置,不仅发挥良好的耗能作用,而且保护了核心节点区,有利于实现强节点、弱构件的抗震设计理念[1]。再如针对阻尼器价高劣势,采用与框架结构相结合的消能墙构建双层 抗震体系,小震可提高结构刚度,中震开始屈服但仍保持弹性,大震屈服耗能,从而有效保护主体结构[2]。为了用好消能减震技术,本文对结构设计中的消能减震措施应用进行了分析。 1 消能减震原理与消能器分类 1.1 消能减震原理 消能减震可从能量角度来分析,即结构振动的能量平衡原理。令地震输入系统能量为,系统地震反应的能量(包括动能与势能)为,系统阻尼能为,系统非弹性变形能为,于是有。对于传统抗震结构来说,只占5%左右,可忽略,就有。为了耗散地震能量,结构损坏或倒塌,即。最后,地震反应终止,即。对于消能减震结构而言,增加了消能器,令其消耗的能量为,于是能量平衡方程有。系统阻尼可忽略,于是有。消能器消耗地震能量,即。于是系统地震反应迅速衰减,即。使结构免遭破坏,即。 1.2 消能器分类 根据消能原理,消能器分为位移相关型消能器、速度相关型消能器和复合相关型消能器三类。位移相关型消能器是利用材料自身的塑性滞回耗能能力消耗地震能量,其又可细分为金属消能器和摩擦消能器,金属消能器又包括软钢剪切消能器、屈服约束支撑、铅消能器。速度相关型消能器利用粘滞材料将地震能量转化为热能消耗掉,其又可细分为粘滞流体消能器和粘滞阻尼墙,粘滞流体消能器包括单出杆粘滞阻尼器、双出杆粘滞阻尼器、孔隙式粘滞阻尼器、间隙式粘滞阻尼器等。复合相关型消能器可看作位移相关型消能器和速度相关型消能器的结合,同时具有这两类耗能器的特点,以粘弹性消能器为代表,典型结构是两块可相对移动的钢板之间充填粘弹性材料,地震时能量耗散在粘弹性材料的剪切变形中。 2 消能减震设计方法应用 2.1 设计流程 开始→明确结构消能减震要求→设定消能减震结构设计目标→主体结构初步设计→选择消能器并初步形成消能减震体系→选择分析方法→确定消能器参数并形成最终消能减震体系→计算地震反应并进行抗震验算→消能减震体系构造设计→结束。 2.2 适用体系 根据《建筑消能减震技术规程》(JGJ 297-2013)第1.0.2条,消能减震结构适用于抗震设防烈度6~9度地区新建与既有建筑结构。 2.3 设防目标 消能减震结构主要用于设防烈度较高或对使用功能有特殊要求的建筑,采用消能减震结构后抗震设防目标比无控结构应有所提高。JGJ 297-2013条文说明第3.1.3条指出,消能减震结构设防性能目标分为三个层次:(1)丙类建筑(如一般工民建、公共建筑等)采用“小震不坏,中震可修,大震不倒”的设防目标;(2)乙类建筑(如公安消防、医院、学校、通信、动力等)采用“中震不坏,大震可修”的设防目标;(3)甲类建筑(如人民大会堂、核武器储存室等)采用“大震不坏”的设防目标。 2.4 消能器的选择 选择消能器时,应根据各类消能器特点及建筑对消能减震要求两方面来考虑。速度相关型消能器在很小位移下就能达到一定阻尼值并发挥耗能作用,所以适合水平位移要求严格、设防目标较高的建筑。位移相关型消能器达到足够大的相对位移才能屈服耗能,并在耗散地震能量的同时提供一定的侧向刚度,适合水平位移要求不严、设防目标不高的建筑。例如某医院门诊楼(既有建筑)设定罕遇地震下轻微到中等损坏的性能目标,层间位移要求较严,但为了调整扭转已加入一定数量屈曲约束支撑(BRB),刚度已充足,所以选择粘滞阻尼器作为消能器。 2.5 消能器的布置 JGJ 297-2013第6.2.1条规定,消能器布置应使结构在两个主轴方向的动力特性相近,使结构在沿高度方向刚度均匀。