当前位置:文档之家› 17高中物理竞赛讲义动量和能量专题

17高中物理竞赛讲义动量和能量专题

17高中物理竞赛讲义动量和能量专题
17高中物理竞赛讲义动量和能量专题

最新高中物理竞赛讲义动量和能量专题

一、冲量

1.冲量的定义:力F和力的作用时间t的乘积Ft叫做力的冲量,通常用符号I表示冲量。

2.定义式:I=Ft 3.单位:冲量的国际单位是牛·秒(N·s)4.冲量是矢量,它的方向是由力的方向决定的。

如果力的方向在作用时间内不变,冲量的方向就跟力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。

5、冲量的计算:冲量是表示物体在力的作用下经历一段时间的累积的物理量。

因此,力对物体有冲量作用必须具备力F和该力作用下的时间t两个条件。换句话说:只要有力并有作用一段时间,那么该力对物体就有冲量作用,可见,冲量是个过程量。

例:以初速度竖直向上抛出一物体,空气阻力不可忽略。关于物体受到的冲量,以下说法正确的是:()

A、物体上升阶段和下落阶段受到的重力的冲量方向相反;

B、物体上升阶段和下落阶段受到空气阻力冲量的方向相反;

C、物体在下落阶段受到重力的冲量大于上升阶段受到重力的冲量;

D、物体从抛出到返回抛出点,所受各力冲量的总和方向向下。

二、动量

1.定义:质量m和速度v的乘积mv.

2.公式:p=mv

3.单位:千克?米/秒(kg?m/s),1N?m=1kg?m/s2?m=1kg?m/s

4.动量也是矢量:动量的方向与速度方向相同。

三、动量的变化

1.动量变化就是在某过程中的末动量与初动量的矢量差。即△P=P’-P。

例1:一个质量是0.2kg的钢球,以2m/s的速度水平向右运动,碰到一块竖硬的大理石后被弹回,沿着同一直线以2m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少?

例2:一个质量是0.2kg的钢球,以2m/s的速度斜射到坚硬的大理石板上,入射的角度是45o,碰撞后被斜着弹出,弹出的角度也是45o,速度大小仍为2m/s,用作图法求出钢球动量变化大小和方向?

2.动量是矢量,求其变化量可以用平行四边形定则

四、动量定理

1.物理意义:物体所受合外力的冲量等于物体的动量变化

2.公式:Ft=p’一p=mv'-mv

3.动量定理的适用范围:恒力或变力(变力时,F为平均力)

例:质量2kg的木块与水平面间的动摩擦因数μ=0.2,木块在F=5N的水平恒力作用下由静止开始运动。g=10m/s2,求恒力作用木块上10s末物体的速度。

例:鸡蛋从某一高度下落,分别碰到石头和海绵垫,哪个更容易破,用动量有关知识解释?

例:一个人慢行和跑步时,不小心与迎面的一棵树相撞,其感觉有什么不同?请解释.

五、动量守恒定律

1.内容:相互作用的物体所组成的系统,如果不受外力作用,或它们所受外力之和为零。则系统的总动量保持不变。

2.动量守恒的条件:系统不受外力或合外力为零

六、动量守恒定律的应用

例1.在列车编组站里,一辆m1=1.8×104kg的货车在平直轨道上以v1=2m/s的速度运动,

碰上一辆m2=2.2×104kg 的静止的货车,它们碰撞后接合在一起继续运动,求运动的速度?

例2.质量为M 的平板车静止在水平路面上,车与路面间的摩擦不计.质量为m 的人从车的左端走

到右端,已知车长为L ,求在此期间车行的距离?

例3.一枚在空中飞行的导弹,质量为m ,在某点速度的大小为v ,导弹在该点突然炸裂成两块,其

中质量为m1的一块沿着v 的反方向飞去,速度的大小为v1,求炸裂后另一块的速度v2.

例4.平静的水面上有一载人的小船,船和人的总质量为M ,站立在船上的人手中拿一质量为m 的物

体,起初人相对船静止,船、人、物以共同速度v0前进,当人相对于船以速度u 向相反方向将物体抛出后,船和人的速度为多大?

例5. 总质量为M 的列车以匀速率v0在平直轨道上行驶,各车厢受的阻力都是车重的k 倍,而与车

速无关.某时刻列车后部质量为m 的车厢脱钩,而机车的牵引力不变,则脱钩的车厢刚停下的瞬间,前面列车的速度是多少?

