当前位置:文档之家› 码流码率高清的区别

码流码率高清的区别

码流码率高清的区别
码流码率高清的区别

关键帧的周期,也就是两个IDR帧之间的距离,一个帧组的最大帧数,一般而言,每一秒视频至少需要使用1 个关键帧。增加关键帧个数可改善质量,但是同时增加带宽和网络负载。

需要说明的是,通过提高GOP值来提高图像质量是有限度的,在遇到场景切换的情况时,H.264编码器会自动强制插入一个I帧,此时实际的GOP值被缩短了。另一方面,在一个GOP中,P、B帧是由I帧预测得到的,当I帧的图像质量比较差时,会影响到一个GOP中后续P、B帧的图像质量,直到下一个GOP开始才有可能得以恢复,所以GOP值也不宜设置过大。

同时,由于P、B帧的复杂度大于I帧,所以过多的P、B帧会影响编码效率,使编码效率降低。另外,过长的GOP还会影响Seek操作的响应速度,由于P、B帧是由前面的I或P帧预测得到的,所以Seek操作需要直接定位,解码某一个P或B帧时,需要先解码得到本GOP内的I帧及之前的N个预测帧才可以,GOP值越长,需要解码的预测帧就越多,seek响应的时间也越长。

CABAC/CAVLC

H.264/AVC标准中两种熵编码方法,CABAC叫自适应二进制算数编码,CAVLC叫前后自适应可变长度编码,

CABAC:是一种无损编码方式,画质好,X264就会舍弃一些较小的DCT系数,码率降低,可以将码率再降低10-15%(特别是在高码率情况下),会降低编码和解码的速速。

CAVLC将占用更少的CPU资源,但会影响压缩性能。

帧:当采样视频信号时,如果是通过逐行扫描,那么得到的信号就是一帧图像,通常帧频为25帧每秒(PAL制)、30帧每秒(NTSC制);

场:当采样视频信号时,如果是通过隔行扫描(奇、偶数行),那么一帧图像就被分成了两场,通常场频为50Hz(PAL制)、60Hz(NTSC制);

帧频、场频的由来:最早由于抗干扰和滤波技术的限制,电视图像的场频通常与电网频率(交流电)相一致,于是根据各地交流电频率不同就有了欧洲和中国等PAL制的50Hz和北美等NTSC制的60Hz,但是现在并没有这样的限制了,帧频可以和场频一样,或者场频可以更高。

帧编码、场编码方式:逐行视频帧内邻近行空间相关性较强,因此当活动量非常小或者静止的图像比较适宜采用帧编码方式;而场内相邻行之间的时间相关性较强,对运动量较大的运动图像则适宜采用场编码方式。

Deblocking

开启会减少块效应。

FORCE_IDR

是否让每个I帧变成IDR帧,如果是IDR帧,支持随机访问。

frame,tff,bff

--frame 将两场合并作为一帧进行编码,--tff Enable interlaced mode (开启隔行编码并设置上半场在前),--bff Enable interlaced mode。

PAFF 和MBAFF:当对隔行扫描图像进行编码时,每帧包括两个场,由于两个场之间存在较大的扫描间隔,这样,对运动图像来说,帧中相邻两行之间的空间相关性相对于逐行扫描时就会减小,因此这时对两个场分别进行编码会更节省码流。

对帧来说,存在三种可选的编码方式:将两场合并作为一帧进行编码(frame 方式)或将两场分别编码(field 方式)或将两场合并起来作为一帧,但不同的是将帧中垂直相邻的两个宏块合并为宏块对进行编码;前两种称为PAFF 编码,对运动区域进行编码时field 方式有效,对非运区域编码时,由于相邻两行有较大的相关性,因而frame 方式会更有效。当图像同时存在运动区域和非运动区域时,在MB 层次上,对运动区域采取field 方式,对非运动区域采取frame 方式会更加有效,这种方式就称为MBAFF,预测的单位是宏块对。

码流/ 码率

码流(Data Rate)是指视频文件在单位时间内使用的数据流量,也叫码率或码流率,通俗一点的理解就是取样率,是视频编码中画面质量控制中最重要的部分,一般我们用的单位是kb/s或者Mb/s。一般来说同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。码流越大,说明单位时间内取样率越大,数据流,精度就越高,处理出来的文件就越接近原始文件,图像质量越好,画质越清晰,要求播放设备的解码能力也越高。

当然,码流越大,文件体积也越大,其计算公式是文件体积=时间X码率/8。例如,网络上常见的一部90分钟1Mbps码流的720P RMVB文件,其体积就=5400秒

×1Mb/8=675MB。

通常来说,一个视频文件包括了画面及声音,例如一个RMVB的视频文件,里面包含了视频信息和音频信息,音频及视频都有各自不同的采样方式和比特率,也就是说,同一个视频文件音频和视频的比特率并不是一样的。而我们所说的一个视频文件码流率大小,一般是指视频文件中音频及视频信息码流率的总和。

以以国内最流行,大家最熟悉的RMVB视频文件为例,RMVB中的VB,指的是VBR,即Variable Bit Rate的缩写,中文含义是可变比特率,它表示RMVB采用的是动态编码的方式,把较高的采样率用于复杂的动态画面(歌舞、飞车、战争、动作等),而把较低的采样率用于静态画面,合理利用资源,达到画质与体积可兼得的效果。

码率和取样率最根本的差别就是码率是针对源文件来讲的。

采样率

采样率(也称为采样速度或者采样频率)定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样率是指将模拟信号转换成数字信号时的采样频率,也就是单位时间内采样多少点。一个采样点数据有多少个比特。比特率是指每秒传送的比

特(bit)数。单位为bps(Bit Per Second),比特率越高,传送的数据越大,音质越好.比特率=采样率x 采用位数x声道数.

采样率类似于动态影像的帧数,比如电影的采样率是24赫兹,PAL制式的采样率是25赫兹,NTSC制式的采样率是30赫兹。当我们把采样到的一个个静止画面再以采样率同样的速度回放时,看到的就是连续的画面。同样的道理,把以44.1kHZ采样率记录的CD以同样的速率播放时,就能听到连续的声音。显然,这个采样率越高,听到的声音和看到的图像就越连贯。当然,人的听觉和视觉器官能分辨的采样率是有限的,基本上高于44.1kHZ 采样的声音,绝大部分人已经觉察不到其中的分别了。

而声音的位数就相当于画面的颜色数,表示每个取样的数据量,当然数据量越大,回放的声音越准确,不至于把开水壶的叫声和火车的鸣笛混淆。同样的道理,对于画面来说就是更清晰和准确,不至于把血和西红柿酱混淆。不过受人的器官的机能限制,16位的声音和24

位的画面基本已经是普通人类的极限了,更高位数就只能靠仪器才能分辨出来了。比如电话就是3kHZ取样的7位声音,而CD是44.1kHZ取样的16位声音,所以CD就比电话更清楚。

当你理解了以上这两个概念,比特率就很容易理解了。以电话为例,每秒3000次取样,每个取样是7比特,那么电话的比特率是21000。而CD是每秒44100次取样,两个声道,每个取样是13位PCM编码,所以CD的比特率是44100*2*13=1146600,也就是说CD 每秒的数据量大约是144KB,而一张CD的容量是74分等于4440秒,就是639360KB =640MB。

码率和取样率最根本的差别就是码率是针对源文件来讲的。

比特率

比特率是指每秒传送的比特(bit)数。单位为bps(Bit Per Second),比特率越高,传送的数据越大。在视频领域,比特率常翻译为码率!!!

