当前位置:文档之家› 怎样分析变量间的关系汇总

怎样分析变量间的关系汇总

怎样分析变量间的关系汇总
怎样分析变量间的关系汇总

变量间的相关关系

一、变量间关系的度量

1.变量间的关系:

函数关系:(1)是一一对应的确定关系

(2)设有两个变量

相关关系:(1)变量间关系不能用函数关系精确表达(2)变量间存在着一定的客观规律

二、相关的种类

1.完全相关、不完全相关、不相关

2.正相关与负相关

3.线性相关与非线性相关 4.单相关与复相关

三、用图形来显示变量间的关系 做散点图

四、测度变量间的关系强度----计算相关系数 1.

相关系数的概念

是在线性相关的情况下,用来说明相关关系密切程度的统计分析指标。 2.

相关系数的计算:

3. 根据相关系数判断相关的程度

()[]()

[]

∑∑∑∑∑∑∑---=

2

2

2

2

y y

n x x n y

x xy n γ

相关系数的取值是在+1和-1之间,即11+≤≤-r 。若10+≤≤r ,表示X 与Y 之间存在正的相关关系,若01≤≤-r ,表示X 与Y 之间存在负的相关关系;若r-+1,,表示X 、Y 之间为完全正相关关系,若r=-1,表示X 与Y 之间为完全负相关关系,当r=0时,表示Y 的取值与X 无关,即二者之间不存在线性相关关系,但不能说明两者之间没有任何关系。它们可能会存在非线性相关关系。

五、总体中也存在这样的关系吗?----假设检验 1.

为什么要对相关系数进行显著性检验?

因为两个变量之间存在相关关系是根据样本计算出来得出的结论,这一结论是否正确还吸引仅仅系检验,相关系数是一个随机变量,由于是随机的,所以具有一定的偶然性,两个不相关的变量,其相关系数也可能较高,要从样本相关系数判断总体中是否也有这样的关系,则

需要对相关系数进行显著性检验后才能下结论。 2.显著性检验的步骤: 第一步,提出假设 第二步,计算检验的统计量

212r n r t --=

第三步,进行决策。

六、建立变量间的数学关系式

1.回归模型:εββ++=x y 10 2.回归方程:x y E 10)(ββ+=

3.估计回归方程:x

y 10?

??ββ+=

用最小平方法求参数10?

?ββ。

用Excel 计算统计量的方法。

()n

x x n y

y x b y x n x y x n xy x y ∑∑∑∑∑∑∑=

=

-=--

=+=0

2

21

?1

.?11

????β

βββ

见教材。

七、回归效果的度量

SST —总平方和,反映因变量取值的总的波动状况。 SSR---回归平方和,反映有自变量X 的变化引起Y 的变化。 SSE —残差平方和,反映除了X 对Y 的影响之外的其它因素的影响。 三者的关系: SST=SSR+SSE

回归平方和占总平方和的比例称为判定系数:

SST SSR r

2

其实际意义是:在因变量取值的总变差中可以由自变量X 取值所解释的比例。

八、检验数学关系式的可信程度

1.为什么要对回归方程进行显著性检验?

回归方程通常是根据样本数据建立,建立回归方程有很多假定,如假定因变量与自变量之间有线性关系,对回归模型中的误差项也有许多假定。这些假定是否成立,只有在方程通过显著性检验后才能回答,所以要对回归方程进行显著性检验。

2.回归方程显著性检验包括哪些内容?

包括两方面的内容:一是线性关系的检验,也称为总体的显著性检验,用于检验因变量与自变量之间是否存在线性关系;二是回归系数的检验,检验自变量对因变量的影响是否显著。在一元回归分析中,两种检验是等价的。

3.进行线性关系显著性检验的步骤:

第一步,提出假设 第二步,计算统计量F

第三步,作出统计决策。当αF F ≥时,拒绝原假设。 更简单的办法:见教材144页。 九、用自变量来估计因变量

1.点估计---是根据建立的回归方程x

y 10?

?