二.机械能守恒定律的几种应用 1.连续媒质的流动问题

例1 如图1所示,一粗细均匀的U 形管内装有同种液体竖直放置,右管口用盖板A 密闭一部分气体,左管口开口,两液面高度差为h ,U 形管中液柱总长为4h ,现拿去盖板,液柱开始流动,当两侧液面恰好相齐时,右侧液面下降的速度大小为多少?

例2 如图2所示,露天娱乐场空中列车是由许多节完全相同的车厢组成,列车先沿光滑水平轨道行驶,然后滑上一固定的半径为R 的空中圆形光滑轨道,若列车全长为L (L >2πR ),R 远大于一节车厢的长度和高度,那么列车在运行到圆环前的速度至少要多大,才能使整个列车安全通过固定的圆环轨道(车厢间的距离不计)?

2.轻杆连接体问题

例3 如图3所示,一根轻质细杆的两端分别固定着A 、B 两只质量均为m 的小球,O 点是一光滑水平轴,已知AO=L ,BO=2L ,使细杆从水平位置由静止开始转动,当B 球转到O 点正下方时,它对细杆的拉力大小是多大?

3.轻绳连接体问题

例4: 质量为M 和m 的两个小球由一细线连接(M >m ),将M 置于半径为R 的光滑球形容器上口边缘,从静止释放(如图4所示),求当M 滑至容器底部时两球的速度(两球在运动过程中细线始终处于绷紧状态)。

图2

图3

图4

4.弹簧连接体问题

例5 如图5所示,半径m R

50.0=的光滑圆环固定在竖直平面内。轻持弹簧一端固定在环的最高

点A 处,另一端系一个质量kg m 20.0=的小球,小球套在圆环上。已知弹簧的原长为m L 50.00=劲

度系数m N k

/408=。将小球从图示位置,由静止开始释放,小球将沿圆环滑动并通过最低点C 。已知

弹簧的弹性势能22

1kx E P =,重力加速度2

/10s m g =,求小球经过C 点的速度C v 的大小。

碰撞——时间极短(t →0)的物体间相互剧烈作用均称为“碰撞”。

任何一种“碰撞”都遵循动量守恒定律。

碰撞的分类:㈠弹性碰撞;㈡完全非弹性碰撞;㈢非弹性碰撞。

碰撞类型 弹性碰撞

完全非弹性碰撞

非弹性碰撞

过程特点

无动能损失,只发生动能的传递而没有能量的转化。

有动能损失,而且损失最大,有能量转化。

有动能损失,有能量转化。 显著特征

无永久形变、无摩擦力作用、无弹性势能和重力势能积累。 有永久形变,碰撞后全部物体粘在一起速度相同。 有永久形变、可能有摩擦力作用、有弹性势能和重力势能积累。

遵循规律 动量守恒、动能守恒

动量守恒,EK 后≤EK 前

动量守恒,EK 后≤EK 前

一、弹性碰撞

弹性碰撞无动能损失,只发生动能的传递而没有能量的转化;无永久形变、无摩擦力作用、无弹性势能和重力势能积累;动量守恒、动能守恒。

【例题讨论】如图所示,在光滑水平面上,质量为m1的小球以速度v1与质量为m2的静止小球发生弹

性碰撞,碰撞后两球的速度各是多少?

)2('2

1'2121)

1(2

211211211'

22'1111ΛΛΛΛΛΛΛΛΛv m v m v m v m v m v m +=+=

解此方程组得:12

11

2121211

2' 'v m m m v v m m m m v +=+-=

讨论:

R 600

图5

C O

①当m1=m2时,1

21'0

'??

?==v v v ,(能量交换,接近速度=分离速度)

——显然,m1的动能全部传递给了m2,因此,m1=m2是能量传递最大的条件;

②当m1<

1

1v v v ,(乒乓球撞铅球,接近速度=分离速度)

——显然,m1的动能没有传递给m2,因此,m1<

③当m1>>m2时,???≈≈1

21

12''v v v v ,(铅球撞乒乓球,接近速度=分离速度)

【例题与习题】

1. 网球拍以速率v1击打以速率v0迎面飞来的网球,被击回的网球的最大速率为 _____。

2. 水平光滑地面上,有一静止的质量为M 的坡型滑块,一质量为M 的小球以速度v0冲向该滑块,求

小球翻越该坡型滑块后二者的速度各是多少?

3. 如图所示,质量相同的木块A 、B ,其间用一轻弹簧相连,置于光滑水平桌面上,C 为固定

竖直挡板,今将B 压向A ,弹簧被压缩,然后突然释放B ,弹簧刚恢复原长时,B 的速度大小为v ,那么当弹簧再次恢复原长时,B 的速度应是多少?