比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。

比特率是指将数字声音、视频由模拟格式转化成数字格式的采样率,采样率越高,还原后的音质、画质就越好。

常见编码模式:

VBR(Variable Bitrate)动态比特率也就是没有固定的比特率,压缩软件在压缩时根据音频数据即时确定使用什么比特率,这是以质量为前提兼顾文件大小的方式,推荐编码模式;

ABR(Average Bitrate)平均比特率是VBR的一种插值参数。LAME针对CBR不佳的文件体积比和VBR生成文件大小不定的特点独创了这种编码模式。ABR在指定的文件大小内,以每50帧(30帧约1秒)为一段,低频和不敏感频率使用相对低的流量,高频和大动态表现时使用高流量,可以做为VBR和CBR的一种折衷选择。

CBR(Constant Bitrate),常数比特率指文件从头到尾都是一种位速率。相对于VBR 和ABR来讲,它压缩出来的文件体积很大,而且音质相对于VBR和ABR不会有明显的提高。

帧速率

帧速率也称为FPS(Frames PerSecond)的缩写——帧/秒。是指每秒钟刷新的图片的帧数,也可以理解为图形处理器每秒钟能够刷新几次。越高的帧速率可以得到更流畅、更逼真的动画。每秒钟帧数(FPS)越多,所显示的动作就会越流畅。

分辨率

就是帧大小每一帧就是一副图像。

640*480分辨率的视频,建议视频的码速率设置在700以上,音频采样率44100就行了

一个音频编码率为128Kbps,视频编码率为800Kbps的文件,其总编码率为928Kbps,意思是经过编码后的数据每秒钟需要用928K比特来表示。

计算输出文件大小公式:

(音频编码率(KBit为单位)/8 +视频编码率(KBit为单位)/8)×影片总长度(秒为单位)=文件大小(MB为单位)

2,高清视频

目前的720P以及1080P采用了很多种编码,例如主流的MPEG2,VC-1以及H.264,还有Divx以及Xvid,至于封装格式更多到令人发指,ts、mkv、wmv以及蓝光专用等等。

720和1080代表视频流的分辨率,前者1280*720,后者1920*1080,不同的编码需要不同的系统资源,大概可以认为是H.264>VC-1>MPEG2。

VC-1是最后被认可的高清编码格式,不过因为有微软的后台,所以这种编码格式不能小窥。相对于MPEG2,VC-1的压缩比更高,但相对于H.264而言,编码解码的计算则要稍小一些,目前来看,VC-1可能是一个比较好的平衡,辅以微软的支持,应该是一只不可忽视的力量。一般来说,VC-1多为“.wmv”后缀,但这都不是绝对的,具体的编码格式还是要通过软件来查询。

总的来说,从压缩比上来看,H.264的压缩比率更高一些,也就是同样的视频,通过H.264编码算法压出来的视频容量要比VC-1的更小,但是VC-1 格式的视频在解码计算方面则更小一些,一般通过高性能的CPU就可以很流畅的观看高清视频。相信这也是目前NVIDIA Geforce 8系列显卡不能完全解码VC-1视频的主要原因。

PS&TS是两种视频或影片封装格式,常用于高清片。扩展名分别为VOB/EVO和TS等;其文件编码一般用MPEG2/VC-1/H.264

高清,英文为“High Definition”,即指“高分辨率”。高清电视(HDTV),是由美国电影电视工程师协会确定的高清晰度电视标准格式。现在的大屏幕液晶电视机,一般都支持1080i

和720P,而一些俗称的“全高清”(Full HD),则是指支持1080P输出的电视机。

目前的高清视频编码格式主要有H.264、VC-1、MPEG-2、MPEG-4、DivX、XviD、WMA-HD 以及X264。事实上,现在网络上流传的高清视频主要以两类文件的方式存在:一类是经过MPEG-2标准压缩,以tp和ts为后缀的视频流文件;一类是经过WMV-HD(Windows Media Video HighDefinition)标准压缩过的wmv文件,还有少数文件后缀为avi或mpg,其性质与wmv是一样的。真正效果好的高清视频更多地以H.264与VC-1这两种主流的编码格式流传。

一般来说,H.264格式以“.avi”、“.mkv”以及“.ts”封装比较常见。

位率(定码率,变码率)

位率又称为“码率”。指单位时间内,单个录像通道所产生的数据量,其单位通常是bps、Kbps或Mbps。可以根据录像的时间与位率估算出一定时间内的录像文件大小。位率是一个可调参数,不同的分辨率模式下和监控场景下,合适的位率大小是不同的。在设置时,

要综合考虑三个因素:

1、分辨率

分辨率是决定位率(码率)的主要因素,不同的分辨率要采用不同的位率。总体而言,录像的分辨率越高,所要求的位率(码率)也越大,但并不总是如此,图1说明了不同分辨率的合理的码率选择范围。所谓“合理的范围”指的是,如果低于这个范围,图像质量看起来会变得不可接受;如果高于这个范围,则显得没有必要,对于网络资源以及存储资源来说是一种浪费。

2、场景

监控的场景是设置码率时要考虑的第二个因素。在视频监控中,图像的运动剧烈程度还与位率有一定的关系,运动越剧烈,编码所要求的码率就越高。反之则越低。因此在同样的图像分辨率条件下,监控人多的场景和人少的场景,所要求的位率也是不同的。

3、存储空间

最后需要考量的因素是存储空间,这个因素主要是决定了录像系统的成本。位率设置得越高,画质相对会越好,但所要求的存储空间就越大。所以在工程实施中,设置合适的位率即可以保证良好的回放图像质量,又可以避免不必要的资源浪费。

位率类型

位率类型又称为码率类型,共有两种——动态码率(VBR)和固定码率(CBR)。所谓动态码率是指编码器在对图像进行压缩编码的过程中,根据图像的状况实时调整码率高低的过程,例如当图像中没有物体在移动时,编码器自动将码率调整到一个较低的值。但当图像中开始有物体移动时,编码器又自动将码率调整到一个较高的值,并且实时根据运动的剧烈程度进行调整。这种方式是一种图像质量不变,数据量变化的编码模式。

固定码率是指编码器在对图像进行编码的过程中,自始至终采用一个固定的码率值,不论图像情况如何变化。这种方式是码率量不变,而图像质量变化的编码模式。在动态码率模式下,我们在硬盘录像机上设置的位率值称为“位率上限”。意思是我们人为设定一个编码码率变化的上限,可以低于,但不能高于。根据这个位率值,我们可以估算出一定时间内的存储容量的上限值。

在固定码率模式下,在硬盘录像机上设置的位率值就是编码时所使用的位率值,根据这个数值,我们可以精确地估算出一定时间内的存储容量。

QP(quantizer parameter)