为提高消能减震效率,应在相对位移或相对速度较大的楼层布置消能器,并采用合理技术措施增加消能器两端的相对变形或相对速度。布置消能器以后,不应在结构中产生薄弱构件或薄弱层。 2.6 消能减震结构分析方法 根据《建筑抗震设计规范》(GB 50011-2010)(2016年版)第12.3.3条规定,当主体结构基本处于弹性工作阶段时,可采用底部剪力法、振型分解反应谱法和时程分析法进行分析;当主体结构进入弹塑性阶段时,采用静力非线性分析法或非线性时程分析法。应用振型分解反应谱法时,先将阻尼器非线性恢复力以等效线性化处理,并忽略非正交阻尼矩阵中的非正交项,计算小震作用下的误差不超过5%。时程分析法分为线性时程分析法和非线性时程分析法,前者主要采用增量法(如加速度法、威尔逊-θ法),而后者将增量法与迭代法结合。对于速度型阻尼器来说,在结构为弹性状态时应采用线性时程分析法;而对于滞回型阻尼器,采用等效刚度或阻尼时采用线性时程分析法,而恢复力为非线性时应采用非线性时程分析法。但只要主体结构进入塑性状态都应采用非线性时程分析法。静力非线性分析法假定在地震作用下结构的动力反应受单一振型控制,不计高阶振型影响。 2.7构件设计

消能减震结构及其在工程中的应用

消能减震结构及其在工程中的应用 发表时间:2019-06-21T15:00:51.443Z 来源:《建筑细部》2018年第25期作者:高正路高旭[导读] 保护结构主要受构件,便利维护更换的特点。本文就消能减震结构的思想及其在工程中的应用进行了研究。陕西省宝鸡市建安集团股份有限公司陕西宝鸡 721000 摘要:针对传统结构抗震思路,详细介绍了结构的消能减震是结构抗震的新思路,以及目前常用的消能减震装置及其适用对象,阐述了消能减震结构的能量原理及在工程结构中的应用。分析表明,消能减震结构具有优良的抗震性能,具有广阔的应用前景。 关键词:结构抗震;消能减震;耗能装置;能量原理 我国是一个多地震国家,地震灾害给我们带来巨大的伤害和损失,如唐山大地震、汶川大地震等。地震时,由于房屋的倒塌导致的人员伤亡和财产损失十分巨大,因此,工程界十分重视建筑的抗震性能。以前的建筑结构的设计大多以建筑主要构件如梁、柱、剪力墙等直接承受地震作用,但是这样导致结构主要受力构件即使在小震时也会产生一定的损坏,更换和维护的成本很高。鉴于此,一些新型的结构型式不断出现。目前的消能减震结构就是其中一种,该型式的结构有利于地震作用时产生多道抗震防线,保护结构主要受构件,便利维护更换的特点。本文就消能减震结构的思想及其在工程中的应用进行了研究。 一、消能减震的概念 消能减震的原理就是在建筑结构中增加一些对建筑竖直方向不产生作用的部件,当建筑结构受到水平方向力的作用时,这些部件就其作用了,它们能分担部分水平方向的力,并通过建筑内部的其它部件之间的相互作用消耗掉这部分力,从而减小对建筑结构的作用。它的力学原理是在外力作用时建筑结构中消能减震的部件会产生一定的相对运动,在这些部位增加设置一些阻尼器之类的消能装置消耗掉这部分外力。当结构受到外力(如地震)作用时,这些阻尼器在结构相对运动的作用下,会产生与建筑结构相对运动相反的作用力来抵消这种相对运动,根据能量守能定律,这些阻尼器做功以发热的形式来消耗掉这部分能量,通过这种原理达到消能减震的目的,以减小地震的影响。 但这种消能减震的抗震技术的形成时间不长,还没有经受过地震的考验,也没有相应的数据,所以人们对这方面的技术的了解还不全面,对其在实际地震中的抗震能力还不了解。另外,消能减震结构的分析计算和合理设计的理论方法还不是很完善,数据还不全面,还应该深入研究。 