4. 将两条完全相同的磁铁(磁性极强)分别固定在质量相等的小车上,水平地面光滑,开始时甲车的速

度为3m/s ,方向向右,乙车的速度为2m/s ,方向向左,两车刚好在同一条直线上运动,当乙车速度为0时,甲车的速度大小为_____,方向______。

二、完全非弹性碰撞

完全非弹性碰撞有动能损失,而且损失最大;有能量转化。有永久形变;碰撞后全部物体粘在一起速度相同;动量守恒,EK 后≤EK 前。

【例题与习题】

1. 小车的质量为M ,放在光滑水平地面上,有一质量为m 、速度为v0的小球沿光滑轨道水平

切入,如图所示,则小球上升的最大高度为_______

如图所示,两个完全相同的小球AB ,用等长的细线悬挂于O 点,线长为L ,将A 由图示位置静止释放,则B 球碰后第一次速度为零的高度可能是: A.2L ; B.4

L

; C.

8L

; D.10

L .

2. 如图所示,在光滑水平地面上,依次有m 、2m 、3m 、4m ……10m 的10个小球,排成一条直线,

彼此间有一定距离,开始时,后面的小球是静止的,m 以速度v0向着2m 碰去,结果它们先后全部粘在一起共同运动,由于连续碰撞,系统损失的动能为多少?

三、非弹性碰撞

非弹性碰撞有动能损失,有能量转化。 D. 有永久形变、可能有摩擦力作用、有弹性势能和重力势能积累以及热能的出现;EK

后≤EK 前 ②动量守恒,。

1. 质量为1千克的物体原来静止,受到质量为2千克、速度为1米/秒的运动物体的碰撞,碰后两物体的总动能不可能是: A.1焦耳; B.

34焦耳; C.3

2焦耳; D.31

焦耳。

2. 质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7千克·米/秒,B 球的动量是5千克·米/秒,当A 球追上B 球时发生碰撞,则碰撞后,A 、B 两球的动量可能是: A.PA=6千克·米/秒、PB=6千克·米/秒; B.PA=3千克·米/秒、PB=9千克·米/秒; C.PA=-2千克·米/秒、PB=14千克·米/秒;D.PA=-4千克·米/秒、PB=17千克·米/秒。

3. 质量为1千克的小球以4米/秒的速度与质量为2千克的静止小球正碰,关于碰后的速度v1、v2,下面哪些是可能的 A.v1=v2=

3

4

米/秒; B.v1=-1米/秒、v2=2.5米/秒;C. v1=1米/秒、v2=3米/秒; D.v1=-4米/秒、v2=4米/秒;

4. 半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动,若甲球质量大于乙球质量,碰撞前两球动能相等,则碰撞后两球的运动状态可能是:

A.甲球的速度为零而乙球的速度不为零;

B.乙球的速度为零而甲球的速度不为零;

C.两球的速度均不为零;

D.两球的速度方向均与原方向相反,两球的动能仍相同。

四、爆炸和反冲问题

1. 反冲的定义——一个物体从另一个物体内部发射出来,从而使原来的物体后退,这种现

象称为反冲。

2. 反冲实例:①火箭的发射;②喷气式飞机;③轻重武器发射;④物体爆炸

3. 反冲问题特征:

①内力一般较大,故系统动量守恒;

②反冲过程中,内力一般作正功,故系统机械能增大。

1. 质量为m 千克的人,站在质量为M 的静止船头,当他以v 的水平速度从船上跳到岸上时,消耗多少能量?一个人在地面上立定跳远的最好成绩是S 米,假设他站在车的一端要跳上离此端距离为L 的站台上,如图所示,车与地面的摩擦不计,则: A.只要L

D.只要L=S ,他才有可能跳上站台;

2. 一门旧式大炮水平射出一枚质量为10千克的炮弹,炮弹飞出的速度是600米/秒,炮身质量为2吨,大炮后退的速度是______,若大炮后退中所受的阻力是它重力的30%,则大炮能后退_______米。

3. 一颗手榴弹以20米/秒的速度在空中飞行,炸成两块,两块质量之比为3:7,较大的一块以80米/秒的速度向原方向飞行,求: ① 较小的一块的速度

② 设手榴弹的质量为1千克,那么手榴弹爆炸时,有多少化学能转变为动能?