介于0~31之间,值越小,量化越精细,图像质量就越高,而产生的码流也越长。

PSNR

允许计算峰值信噪比(PSNR,Peak signal-to-noise ratio),编码结束后在屏幕上显示PSNR 计算结果。开启与否与输出的视频质量无关,关闭后会带来微小的速度提升。

profile level

分别是BP、EP、MP、HP:

1、BP-Baseline Profile:基本画质。支持I/P 帧,只支持无交错(Progressive)和CAVLC;

2、EP-Extended profile:进阶画质。支持I/P/B/SP/SI 帧,只支持无交错(Progressive)和CAVLC;

3、MP-Main profile:主流画质。提供I/P/B 帧,支持无交错(Progressive)和交错(Interlaced),也支持CAVLC 和CABAC 的支持;

4、HP-High profile:高级画质。在main Profile 的基础上增加了8x8内部预测、自定义量化、无损视频编码和更多的YUV 格式;

H.264规定了三种档次,每个档次支持一组特定的编码功能,并支持一类特定的应用。1)基本档次:利用I片和P片支持帧内和帧间编码,支持利用基于上下文的自适应的变长编码进行的熵编码(CAVLC)。主要用于可视电话、会议电视、无线通信等实时视频通信;2)主要档次:支持隔行视频,采用B片的帧间编码和采用加权预测的帧内编码;支持利用基于上下文的自适应的算术编码(CABAC)。主要用于数字广播电视与数字视频存储;3)扩展档次:支持码流之间有效的切换(SP和SI片)、改进误码性能(数据分割),但不支持隔行视频和CABAC。主要用于网络的视频流,如视频点播。

高清数字电视的格式标准720p

高清数字电视的格式标准720p 720P是美国电影电视工程师协会(SMPTE)制定的高等级高清数字电视的格式标准,有效显示格式为:1280×720.SMPTE(美国电影电视工程协会)将数字高清信号数字电视扫描线的不同分为1080P、1080I、720P(i是interlace,隔行的意思,p是Progressive,逐行的意思)。720P是一种在逐行扫描下达到1280×720的分辨率的显示格式。是数字电影成像技术和计算机技术的融合。 一、简介 数字电视的发展从1080i到720p再到1080p 1080i和720p同是国际认可的数字高清晰度电视标准。原NTSC国 家采用的是1080i/60Hz格式,与NTSC模拟电视场频相同。而欧洲以及中国等一些原PAL制国家则采用了1080i/50Hz模式,场频与PAL模拟电视相同。至于720p,则由于IT 厂商更深的渗透到了电视行业而成为了一个可选的标准,目前开始在以光盘为载体的HDTV 播放机领域拓展地盘。 二、发展实例 以日本数字电视标准为例,按照显示格式的不同,共分为以下5种规格: D1:480i格式,和NTSC模拟电视清晰度相同,行频为15.25kHz D2:480P格式,和逐行扫描DVD规格相同,行频为31.5kHz D3:1080i格式,分辨率为1920×1080i/60Hz,行频为33.75kHz D4:720p格式,分辨率为1280×720p/60Hz,行频为45kHz D5:1080p格式,分辨率为1920×1080逐行扫描,专业格式 其中以D3的1080i作为高清晰度电视的基本格式,但是也兼容720p格式的播放。而D5规格的1080p则作为高级的专业模式,普遍应用于电视台、电影制作。电视台发送的1080i 和720p电视信号都是由1080p信号源转换播出的。 可以看出,1080p是一个事实上存在的标准,但是1080p目前并不是民用领域使用的标准。1080p不是只有一种60Hz场频,其实真正应用得最多的是24Hz、25Hz、30Hz三种场频规格。我们知道电影是以每秒24幅的方式播放胶片的。以1080p/24Hz方式拍摄的数字图像可以无损失的传送到DLP/D-ILA等数字电影投影机上,以电影格式播放。1080p/24Hz是为电影准备的一种格式。

H.264码流结构解析

H.264码流结构解析 1.H.264简介 MPEG(Moving Picture Experts Group)和VCEG(Video Coding Experts Group)已经联合开发了一个比早期研发的MPEG 和H.263性能更好的视频压缩编码标准,这就是被命名为A VC(Advanced Video Coding),也被称为ITU-T H.264建议和MPEG-4的第10 部分的标准,简称为H.264/A VC或H.264。这个国际标准已经与2003年3月正式被ITU-T所通过并在国际上正式颁布。为适应高清视频压缩的需求,2004年又增加了FRExt部分;为适应不同码率及质量的需求,2006年又增加了可伸缩编码SVC。 2.H.264编码格式 H.263定义的码流结构是分级结构,共四层。自上而下分别为:图像层(picturelayer)、块组层(GOB layer)、宏块层(macroblock layer)和块层(block layer)。而与H.263相比,H.264的码流结构和H.263的有很大的区别,它采用的不再是严格的分级结构。 H.264支持4:2:0的连续或隔行视频的编码和解码。H.264压缩与H.263、MPEG-4相比,视频压缩比提高了一倍。 H.264的功能分为两层:视频编码层(VCL, Video Coding Layer)和网络提取层(NAL, Network Abstraction Layer)。VCL数据即编码处理的输出,它表示被压缩编码后的视频数据序列。在VCL数据传输或存储之前,这些编码的VCL数据,先被映射或封装进NAL单元中。每个NAL单元包括一个原始字节序列负荷(RBSP, Raw Byte Sequence Payload)、一组对应于视频编码的NAL头信息。RBSP的基本结构是:在原始编码数据的后面填加了结尾比特。一个bit“1”若干比特“0”,以便字节对齐。 图1 NAL单元序列 3.H.264传输 H.264的编码视频序列包括一系列的NAL单元,每个NAL单元包含一个RBSP,见表1。编码片(包括数据分割片IDR片)和序列RBSP结束符被定义为VCL NAL单元,其余为NAL单元。典型的RBSP单元序列如图2所示。每个单元都按独立的NAL单元传送。单元的信息头(一个字节)定义了RBSP单元的类型,NAL单元的其余部分为RBSP数据。 图2 RBSP序列举例

中国电视标准频道表

中国电视频道频率划分表(单位:MHz) 频道号/频率范围图像载频伴音载频 VHF-L (Ⅰ) DS-1 48.5~56.5 49.75 56.25 DS-2 56.5~64.5 57.75 64.25 DS-3 64.5~72.5 65.75 72.25 DS-4 76.0~84.0 77.25 83.75 DS-5 84.0~92.0 85.25 91.75 Z-1 (A-1) Z-1 111~119 112.25 118.75 Z-2 119~127 120.25 126.75 Z-3 127~135 128.25 134.75 Z-4 135~143 136.25 142.75 Z-5 143~151 144.25 150.75 Z-6 151~159 152.25 158.75 Z-7 159~167 160.25 166.75 VHF-H (Ⅲ) DS-6 167~175 168.25 174.75 DS-7 175~183 176.25 182.75 DS-8 183~191 184.25 190.75 DS-9 191~199 192.25 198.75 DS-10 199~207 200.25 206.75 DS-11 207~215 208.25 214.75 DS-12 215~223 216.25 222.75 Z-2 (A-2) Z-8 223~231 224.25 230.75 Z-9 231~239 232.25 238.75 Z-10 239~247 240.25 246.75 Z-11 247~255 248.25 254.75 Z-12 255~263 256.25 262.75 Z-13 263~271 264.25 270.75 Z-14 271~279 272.25 278.75 Z-15 279~287 280.25 286.75 Z-16 287~295 288.25 294.75 Z-17 295~303 296.25 302.75 Z-18 303~311 304.25 310.75 Z-19 311~319 312.25 318.75 Z-20 319~327 320.25 326.75 Z-21 327~335 328.25 334.75 Z-22 335~343 336.25 342.75 Z-23 343~351 344.25 350.75