二、消能减震结构的分类 消能减震装置的类型很多,但按其抵抗相对运动消能的直接相关联参数而言,可分为位移相关型与速度相关型两大类,或是由它们组成的复合型。下面分别作一些简单叙述。 1.位移相关型消能装置 (1)金属阻尼器。金属阻尼器通常又分为软钢阻尼器和记忆合金阻尼器两种。软钢阻尼器利用软钢较好的屈服后性能和进入塑性范围后的良好滞回特性,达到耗能减震的目的。目前已有加劲消能装置、锥形钢耗能装置、圆环钢阻尼器、双环钢阻尼器、加劲圆环阻尼器、低屈服点钢阻尼器、低屈服点剪切耗能板和屈曲斜撑等。这类消能器具有滞回环稳定、耗能能力大、长期使用可靠并不受环境与温度影响的特点。目前,主要的几种记忆合金为Ni-Ti合金、Cu基合金和Fe基合金等。 (2)摩擦阻尼器。摩擦阻尼器是一种性能良好的耗能减震装置。由于它具有较好的库仑特性,消能明显,可提供较大的附加阻尼,而且结构简单、取材容易、制作方便,因而具有广泛的应用背景。摩擦阻尼器在国内有不少研究单位均对其消能减震的功能进行过较为详细的研究,目前有不少单位已经能小批量生产。 (3)铅阻尼器。铅阻尼器利用铅具有密度大、熔点低、塑性高、强度底、耐腐蚀、润滑能力强等特点,使得该消能器有较高的延性和柔性,在变形过程中可以吸收大量的能量,并有较强的变形综合能力。 (4)粘弹性阻尼器。粘弹性阻尼器同时具有弹性刚度和耗能性能。该消能器目前己得到广泛的应用。近年来开发出的装置还有沥青橡胶组合粘弹性阻尼器、粘弹性橡胶剪切阻尼器、超塑性硅氧橡胶粘弹性剪切消能制震系统、杠杆粘弹性阻尼器等。 2、速度相关型消能装置 (1)、粘滞流体阻尼器曾广泛应用于军事和航空领域。目前主要与用于建筑和桥梁的减震装置,使用的比较广泛的粘滞流体阻尼器有筒式流体阻尼器、粘性阻尼墙系统、油动式阻尼器等。 (2)电磁流体阻尼器是唯一一个工作原理不同于其他阻尼器的消能减震装置。它是将电流变成磁力,通过控制电流的大小来改变磁场的强弱。它的工作原理是根据动力传感器传来的建筑瞬时的状态来调节电流大小,控制磁力来达到抵消震动的目的。电磁流体阻尼器具有结构简单,功率小,反应快等特点。 三、消能减震技术的应用推广 在对阻尼器的结构的初步了解中,我们会有这样的一个概念:阻尼器的结构必须具备一定的柔性,具有良好的弹性和延展性。一旦外力较大会变形而不会损坏,达到保护建筑的目的。如果外力太大导致建筑损坏也不会立刻倒塌,留给人足够的时间逃生。一般的变形,还是在弹性限度内的,所以发生了形变之后还是会还原的,就像一个弹片你用手拨动它,给它一个力,它会一直左右震动,慢慢的直到将这个力消耗完。在现代建筑中无论是软钢阻尼器还是摩擦阻尼器或者是其他类型的阻尼器,都是主体结构形成之后安装的。这些阻尼器发挥的作用是在总体结构成型之后再完成。因此安装阻尼器对这个项目来说就是面子工程。在施工方面应根据消能减震的原理进行结构设计,采用适当的阻尼器来减震消能,比完全用钢筋水泥堆起来的建筑节约资源,并且抗震效果更加好。在质量的控制方面应当由专业技术相对稳定的施工队去完成。阻尼器在安装之前检测比结构成型之后检测更简便。因为建筑成型之后无法检测,除非当时就来个地震,而阻尼器可以在阻尼器成型之后就进行检测,这样比建成之后检测方便的多,效果也好一些。目前应用了消能减震技术的建筑还不够多,现在主要运用的还是剪力墙结构,这里有造价的原因。如果阻尼器推广后,随着采购数量的增加而形成规模效益,那样阻尼器的采购价格应该是可以降低的。建筑施工方除了向社会提供各种合格的建筑产品外,还可以提供大量的就业机会。所以大量工程生产阻尼器之后会提供大量的就业机会。并且工厂生产出产品之后又会提供大量的安装阻尼器的岗位。

相关主题
文本预览
相关文档 最新文档