五、动量和功能关系的综合应用

作用于系统的滑动摩擦力和系统内物体间相对滑动的位移的乘积,在数值上等于系统内能的增量,即Q=f 滑·S 相对

1.在光滑水平面上,有一质量为M 的长方形木块以一定的初速度v0向右匀速运动,现将质量为m 的小铁块无初速地轻放在木块的前端,设小铁块与木块间的摩擦系数为μ,当小铁块在木块上相对滑动L 时与

木块保持相对静止,此时木块对地位移为S,则在这个过程中,系统产生的热能为____,小铁块增加的动能为___,木块减少的动能为______。

2.如图所示,质量为m的物体(可视为质点)以水平初速度v0滑上原来静止在水平光滑轨道上的质量为M

的小车上,物体与小车表面的摩擦系数为μ,小车足够长,求:

①物体从滑上小车到相对与小车静止所经历的时间;

②相对小车滑行的距离;

③物体从滑上小车到相对与小车静止的这段时间内小车通过的距离.

3.如图所示,质量为m的子弹以速度v从正下方向上击穿一个质量为M的木球,击穿后木球能上升高

度为H,求击穿木球后子弹能上升多高?

4.如图所示,在光滑水平面上有一质量为m1=20千克的小车,通过不可伸长的细绳与质量为m2=25千克的足够长的拖车连接,质量为m3=15千克的物体在拖车的长平板上,与平板间的摩擦系数μ=0.2,开始时,物体和拖车静止,绳未拉紧,小车以3米/秒的速度向前运动,求:

①三者以同一速度前进时速度的大小;

②到三者速度相同时,物体在平板上移动的距离。

5.如图所示,一质量为M,长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的的小木块A,m

达的最远处(从地面上看)离出发点的距离。

6 质量为M的小车静止在光滑的水平面上,小车的上表面是一光滑的曲面,末端是水平的,

如下图所示,小车被挡板P挡住,质量为m的物体从距地面高H处自由下落,然后沿光滑的曲面继续下滑,物体落地点与小车右端距离s0,若撤去挡板P,物体仍从原处自由落下,求物体落地时落地点与小车右端距离是多少?

高中物理竞赛讲义:动量

专题六 动量 【扩展知识】 1.动量定理的分量表达式 I 合x =mv 2x -mv 1x , I 合y =mv 2y -mv 1y , I 合z =mv 2z -mv 1z . 2.质心与质心运动 2.1质点系的质量中心称为质心。若质点系内有n 个质点,它们的质量分别为m 1,m 2,……m n ,相对于坐标原点的位置矢量分别为r 1,r 2,……r n ,则质点系的质心位置矢量为 r c=n n n m m m r m r m r m ++++++ 211211=M r m n i i i ∑=1 若将其投影到直角坐标系中,可得质心位置坐标为 x c =M x m n i i i ∑=1, y c =M y m n i i i ∑=1, z c =M z m n i i i ∑=1. 2.2质心速度与质心动量 相对于选定的参考系,质点位置矢量对时间的变化率称为质心的速度。 v c=t r c ??=M p 总=M v m n i i i ∑=1, p c =Mv c =∑=n i i i v m 1 . 作用于质点系的合外力的冲量等于质心动量的增量 I 合= ∑=n i i I 1=p c -p c0=mv c -mv c0 . 2.3质心运动定律 作用于质点系的合外力等于质点总质量与质心加速度的乘积。F合=Ma c.。 对于由n 个质点组成的系统,若第i 个质点的加速度为a i ,则质点系的质心加速度可表示为 a c =M a m n i i i ∑=1 .

【典型例题】 1.将不可伸长的细绳的一端固定于天花板上的C点,另一端系一质量为m的小球以以角速度ω绕竖直轴做匀速圆周运动,细绳与竖直轴之间的夹角为θ,如图所示。已知A、B为某一直径上的两点,问小球从A点运动到B点的过程中细绳对小球的拉力T的冲量为多少? 2.一根均匀柔软绳长为l=3m,质量m=3kg,悬挂在天花板的钉子上,且下端刚好接触地板,现将软绳的最下端拾起与上端对齐,使之对折起来,然后让它无初速地自由下落,如图所示。求下落的绳离钉子的距离为x时,钉子对绳另一端的作用力是多少? 3.一长直光滑薄板AB放在平台上,OB伸出台面,在板左侧的D点放一质量为m1的小铁块,铁块以速度v向右运动。假设薄板相对于桌面不发生滑动,经过时间T0后薄板将翻倒。现让薄板恢复原状,并在薄板上O点放另一个质量为m2的小物体,如图所示。同样让m1从D点开始以速度v向右运动,并与m2发生正碰。那么从m1开始经过多少时间后薄板将翻倒?