超高清视频标准体系建设指南(2019版)全文及编制说明

超高清视频标准体系建设指南 (2019年版) 2019年12月

一、产业发展综述 超高清视频具有4K(3840×2160像素)或8K(7680×4320像素)分辨率,它具有更精细的图像细节,更强的信息承载能力,更广泛的应用范围,结合高帧率、高位深、广色域、高动态范围、三维声等技术,为消费升级、行业创新、社会治理提供新工具、新要素、新场景,将有力推动经济社会各领域的深刻变革。超高清视频产业具有产业链长、涉及范围广、跨领域综合性强等特性,正在形成全新和复杂的生态系统。 当前,视频技术从高清向超高清的演进,不仅引发了芯片、内容制播、显示、传输等产业链各环节的升级换代,而且驱动了广播电视、安防监控、教育医疗、工业制造等行业以视频为核心的服务转型。自2018年起我国超高清视频产业已达“万亿”级,据预测,到2022年,我国超高清视频产业总体规模将超过4万亿元。 超高清视频产业链重点环节主要包括核心元器件、内容制播、网络传输、终端呈现以及行业应用。其中核心元器件为超高清视频专用基础元器件;内容制播包含超高清视频的生产与播出;网络传输指超高清视频的传输渠道;终端呈现涉及电视机、机顶盒等产品;行业应用为超高清视频与各行业融合应用形成的新模式新业态。

图1超高清视频产业链 二、建设指南编制总体要求 以《超高清视频产业发展行动计划(2019-2022年)》为指导,从超高清视频产业发展实际出发,坚持标准先行,建立覆盖采集、制作、传输、呈现、应用等全产业链的超高清视频标准体系,加强标准的统筹规划,鼓励国家标准、行业标准和团体标准协同发展,深化标准国际交流与合作,促进我国超高清视频产业健康可持续发展。 (一)基本原则 ——系统布局,统筹推进。加强标准体系顶层设计,明确标准化的重点领域和方向,指导标准化工作分领域同步推进实施,加强超高清视频标准制定工作的整体协调。统筹国

视频监控中常用码流计算(仅供参考)

视频监控中常用码流计算 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法简单介绍。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;假如比特率越少则情况恰好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上往,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,50米红外摄像机理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/。

中国最新的数字电视传输标准[详]

数字电视标准概述一、什么是数字电视 来自.szfuwa./bbs/ 数字电视(Digital TV)是从电视信号的采集、编辑、传播、接收整个广播链路数字化的数字电视广播系统。数字电视利用MPEG标准中的各种图像格式,把现行模拟电视制式下的图像、伴音信号的平均码率压缩到大约4.69―21Mbps,其图像质量可以达到电视演播室的质量水平,胶片质量水平,图像水平清晰度达到500―1200线以上,并采用AC―3声音信号压缩技术,传输5.1声道的环绕声信号。 二、数字电视的分类 按清图像晰度分类,数字电视包括数字高清晰度电视(HDTV)、数字标准清晰度电视(SDTV)和数字普通清晰度电视(LDTV)三种。HDTV的图像水平清晰度大于800线,图象质量可达到或接近35mm宽银幕电影的水平;SDTV的图像水平清晰度大于500线,主要是对应现有电视的分辨率量级,其图象质量为演播室水平;LDTV的图像水平清晰度为200-300线,主要是对应现有VCD的分辨率量级。 按信号传输方式分类,数字电视可分为地面无线传输数字电视(地面数字电视)、卫星传输数字电视(卫星数字电视)、有线传输数字电视(有线数字电视)三类。 按照产品类型分类,数字电视可分为数字电视显示器、数字电视机顶盒和一体化数字电视接收机。 按显示屏幕幅型比分类,数字电视可分为4∶3幅型比和16∶9幅型比两种类型。 三、数字电视系统的关键技术及标准 1、数字电视的信源编解码技术 视频编解码技术 数字电视尤其数字高清晰度电视与模拟电视相比,在实现过程中,最为困难的部分就是对视频信号的压缩。在1920×1080显示格式下,数字化后的码率在传输中高达995Mbit/s,这比现行模拟电视的传输信息量大得多。因而数字电视的图像不能象模拟电视的图像那样直接传输,而是要多一道压缩编码工序。视频编码技术主要功能是完成图像的压缩,使数字电视的信号传输量由995Mbit/s减少为20?30Mbit/s。 音频编解码技术 与视频编解码相同,音频编解码主要功能是完成声音信息的压缩。声音信号数字化后,信息量比模拟传输状态大得多,因而数字电视的声音不能象模拟电视的声音那样直接传输,而是要多一道压缩编码工序。

有线电视行业常用标准模板

有线电视行业常见标准 GY/T 200.1—HFC网络数据传输系统技术规范第1部分: 总体要求 适用范围: 本部分描述了HFC网络数据传输系统基本构成, 规定了对系统的基本要求以及对系统管理、兼容性和扩展性的要求。 本部分适用于HFC网络数据双向传输系统。 GY/T 200.2—HFC网络数据传输系统技术规范第2部分: 射频接口及协议 适用范围: 本部分规定了HFC网络数据双向传输系统的物理层、数据链路层及网络层通信协议。 本部分适用于HFC网络数据双向传输系统。 GY/T 201—数字电视系统中的数据广播规范 适用范围: 本标准规定了地面、有线、卫星等数字电视广播系统中基于传输流的数据广播的数据结构、数据交换、数据传输协议等。

本标准适用于地面、有线、卫星等数字电视广播系统中的数据广播系统。 GY/Z 199—广播电视节目资料分类法 适用范围: 本文件规定了中国广播电视节目资料内容分类体系。 本文件适用于各级广播电视节目资料管理部门对节目资料进行分类标引和编制分类目录。 GY/T 198- 有线数字电视广播QAM调制器技术要求和测量方法 适用范围: 本标准规定了符合GY/T 170- 和GY/T 106-1999的有线数字电视广播QAM调制器的技术要求和测量方法。对于能够确保同样测量不确定度的任何等效测量方法也能够采用。有争议时, 应以本标准为准。 本标准适用于有线数字电视广播QAM调制器的研发、生产、使用和运行维护。 GY/T 197- 数字卫星新闻采集通用技术规范 适用范围: 本标准规定了数字卫星新闻采集通用技术要求。

本标准适用于数字卫星新闻采集地球站( 车载或可搬移站) 设备的生产、验收、入网、使用和运行维护。 GY/T 196- 调频广播覆盖网技术规定 适用范围: 本标准规定了地面米波( VHF) 段调频广播覆盖网的主要技术要求, 调频广播发射机服务区及发射机之间干扰状况的估算方法。本标准不包含涉及调频同步广播覆盖网方面的有关技术规定。 本标准适用于编制调频广播覆盖网规划及进行调频广播频率的指配和管理。 GY/T 195- 有线电视系统双向用户端口技术要求和测量方法 适用范围: 本标准规定了有线电视系统双向用户端口的技术要求和测量方法。对于能够确保同样测量不确定度的任何等效方法也能够采用。有争议时, 应以本标准为准。 本标准适用于有线电视系统双向用户端口的开发、生产、使用及运行维护。 GY/T 194- 有线电视系统光工作站技术要求和测量方法

影片文件码率与大小计算

音视频文件码率与大小计算 编码率/比特率直接与文件体积有关。且编码率与编码格式配合是否合适,直接关系到视频文件是否清晰。 在视频编码领域,比特率常翻译为编码率,单位是Kbps,例如800Kbps 其中, 1K=1024 1M=1024K b 为比特(bit)这个就是电脑文件大小的计量单位,1KB=8Kb,区分大小写,B代表字节(Byte) s 为秒(second) p 为每(per)以800kbps来编码表示经过编码后的数据每秒钟需要用800K比特来表示。 1MB=8Mb=1024KB=8192Kb Windows系统文件大小经常用B(字节)为单位表示,但网络运营商则用b(比特),也就是为什么2Mb速度宽带在电脑上显示速度最快只有约256KB的原因,网络运营商宣传网速的时候省略了计量单位。 完整的视频文件是由音频流与视频流2个部分组成的,音频和视频分别使用的是不同的编码率,因此一个视频文件的最终技术大小的编码率是音频编码率+视频编码率。例如一个音频编码率为128Kbps,视频编码率为800Kbps的文件,其总编码率为928Kbps,意思是经过编码后的数据每秒钟需要用928K比特来表示。 了解了编码率的含义以后,根据视频播放时间长度,就不难了解和计算出最终文件的大小。编码率也高,视频播放时间越长,文

件体积就越大。不是分辨率越大文件就越大,只是一般情况下,为了保证清晰度,较高的分辨率需要较高的编码率配合,所以使人产生分辨率越大的视频文件体积越大的感觉。 计算输出文件大小公式: (音频编码率(Kbit为单位)/8 + 视频编码率(Kbit为单位)/8)× 影片总长度(秒为单位)= 文件大小(MB为单位) 这样以后大家就能精确的控制输出文件大小了。 例:有一个1.5小时(5400秒)的影片,希望转换后文件大小刚好为700M 计算方法如下: 700×8÷5400×1024≈1061Kbps 意思是只要音频编码率加上视频编码率之和为1061Kb,则1个半小时的影片转换后文件体积大小刚好为700M。 至于音频编码率和视频编码率具体如何设置,就看选择的编码格式和个人喜好了,只要2者之和为1061即可。如可以设置为视频编码格式H264,视频编码率900 Kbps,音频编码格式AAC,编码率161 Kbps。 与文件体积大小有关的码率是指的平均码率,因此,不论是使用固定比特一次编码方式还是使用二次(多次)动态编码方式,都是可以保证文件大小的。只有使用基于质量编码的方式的时候,文件大小才不可控制。

电视节目技术标准

中国科学技术馆 集成、开发科普影视资源 电视节目技术标准(试行) 一、概述 本技术标准为评定电视栏目数字文件质量而制定,适用于中国科学技术馆科普影视中心电视节目工作版数字文件、发行版数字文件的技术质量评定。 二、数字文件格式 1、标清节目 文件编码:Uncompressed 8-bit 4:2:2(苹果Final Cut Pro自带编码) 文件格式:MOV 画幅:720*576 帧速率:25(50i) 优先场:上场(奇) 像素宽高比:PAL-CCIR 601(720*576) 2、高清节目 文件编码:Apple ProRes422(HQ) (苹果Final Cut Pro 自带编码) 文件格式:MOV 画幅:1920*1080(推荐)

1280*720 帧速率: a、实拍类电视节目帧速率为50i优先场为上场(奇) b、动画类节目25P无优先场 像素宽高比:方形 三、图像和声音质量要求 1、数字文件图像和声音制作要求 工作版数字文件 视频要求: 无字幕、无角标等节目包装(人名字幕除外) 音轨分配规定为: 声迹1(对应CH1)记录同期声、解说 声迹2(对应CH2)记录配乐、音效、国际声 发行版数字文件 视频要求: 含所有应上的字幕和节目包装 音轨分配规定为: 声迹1(对应CH1)记录单声道节目混合声 声迹2(对应CH2)记录单声道节目混合声

2、图像质量的评价 图像质量的主观评定方法:(录制结果采用5等级评分) 参照GB 7401-1987《彩色电视图像质量主观评价方法》采用5等级进行评价。 评定标准 a.杂波和干扰可见度 优:觉察不到; 良:稍可觉察,但不令人厌烦; 中:明显觉察,令人有些厌烦; 次:杂波或干扰严重,令人厌烦; 差:极严重。 b.画面清晰度 优:十分清晰; 良:个别画面欠清晰; 中:一些画面欠清晰; 次:总体上不是很清晰; 差:不清晰。 c.亮度层次 优:亮度层次丰富,画面柔和细腻; 良:亮度层次较丰富,画面基本上柔和细腻; 中:个别画面偏亮、偏暗或缺少层次; 次:一些画面偏亮、偏暗或缺少层次;

码流计算

各种分辨率下采用什么样的码流可以获得较好的图像质量 DS-8000HC嵌入式网络硬盘录像机NVR支持多种分辨率,我们一般使用CIF、DCIF、D1三种。在不同的视频分辨率下,我们建议用户采用如下码流设置方式CIF:512Kbps,在变码率设置下图像质量选择“较好”或“次好” DCIF:768Kbps,在变码率设置下图像质量选择“较好”或“次好” D1:2Mbps,在变码率设置下图像质量选择“较好”或“次好” 如何进行硬盘容量的计算 bps是bits per second的缩写,一般是指传输速度,表示为: 比特/秒。 bps=bits/s=bytes/8s (1Bps每8秒传送1Byte数据) bytes是字节的意思,是个大小单位,简写B 1GB=1024MB 1MB=1024KB 1KB=1024B 每小时录像文件大小计算公式:码流大小×3600÷8÷1024= MB/小时 硬盘录像机硬盘容量计算遵循以下公式: 每小时录像文件大小×每天录像时间×硬盘录像机路数×需要保存的天数 例如:8路硬盘录像机,视音频录像,采用512Kbps定码流,每天定时录像12小时,录像资料保留15天,计算公式如下: 每小时录像文件大小=512×3600÷8÷1024=225MB 硬盘录像机所需硬盘容量=225×8×12×15=324000MB≈320GB 音频码流为固定16kbps,每小时所占容量很小,可以忽略不计 目前国内主流的硬盘录像机采用两种分辨率:CIF和D1。 硬盘录像机常见的路数有1路、2路、4路、8路、9路、12路和16路。最大可以连接8块2000GB的硬盘,总容量可高达1.6T(目前市面上最大的硬盘在1000GB左右),如果采用CIF分辨率,通常每1路的硬盘容量为180MB~250MB/小时,通常情况下取值200MB/小时;如果是D1的分辨率每小时录像需要的硬盘容量为720MB~1000MB/小时,通常情况下为了减少硬盘的容量可以按照500MB/小时计算,帧率智能设