初中七年级数学竞赛培优讲义全套专题07 整式的加减

专题07 整式的加减 阅读与思考 整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点: 1.透彻理解“三式”和“四数”的概念 “三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数. 2.熟练掌握“两种排列”和“三个法则” “两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则. 物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项. 例题与求解 [例1]如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______. (江苏省竞赛试题) 解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手. [例2]已知-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是( ) A.a+b B.a-b C.a+b2D.a2+b (“希望杯”初赛试题) 解题思路:采用赋值法,令a=1 2 ,b=- 1 2 ,计算四个式子的值,从中找出值最大的 式子. [例3]已知x=2,y=-4时,代数式ax2+1 2 by+5=1997,求当x=-4,y=- 1 2 时, 代数式3ax-24by3+4986的值. (北京市“迎春杯”竞赛试题) 解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.[例4]已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值. (北京市“迎春杯”竞赛试题) 解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式. [例5]一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

初中八年级数学竞赛培优讲义全套专题25 配方法-精编

专题 25 配方法 阅读与思考 把一个式子或一个式子的部分写成完全平方式或者几个完全平方式的和的形式,这种方法叫配方法,配方法是代数变形的重要手段,是研究相等关系,讨论不等关系的常用技巧. 配方法的作用在于改变式子的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具. 配方法解题的关键在于“配方”,恰当的“拆”与“添”是配方常用的技巧,常见的等式有: 1、222 2()a ab b a b ±+=± 2、2 a b ±= 3、2222 222()a b c ab bc ca a b c +++++=++ 4、2 2 2 2221 [()()()]2 a b c ab bc ac a b b c a c ++---= -+-+- 配方法在代数式的求值,解方程、求最值等方面有较广泛的应用,运用配方解题的关键在于: (1) 具有较强的配方意识,即由题设条件的平方特征或隐含的平方关系,如2 a = 能 联想起配方法. (2) 具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式. 例题与求解 【例1】 已知实数x ,y ,z 满足2 5,z 9x y xy y +==+- ,那么23x y z ++=_____ (“祖冲之杯”邀请赛试题) 解题思路:对题设条件实施变形,设法确定x , y 的值. 【例2】 若实数a ,b , c 满足222 9a b c ++= ,则代数式2 2 2 ()()()a b b c c a -+-+- 的 最大值是 ( ) A 、27 B 、18 C 、15 D 、12 (全国初中数学联赛试题) 解题思路:运用乘法公式 ,将原式变形为含常数项及完全平方式的形式.

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

高中物理竞赛讲义全套(免费)

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23) 专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场………………………………………………………………………… 33 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40)

中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。 3.由中国物理学会根据需要聘请若干人任特邀委员。 在全国竞赛委员会全体会议闭会期间由主任和副主任组成常务委员会,行使全国竞赛委员会职权。 第六条在全国竞赛委员会领导下,设立命题小组、组织委员会和竞赛办公室等工作机构。命题小组成员由全国竞赛委员会聘请专家和高等院校教师担任。组

七年级秋季培优讲义整式专题

2018年七年级秋季培优讲义——整式专题(一) 【知识解读】 整式加减: 1. 代数式的概念 代数式是用基本的运算符号(运算符号包括加、减、乘、除以及乘方、开方)把数字或字母连接而成的式子,单独一个数或一个字母也可以看成代数式. 2. 代数式的值 用具体的数值代入代数式中得到的计算结果叫代数式的值. 3. 整式的加减 (1)单项式:数与字母的积的代数式叫单项式,数字因数叫单项式的系数,所有字母的指数的和叫单项式的次数;单个的字母或单个的数也叫单项式. (2)多项式:几个单项式的和叫多项式,多项式中次数最高的单项式的次数叫多项式的次数,单项式的个数也就是多项式的基数. (3)单项式和多项式统称为整式. (4)同类项,两个单项式中,如果所含有的字母相同且相同字母的指数也相等,那么这两个单项式叫同类项. (5)整式的加减:整式的加减的本质也就是合并同类项,合并同类项的法则是:把系数相加减,字母和字母的指数不变. 本章的主要内容是单项式、多项式、整式的概念,合并同类项,去括号以及整式加减运算等. 整式的加减运算是学习“一元一次方程”的直接基础,也是以后学习分式和根式运算、方程以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可缺少的数学工具. 整式加减涉及的概念 准确地掌握这些概念并注意它们的区别与联系是解相关问题的基础,归纳起来就是要注意以下几点: 1. 理解四式(单项式、多项式、整式、n 次m 项式)、三数(系数、次数、项数)和二项(常数项、同类项) 2. 掌握三个法则(去括号法则、添括号法则、合并同类项法则). 3. 熟悉两种排列(升幂排列、降幂排列). 整式加减的一般步骤 1. 根据去括号法则去括号. 2. 合并同类项. 【例题精讲】 【例1】(1)已知关于x 、y 的单项式234x y 与单项式1218m n x y ---的和为一个单项式,求mn . (2)已知关于x 、y 的单项式4b c x y 与单项式1218m n x y ---的和为4n m ax y ,求abc . 【例2】(1)先化简,再求值:224[62(42)]1x y xy xy x y ----+,其中1 2 x =-,y =2. (2)已知4m n -=,1mn =-,求(223)(322)(4)mn m n mn n m mn n m -++-+--++的值. 【例3】已知多项式3223(3)(2)5m x x x n x x x -++++-是关于x 的二次多项式,当x =2时的值为-17,求当x =-2时,此多项式的值. 【例4】已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 的取值无关,求代数式22223(2)(4)a ab b a ab b ---++的值.