TS码流分析

MPEG组织于1994年推出MPEG-2压缩标准,以实现视/音频服务与应用互操作的可能性,MPEG-2标准是针对标准数字电视和高清晰度电视在各种应用下的压缩方案和系统层的详细规定。对应于不同的应用,符合MPEG-2标准的码流又分为传送流和程序流,本文主要讲解了传送流有关的部分数据结构,从实际应用的传送流码流中截取了部分码流做了说明,并给出了部分解析传送流码流的实例程序。 在MPEG-II标准中,为了将一个或更多的音频、视频或其他的基本数据流合成单个或多个数据流,以适应于存储和传送,必须对其重新进行打包编码,在码流中还需插入各种时间标记、系统控制等信息,最后送到信道编码与调制器。这样可以形成两种数据流——传送流(TS)和程序流(PS),分别适用于不同的应用,图1给出了单路节目的视音频数据流的复用框图。 传送流(Transport Stream)简称TS流,它是根据ITU-T Rec.H.222.0|ISO/IEC 13818-2 和ISO/IEC 13818-3协议而定义的一种数据流,其目的是为了在有可能发生严重错误的情况下进行一道或多道程序编码数据的传送和存储。这种错误表现为比特值错误或分组丢失。传送流由一道或多道节目组成,每道节目由一个或多个原始流和一些其他流复合在一起,包括视频流、音频流、节目特殊信息流(PSI)和其他数据包。其中PSI表有4种类型:节目关联表(PAT)、节目映射表(PMT)、网络信息表和条件访问表。传送流应用比较广泛,如视音频资料的保存、电视节目的非线性编辑系统及其网络等。在开发机顶盒以及视频设备时有时需要对码流的编码知识有比较清楚地了解,这样才能在遇到问题时做出全面的分析。 TS流结构分析 如图2所示,TS包的长度是固定的,为188字节。包括同步字节(sync_byte)0x47和数据包识别号PID 等。PID为13位字段,指示存储于分组有效负载中数据的类型,PID值0x0000为程序关联表保留,而0x0001为条件访问表保留,0x1FFF为空分组保留。从PID可以判断其后面负载的数据类型是视频流、音频流、PSI 还是其他数据包。 PSI描述说明 在MPEG-II中定义了节目特定信息(PSI),PSI用来描述传送流的组成结构,在MPEG-II系统中担任极其重要的角色,在多路复用中尤为重要的是PAT表和PMT表。PAT表给出了一路MPEG-II码流中有多少套节目,以及它与PMT表PID之间的对应关系;PMT表给出了一套节目的具体组成情况与其视频、音频等PID对应关系。PSI提供了使接收机能够自动配置的信息,用于对复用流中的不同节目流进行解复用和解码。PSI信息由以下几种类型表组成: ◆节目关联表(PAT Program Association Table) PAT表用MPEG指定的PID(00)标明,通常用PID=0表示。它的主要作用是针对复用的每一路传输流,提供传输流中包含哪些节目、节目的编号以及对应节目的节目映射表(PMT)的位置,即PMT的TS 包的包标识符(PID)的值,同时还提供网络信息表(NIT)的位置,即NIT的TS包的包标识符(PID)的值。 ◆条件接收表(CAT Conditional Access Table) CAT表用MPEG指定的PID(01)标明,通常用PID=1表示。它提供了在复用流中条件接收系统的有关信息,指定CA系统与它们相应的授权管理信息(EMM))之间的联系,指定EMM的PID,以及相关的参数。 ◆节目映射表(PMT Program Map Table) 节目映射表指明该节目包含的内容,即该节目由哪些流组成,这些流的类型(音频、视频、数据),以及组成该节目的流的位置,即对应的TS包的PID值,每路节目的节目时钟参考(PCR)字段的位置。 ◆网络信息表(NIT Nerwork Information Table) 网络信息表提供关于多组传输流和传输网络相关的信息,其中包含传输流描述符、通道频率、卫星发射器号码、调制特性等信息。 ◆传输流描述表(TSDT Transport Stream Description Table) 传输流描述表由PID为2的TS包传送,提供传输流的一些主要参数。 ◆专用段(private_section)

有线电视行业常用标准

有线电视行业常用标准 GY/T 200.1—2004 HFC网络数据传输系统技术规范第1部分:总体要求 适用范围: 本部分描述了HFC网络数据传输系统基本构成,规定了对系统的基本要求以及对系统管理、兼容性和扩展性的要求。 本部分适用于HFC网络数据双向传输系统。 GY/T 200.2—2004 HFC网络数据传输系统技术规范第2部分:射频接口及协议适用范围: 本部分规定了HFC网络数据双向传输系统的物理层、数据链路层及网络层通信协议。 本部分适用于HFC网络数据双向传输系统。 GY/T 201—2004 数字电视系统中的数据广播规范 适用范围: 本标准规定了地面、有线、卫星等数字电视广播系统中基于传输流的数据广播的数据结构、数据交换、数据传输协议等。 本标准适用于地面、有线、卫星等数字电视广播系统中的数据广播系统。 GY/Z 199—2004 广播电视节目资料分类法 适用范围: 本文件规定了中国广播电视节目资料内容分类体系。 本文件适用于各级广播电视节目资料管理部门对节目资料进行分类标引和编制分类目录。 GY/T 198-2003 有线数字电视广播QAM调制器技术要求和测量方法 适用范围: 本标准规定了符合GY/T 170-2001和GY/T 106-1999的有线数字电视广播QAM调制器的技术要求和测量方法。对于能够确保同样测量不确定度的任何等效测量方法也可以采用。有争议时,应以本标准为准。 本标准适用于有线数字电视广播QAM调制器的研发、生产、使用和运行维护。 GY/T 197-2003数字卫星新闻采集通用技术规范 适用范围: 本标准规定了数字卫星新闻采集通用技术要求。 本标准适用于数字卫星新闻采集地球站(车载或可搬移站)设备的生产、验收、入网、使用和运行维护。 GY/T 196-2003调频广播覆盖网技术规定 适用范围:

视频会议-系统带宽的计算方法

客户端带宽: 下行带宽=接受视频路数*视频码流+音频带宽 上行带宽=广播视频路数*视频码流+音频带宽 服务器带宽: 下行带宽=视频带宽+音频带宽=广播视频路数*视频码流+发言人数*音频带宽 上行带宽=视频带宽+音频带宽=(客户端数量-1)*广播视频路数*码流+(开会人数-1)*音频带宽 举例:假设20个点的会议,广播2路视频,1人发言。(视频码流150K,音频带宽24K。)计算如下: 客户端(下行)=广播视频路数*视频码流+音频带宽=2*150K+24K=324K 客户端(上行)=广播视频路数*视频码流+音频带宽 服务器(下行)=广播视频路数*视频码流+发言人数1*音频带宽=2*150K+1*24=324K 服务器(上行)=(客户端数量-1)*广播视频路数*码流+(开会人数-1)*音频带宽=19*2*150K+19*24K=6M 上面是理论值,实际会高一点,还需考虑其带宽利用率和损耗。