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

镜像法-高中物理竞赛讲义

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b)用镜像电荷-q代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ平面)上方有一点电荷q,距离导体平面的高度为h。 用位于导体平面下方h处的镜像电荷-q代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像 无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。

用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为) 电位: (4.4.2.5) 对地电容 : (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9)

(完整版)初一数学培优专题讲义

初一数学基础知识讲义 第一讲和绝对值有关的问题 一、知识结构框图: 数 二、绝对值的意义: (1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。 (2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数; ③零的绝对值是零。 也可以写成: () () () ||0 a a a a a a ? ?? =? ? - ?? 当为正数 当为0 当为负数 说明:(Ⅰ)|a|≥0即|a|是一个非负数; (Ⅱ)|a|概念中蕴含分类讨论思想。 三、典型例题 例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式| a | + | a+b | + | c-a | - | b-c | 的值等于(A )A.-3a B. 2c-a C.2a-2b D. b

解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a 分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。 例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++ 的值( C ) A .是正数 B .是负数 C .是零 D .不能确定符号 解:由题意,x 、y 、z 在数轴上的位置如图所示: 所以 分析:数与代数这一领域中数形结合的重要载体是数轴。这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。 例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢? 分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。 解:设甲数为x ,乙数为y 由题意得:y x 3=, (1)数轴上表示这两数的点位于原点两侧: 若x 在原点左侧,y 在原点右侧,即 x<0,y>0,则 4y=8 ,所以y=2 ,x= -6 若x 在原点右侧,y 在原点左侧,即 x>0,y<0,则 -4y=8 ,所以y=-2,x=6 (2)数轴上表示这两数的点位于原点同侧: 若x 、y 在原点左侧,即 x<0,y<0,则 -2y=8 ,所以y=-4,x=-12 若x 、y 在原点右侧,即 x>0,y>0,则 2y=8 ,所以y=4,x=12 例4.(整体的思想)方程x x -=-20082008 的解的个数是( D ) A .1个 B .2个 C .3个 D .无穷多个 分析:这道题我们用整体的思想解决。将x-2008看成一个整体,问题即转化为求方程a a -=的解,利用绝对值的代数意义我们不难得到,负数和零的绝对值等于它的相反数,所以零和任意负数都是方程的解,即本题的答案为D 。 例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值. ()()()()()() 1111 112220072007ab a b a b a b ++++++++++L 0)()(=--+-+=--+++y x z y z x y x z y z x

高一物理竞赛讲义第3讲.教师版

第3讲运动的关联 温馨寄语 前面我们讨论了物理量以及物理量之间的关系,尤其是变化率变化量的关系。我们还学习了非常牛的几个方法:相对运动法,微元法,图像法。 然而,物理抽象思想除了物理量之外,还有一大块就是模型,而各种模型都有自己的一些特点,根据这些特点,决定了这些模型的运动学性质。探究这些性质就成了我们今天的主要任务。 知识点睛 一、分速度和合速度 首先速度作为矢量是可以合成和分解的。但是同样的作为矢量,速度的合成和分解,和力这个矢量有一点不同。这个不同在于,两个作用在同一个物体上的力,可以直接合成。但是同一个物体,已经知道在两个方向上的速度,最后的总速度,并不一定是这两个速度的矢量和。 (CPhO选讲)例如: (这里面速度是通过两个速度各自从矢量末端做垂线相交得到的) 第二个原则就是:合速度=真实的这个物体的运动速度矢量。