相关小知识: 文件大小的最小单位是byte字节,我们一般说文件都多少兆(字节) 算带宽的时候是按位算的;流量最小单位是bit 位 1Byte=8bit 在计算机网络、IDC机房中,其宽带速率的单位用bps(或b/s)表示;换算关系为:1Byte=8bit 1B=8b ---------- 1B/s=8b/s(或1Bps=8bps) 1KB=1024B ---------- 1KB/s=1024B/s 1MB=1024KB ---------- 1MB/s=1024KB/s 在实际上网应用中,下载软件时常常看到诸如下载速度显示为128KB(KB/s),103KB/s等等宽带速率大小字样,因为网络带宽单位是:位/每秒(即:bit/s),而内存等带宽单位却是:字节/每秒(即:byte/s)。我们可以按照换算公式换算一下:128KB/s=128×8(Kb/s)=1024Kb/s=1Mb/s即:128KB/s=1Mb/s 理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为80--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。4M(即4Mb/s)的宽带理论速率是: 512KB/s,实际速率大约为200---440kB/s。

中国的数字高清接口标准

中国的数字高清接口标准-- DiiVA详解 DVI,HDMI,Displayport,很多业内的工程师都耳熟能详,但提起DiiVA(Digital Interactive Interface for Video & Audio),很多工程师心里都会嘀咕一下,什么是DiiVA啊?但当今年四月初我第一次听到这个标准DiiVA 1.0规格正式发布的时候,我还是对这个标准充满了期待,因为,它毕竟是中国人自己的技术标准,长期以来,数字高清技术标准一直掌握在国外的厂商手中,如DVI/HDMI技术专利大部分由silicon image拥有,而且HDMI的标准组织的推广者有一半是日本厂商,如Panasonic,Sony,Hitachi,Toshiba,这些标准厂商除了共同拥有标准的技术规范制定权外,还拥有专利授权,中国的家电厂商,PC厂商需要缴纳高昂的产品测试认证费用和专利授权费用给这些标准的推广者,Displayport标准尽管采用零费用的策略,在其规格的技术设计上,似乎也有明显相对于HDMI的优势,比如除了可以支持系统设备外部连接外,还可以支持系统内部芯片与芯片之间的连接,其数字信号可以直接输出驱动LCD, 而HDMI的TMDS信号由于有3V 的共模偏置必须转换成LVDS后才能驱动LCD,但Displayport由于主要由PC 厂商如Dell等在推广,目前主要应用还是以PC为主,要想蚕食HDMI耕耘多年的消费电子市场,尚需时日。 DiiVA是由中国数字家庭产业联盟重点推广的技术,标准的推广者主要是海信、TCL、创维、长虹、康佳、海尔、上广电、熊猫、凌旭等9家企业,其背后有强大的中国政府的背景,包括工信部,广东省信息产业厅,广州市政府等等,推广者主要是目前中国市场最重要的数字电视,机顶盒,DVD厂商,芯片目前主要由凌旭(Synerchip)提供,同时靠山寨手机名噪一时的联发科(MediaTek)也作为标准贡献者会以物美价廉的芯片来支持这个标准的发展壮大。Cable主要由台湾Foxconn和日本JAE提供。我们作为测试仪器最重要的供应商,会提供包括Source,Sink,Cable一缆子解决方案给DiiVA组织进行物理层的一致性验证。希望DiiVA能像TD-SCDMA一样,由于有中国政府的强力支持和中国市场的坚强后盾而得到大规模的推广。 DiiVA技术相对于HDMI究竟有什么优势,可以值得我们期待其将HDMI取以代之呢?我认为有一些技术特点是DiiVA值得称道的: 第一:DiiVA采用菊花链的连接方式,Any to Any数据传输方式,简而言之,就是任何一个在DiiVA网络中的设备都可以互相访问。包括非压缩的音视频数据流,以太网数据包,USB数据包。如下图,连接在DiiVA网络中每个设备可以分级级联,PC可以读取插在数字电视上的USB存储设备上的数据.所有的DiiVA设备都可以在数字电视上进行浏览和控制其打开或者关闭。

码流换算

例如:8路硬盘录像机,视音频录像,采用512Kbps定码流,每天定时录像12小时,录像资料保留15天,计算公式如下: 每小时录像文件大小=512×3600÷8÷1024=225MB 硬盘录像机所需硬盘容量=225×8×12×15=324000MB≈320GB 各种分辨率下采用什么样的码流可以获得较好的图像质量,一般的硬盘录像机都支持多种分辨率,我们一般使用CIF、DCIF、D1三种。在不同的视频分辨率下,我们建议用户采用如下码流设置方式 CIF:512Kbps,在变码率设置下图像质量选择“较好”或“次好” DCIF:768Kbps,在变码率设置下图像质量选择“较好”或“次好” D1:2Mbps,在变码率设置下图像质量选择“较好”或“次好” 如何进行硬盘容量的计算 每小时录像文件大小计算公式:码流大小×3600÷8÷1024= MB/小时 硬盘录像机硬盘容量计算遵循以下公式: 每小时录像文件大小×每天录像时间×硬盘录像机路数×需要保存的天数 例如:8路硬盘录像机,视音频录像,采用512Kbps定码流,每天定时录像12小时,录像资料保留15天,计算公式如下: 每小时录像文件大小=512×3600÷8÷1024=225MB 硬盘录像机所需硬盘容量=225×8×12×15=324000MB≈320GB 音频码流为固定16kbps,每小时所占容量很小,可以忽略不计 注:为什么除以8,其实很简单,我们计算的是硬盘容量,硬盘容量是以多少兆字节为单位的,而“码流大小×3600”计算出来的是多少比特,一字节(byte)等于8比特(bits),换算成兆字节就要÷8÷1024了。 目前国内主流的硬盘录像机采用两种分辨率:CIF和D1。 硬盘录像机常见的路数有1路、2路、4路、8路、9路、12路和16路。最大可以连接8块2000GB的硬盘,总容量可高达1.6T(目前市面上最大的硬盘在1000GB左右),如果采用CIF分辨率,通常每1路的硬盘容量为180MB~250MB/小时,通常情况下取值200MB/小时;如果是D1的分辨率每小时录像需要的硬盘容量为720MB~1000MB/小时,通常情况下为了减少硬盘的容量可以按照500MB/小时计算,帧率智能设置比25fps 少一些,码流也要少一些!相信大家可以计算出一台装满8块500GB的16路硬盘录像机可以录像多长时间了? 计算举例:8路CIF格式24小时不间断录像30天所需硬盘容量? 8路×200M×24小时×30天÷1024M = 1125G (注:1G = 1024M) 硬盘占用时间计算:以正常画面质量计算,每路每小时 200M。例如16路硬盘录像机,同时录像的情况下每小时共占用硬盘 3.2G。根据不同应用场所,可以采用动态录像等方式进行录像,这样保证录像资料均为有效部分。 硬盘录满后将自动对前面的录像资料循环覆盖。可用光盘刻录机将需要长期保存的录像内容刻在光盘上。 有些情况下为减少硬盘投入,可按每路每小时100M设置录像质量,但画面质量不能保证。建议只在要求不高的情况下使用。

4K超高清电视标识管理办法

4K超高清电视标识管理办法第一章总则 第一条【目的】为推进我国电视机产业健康发展,加快推行4K超高清电视机的普及,引导理性消费,在企业和行业的倡议下,我会组织制定了《4K超高清终端显示技术规范》(以下简称《4K技术规范》),并设计制作了4K超高清电视标识,对符合《4K技术规范》的产品,经认定备案,准许使用4K超高清电视标识。 为加强对4K超高清电视标识的使用管理,保证4K超高清电视标识的正确规范使用,维护4K超高清电视标识使用认定工作的信誉,维护其公正性、权威性,制定本办法。 第二条【定义】本办法所称4K超高清电视标识,是指表示电视机产品功能符合《4K技术规范》的相关规定的一种信息标识。 第三条【职责】中国电子视像行业协会负责4K超高清电视标识制度的建立并组织实施,制定和公布统一的标识式样和规格。 第四条【实施部门】中国电子视像行业协会新技术应用推广工作部负责承担4K超高清电视标识的使用申请受理、

组织鉴定和备案,以及信息公告、实施监督等相关管理工作。实施部门在中国电子视像行业协会的指导下开展工作并接 受中国电子视像行业协会的监督管理。 第二章实施要求 第五条【申请】按照公平、开放、自愿的原则,生产者或进口商按本办法要求向协会提交使用4K超高清电视标识的申请。申请使用4K超高清电视标识的企业应具备以下条件: (一)具有工商行政管理部门核发的营业执照; (二)具有完善的质量管理体系; (三)其产品应通过CNAS认可实验室或其他专业实验室检测,符合《4K技术规范》相关要求; (四)法律、法规规定的其他条件。 申请企业应当提供真实、完整的申报材料。 第六条【备案】生产者或进口商提交的材料经协会审查合格并通过产品评测鉴定后,完成备案手续,准许使用4K 超高清电视标识。 第七条【公布】协会定期公布备案信息,已备案企业根据统一规定的标识式样和规格,印制和使用4K超高清电视标识。 第三章管理要求

中国高清电视标准

中国高清电视标准

国家广电总局GY/T 155-2000高清晰度电视节目制作及交换用视频参数值规定:中国高清晰度电视制作和播出采用隔行扫描1080/50i格式。 其实,1920×1080/50i与1920×1080/25P,码率(占用的制作资源)据说是完全相同的;采用Psf(逐行分段传输)后,1920×1080/25Psf与1920×1080/50i是完全兼容的,就像美国数字电视播出的很多1920×1080/60i的节目是用1920×1080/30P拍摄制作的一样。因此,目前在中国拍摄制作1920×1080/50i高清视频节目就有了1920×1080/50i和1920×1080/25P 两种选择。 拍摄制作1920×1080/25P和1920×1080/50i节目,据说成本相差无几。但,如果采用1920×1080/25P 逐行扫描格式拍摄制作了1920×1080/25P节目,就等于同时拥有了高质量逐行扫描的

1920×1080/25P和隔行扫描的1920×1080/50i两种扫描格式的节目,既可以用于逐行或隔行的电视广播播出,也适用于数字电影等交流应用。假如,如果采用1920×1080/50i隔行扫描格式拍摄制作了隔行扫描的1920×1080/50i节目,就不能得到高质量逐行扫描的1920×1080/25P节目。 1080/50i的特点是:活动画面比25P流畅,压缩效率低,转逐行图像质量下降,不利于交换发展和电视电影共享; 1080/25P的特点是:活动画面不如50i流畅,压缩效率高,转隔行简单图像质量无损,有利于交换发展和电视电影共享。 观点:高质量高清节目,用逐行扫描1920×1080/25P格式拍摄制作,播出时转隔行扫描1920×1080/50i格式。 纵观目前广播数字电视拍摄制作

视频监控码流计算

视频监控码流计算 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法简单介绍。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;假如比特率越少则情况恰好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上往,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,50米红外摄像机理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/。

[ts码流分析] ETSI TR101 290监测的三种级别错误

[ts码流分析] ETSI TR101 290监测的三种级别错误 对于码流分析仪所提供ETSI TR101 290监测的三种级别错误,接收端将会

TR101-290: DVB 系统测量标准 TR101-290: DVB 系统测量标准。TR 101-290 定义的三个优先级,是码流监测的一项主要内容。通过这三个优先级的监测,可以检验被监测的码流是否符合MPEG-2 和DVB标准。这三个优先级都包含许多不同的参数。 PSI/SI: 数字电视业务信息,由PSI和SI两部分构成。PSI是MPEG-2规定的,它由PAT、PMT、CAT 和NIT 4个表构成,其中PAT、PMT表最为重要。SI是DVB标准规定的,它由BAT、SDT、EIT、RST、TDT、TOT、ST、SIT和DIT 9个表构成,其中 BAT、SDT、EIT 和 TDT 是强制性的。PSI/SI 由“表”和“描述符”构成。表是PSI/SI 的基本结构,针对特定用途,PSI/SI 中规定了一系列表来实现它;表由变量和描述符组成。描述符提供了更多的描述功能。 星座图: 星座显示是矢量示波器显示的数字等价形式,它可显示 QAM 信号的同相(I)分量和正交(Q)分量。符号是一个特定调制系统中所传输的最小信息成分。对于 QAM-64,一个符号代表 6 个位,在图上绘制为一个点。 BER位误码率:位误码率是发生误码的位数与传输的总位数之比。 MER:调制误差比, MER 将接收符号(代表调制图案中的一个数字值)的实际位置与其理想位置进行比较。当信号质量降低时,接收符号距离理想位置更远,MER 测量值将会减小。 EVM:误差矢量幅度, EVM测量类似于 MER,但表达形式不同。EVM 表达为 RMS 误差矢量幅度与最大符号幅度的百分比值。信号缺陷增加时,EVM 将会增大,而 MER 则会减小。EVM 是在IQ(同相与正交)星座图上检测到的载波与其理论上的准确位置之间的距离,是“误差信号矢量”与“最大信号幅度”之比,表达为 RMS 百分比值。 RS错误:表示经过Reed Solomon纠错(简称RS)后,出现错误bit的包数。 频率偏移:实际中心频率和理论中心频率的偏移。 SR偏移:实际符码率和理论符码率的偏移。 频道IQ反转:星座图IQ向量是否反转。 根据DVB最新的TR101290测试标准将DVB/MPEG-2 TS流的测试错误指示分为3个等级, 第一等级是可正确解码所必须的几个参数; 第二等级是达到同步后可连续工作必须的参数和需要周期监测的参数; 第三等级是依赖于应用的几个参数 第一级共 6种错误,包括:同步丢失错误、同步字节错误、PAT 错误、连续计数错误、PMT错误及 PID 错误。

相关主题
文本预览
相关文档 最新文档