这里力和速度的区别是:我们看到的多个力,不见得是“合力”在各个方向上的投影;但是我们看到的多个速度,就是“合速度”在各个方向上的分速度。所以,当且仅当两个分速度相互垂直的时候,合速度等于两个分速度的矢量和。 这个东西大家可以这样想。遛狗的时候,每个狗的力是作用在一起的,所以遛狗越多,需要的力越大。但是每个狗都有个速度,最后遛狗人的速度和狗的速度大小还是差不多的,不会因为遛狗个数越多就速度越快…… 二、体现关联关系的模型 1.绳(杆)两端运动的关联:实际运动时合运动,由伸缩运动与旋转运动合成。 实际运动=旋转运动+伸缩运动 【例】吊苹果逗小孩儿有两种逗法,一种是伸缩,一种是摆动。 不难总结: 一段不可伸长的细绳伸缩运动速度相等——沿绳(杆)速度相等,转速无论多大不可改变绳子长度。 2.叠加运动的关联 先举个例子:如图的定滑轮,两边重物都在竖直运动,并且滑轮也在竖直运动,设两边重物位移分别沃为x 1x 2,轮中心的位移为x 。 不难由绳子长度不变得位移关系: 12 2x x x += 对应的必然有速度关系: 12 2v v v += 加速度关系: 12 2 a a a += 我们用运动关联的目的是为了使未知量变少。 物理学中非常重要的思想就是把现实中的物体抽象成为理想的模型,然后用物理原理以及模型对应的牵连关系来解决问题.常见的模型有杆,绳,斜面,等等. 3.轻杆 杆两端,沿着杆方向的速度相同\ 4.轻绳 绳子的两端也是沿着绳子的方向速度相同\.绳子中的力是可以突变的,突变的条件是剪断或者是突然绷紧等等. 5.斜面

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

初一数学培优专题讲义一--有理数及其运算

初一数学培优专题讲义一有理数及其运算 一、 有理数的基本概念梳理与强化: (一)几个小知识点的梳理与强化:小知识点是常考的考点,也是易错点。理清小知识点,减少失误 1.字母可以表示任意有理数,不能说a 一定是正数,-a 也不一定是负数 2.相反数等于本身的数是;平方等于本身的数是;立方等于本身的数是;倒数等于本身的数是。 3.互为相反数的两个数的绝对值相等。若|-x |=|2 1-|,则x =______;若|x |=|-4|,则x =____; 若-|x|=-|2|,那么x=___;若-|-x|=-|2|,那么x=____ 4.互为相反数的两个数的平方相等。如果 ,那么a=____;若x 2=(-2)2,则x =_______. 5.注意乘方中括号的作用。(-2)3的底数是_______,结果是_______;-32的底数是_______,结果 是_______;n 为正整数,则(-1)2n =___,(-1)2n +1=___。计算: (1) =;(2) =;(3) =;(4) =(5)= 6.a 的相反数是;a+b 的相反数是;a-b 的相反数是;-a+b-c 的相反数是; 变式训练:若a <b ,则∣a-b ∣=,-∣a-b ∣= (二)突破绝对值的化简: 7.绝对值即距离,则0≥a 8.绝对值的代数定义用式子可表示为:(体现分类讨论的思想) (a >0) |a| = (a =0) (a <0) 9.绝对值的非负性: (1)若|a|=0,则a ;(2)若|a|=a ,则a ;(3)若|a|=—a ,则a ; (4), 则______||=a a ;(5)0

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

高中物理竞赛讲义——微积分初步

高中物理竞赛讲义——微积分初步 一:引入 【例】问均匀带电的立方体角上一点的电势是中心的几 倍。 分析: ①根据对称性,可知立方体的八个角点电势相等;将原立 方体等分为八个等大的小立方体,原立方体的中心正位于个小立方体角点位置;而根据电势叠加原理,其电势即为八个小立方体角点位置的电势之和,即U 1=8U 2 ; ②立方体角点的电势与什么有关呢?电荷密度ρ;二立方体的边长a ;三立方体的形状; 根据点电荷的电势公式U=K Q r 及量纲知识,可猜想边长为a 的立方体角点电势为 U=CKQ a =Ck ρa 2 ;其中C 为常数,只与形状(立方体)及位置(角点)有关,Q 是总电量,ρ是电荷密度;其中Q=ρa 3 ③ 大立方体的角点电势:U 0= Ck ρa 2 ;小立方体的角点电势:U 2= Ck ρ(a 2 )2=CK ρa 2 4 大立方体的中心点电势:U 1=8U 2=2 Ck ρa 2 ;即U 0=12 U 1 【小结】我们发现,对于一个物理问题,其所求的物理量总是与其他已知物理量相关联,或者用数学语言来说,所求的物理量就是其他物理量(或者说是变量)的函数。如果我们能够把这个函数关系写出来,或者将其函数图像画出来,那么定量或定性地理解物理量的变化情况,帮助我们解决物理问题。 二:导数 ㈠ 物理量的变化率 我们经常对物理量函数关系的图像处理,比如v-t 图像,求其斜率可 以得出加速度a ,求其面积可以得出位移s ,而斜率和面积是几何意义上 的微积分。我们知道,过v-t 图像中某个点作出切线,其斜率即a= △v △t . 下面我们从代数上考察物理量的变化率: 【例】若某质点做直线运动,其位移与时间的函数关系为上s=3t+2t 2,试求其t 时刻的速度的表达式。(所有物理量都用国际制单位,以下同)

一元二次方程培优专题讲义(最新整理)

数学培优专题讲义:一元二次方程 一.知识的拓广延伸及相关史料 1.一元二次方程几种解法之间的关系解一元二次方程有下列几种常用方法:(1)配方法:如,经配方得 2670x x ++=,再直接用开平方法; 2(3)2x +=(2)公式法;(3)因式分解法。 这三种方法并不是孤立的,直接开平方法,实际也是因式分解法,解方程,只2670x x ++=要变形为 即可,或原方程 22(3)0x +-=经配方化为,再求解时, 2670x x ++=2(3)2x +=还是归到用平方差公式的因式分解法,所以配方法归为用因式分解法的手段。公式法在推导公式过程中用的是配方法和直接开平方法,因此,它还是归到因式分解法,所不同的是,公式法用一元二次方程的系数来表示根,因而可以作为公式。由此可见,对因式分解法应予以足够的重视。因式分解法还可推广到高次方程。 2.我国古代的一元二次方程 提起代数,人们自然就把它和方程联系起来。事实上,过去代数的中心问题就是对方程的研究。我国古代对代数的研究,特别是对方程解法的研究有着优良的传统,并取得了重要成果。 下面是我国南宋数学家杨辉在1275年提出的一个问题:”直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?”答:”阔二十四步,长三十六步.” 这里,我们不谈杨辉的解法,只用已学过的知识解决上面的问题. 上面的问题选自杨辉所著的《田亩比类乘除算法》。原题另一个提法是:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”这个问题同样可以类似求解. 3. 掌握数学思想方法,以不变应万变。 本章内容蕴涵了丰富的数学方法,主要有转化思想、类比思想、降次法、配方法等。 (1)转化思想 我们知道,解方程的过程就是不断地通过变形把原方程转化为与它等价的最简单方程的过程。因此,转化思想就是解方程过程中思维活动的主导思想。在本章,转化无所不在,无处不有, 可以说这是本章的精髓和特色之一,其表现主要有以下方面: ①未知转化为已知,这是解方程的基本思路: ②一元二次方程转化为一元一次方程,这是通过将原方程降次达到的: ③特殊转化为一般,一般转化为特殊。例如,通过用配方法解数字系数的一元二次方程归纳出用配方法解一般形式2670x x ++=的一元二次方程的方法,进而得出20ax bx c ++=一元二次方程的求根公式,而用公式法又可以解各种具体的一元二次方程,推导出一元二次方程根与系数的关系。又如,通过设未知数,找出等量关系,列方程,把实际问题转化为解方程问题,等等。 掌握转化思想并举一反三,还可以解决很多其他方程问题,如高次方程转化为一元一次或一元二次方程,分式方程转化为整式方程,无理方程转化为有理方程,二元二次方程组转化为二元一次方程组,总之,本章学习的关键之一是学会如何”转化”. 练习: ;222 1 1.510a x x a a -+=+ 是方程的一根,求的值 2421032. a x a ?--=--是方程x 的一根,求a 的值 2 2 42 3101 x x x x x --=-+、若,求的值。 (2)类比思想 本章多次运用类比找出新旧知识的联系,在新旧知识间进行对比,以利于更快更好地掌握新知识. 如用配方法解一元二次方程时,可类比平方根的概念和意义,列一元二次方程解应用题,可类比列一元一次方程解应用题的思路和一般步骤. 类比思想是联系新旧知识的纽带,有利于帮助我们开阔思路,研究解题途径和方法,有利于掌握新知识、巩固旧知识,学习时应特别重视。

相关主题
文本预览
相关文档 最新文档