?ββ+=,对于自变量的一个特定值X 求出因变量

Y 的一个估计值。

2.区间估计---利用估计的回归方程,对于x 的与个特定值0x ,求出Y 的一个估计值的区间就是 区间估计。

置信区间估计:它是对x 的一个给定值,求出y 的平均值的估计区间。

预测区间估计:它是对x 的一个给定值,求出y 的个别值的估计区间。 名词解释

1.相关系数:是在线性相关的情况下,用来说明相关关系密切程度的统计分析指标。 2.总变差平方和:SST —总平方和,反映因变量取值的总的波动状况。 3.回归平方和:SSR---回归平方和,反映有自变量X 的变化引起Y 的变化。 4.残差平方和:SSE —残差平方和,反映除了X 对Y 的影响之外的其它因素的影响。 5.判定系数:回归平方和占总平方和的比例称为判定系数:

SST SSR r =

2

其实际意义是:在因变量取值的总变差中可以由自变量X 取值所解释的比例。

6.点估计:是根据建立的回归方程x y 10???ββ+=,对于自变量的一个特定值X 求出因变量Y

的一个估计值。

7.区间估计:利用估计的回归方程,对于x的与个特定值0x,求出Y的一个估计值的区间就是区间估计。

思考题

1. 解释相关关系的含义

⑴变量之间确实存在着数量上的依存关系;⑵变量之间数量上的关系是不确定、不严格的依存关系。

2. 相关分析主要解决哪些问题?

⑴变量之间是否存在关系?⑵如果存在关系,它们之间是什么样的关系?⑶变量之间的关系强度如何?⑷样本所反映的变量之间的关系能否代表总体变量之间的关系?

3. 相关分析中有哪些基本假定?

在进行相关分析时,对总体主要有以下两个假定:⑴两个变量之间是线性关系;⑵两个变量都是随机变量。

4. 简述相关系数的性质。

相关系数的性质:⑴r的取值范围是[-1,1],r为正表示正相关,r为负表示负相关,r绝对值的大小表示相关程度的高低;⑵对称性:X与Y的相关系数xyr和Y与X之间的相关系数yxr 相等;⑶相关系数与原点和尺度无关;⑷相关系数是线性关联或线性相依的一个度量,它不能用于描述非线性关系;⑸相关系数只是两个变量之间线性关联的一个度量,却不一定意味两个变量之间有因果关系;⑹若X与Y统计上独立,则它们之间的相关系数为零;但r=0不等于说两个变量是独立的。即零相关并不一定意味着独立性。

5. 为什么要对相关系数进行显著性检验?

在实际的客观现象分析研究中,相关系数一般都是利用样本数据计算的,因而带有一定的随机性。样本容量越小,其可信程度就越差,抽取的样本不同,r的取值也会不同,因此r是一个随机变量。能否用样本相关系数来反映总体的相关程度,需要考察样本相关系数的可靠性,因此要进行显著性检验。

6. 简述相关系数显著性检验的步骤。

相关系数显著性检验的步骤:⑴提出假设;⑵计算检验统计量t 值;⑶在给定的显著性水平和自由度,查t分布表中相应的临界值,作出决策。

7. 解释回归模型、回归方程、估计的回归方程的含义。

回归模型是对统计关系进行定量描述的一种数学模型,例如:对于具有线性关系的两个变量,

可以有一元线性方程来描述它们之间的关系,描述因变量y如何依赖自变量x 和误差项的方程称为回归模型。

8. 一元线性回归模型中有哪些基本假定?

一元线性回归模型通常有以下几条基本的假定:⑴变量之间存在线性关系;⑵在重复抽样中,自变量x的取值是固定的;⑶误差项ε是一个期望为零的随机变量;⑷)对于所有的x值,误差项的方差2

都相同;⑸误差项是一个服从正态分布的随机变量,且相互独立。即2

9. 简述参数最小二乘孤寂的基本原理。

参数最小二乘法的基本原理是:因变量的观测值与估计值之间的离差平方和最小。

10. 解释总平方和、回归平方和、残差平方和的含义,并说明它们之间的关系。

总平方和指n次观测值的的离差平方和,衡量的是被解释变量y波动的程度或不确定性的程度。回归平方和反映y的总变差中由于x与y之间的线性关系引起的y的变化部分,这是可以由回归直线来解释的部分,衡量的是被解释变量y不确定性程度中能被解释变量x解释的部分。残差平方和是除了x对y的线性影响之外的其他因素引起的y的变化部分,是不能由回归直线来解释的部分。它们之间的关系是:

总平方和=回归平方和 + 残差平方和。

11. 简述判定系数的含义和作用。

回归平方和占总平方和的比例称为判定系数。判定系数测量了回归直线对观测数据的拟合程度。

12. 在回归分析中,f检验和t检验各有什么作用?

在回归分析中,F检验是为检验自变量和因变量之间的线性关系是否显著,通过均方回归与均方残差之比,构造F检验统计量,提出假设,根据显著性水平,作出判断。

t检验是回归系数的显著性检验,要检验自变量对因变量的影响是否显著,通过构造t检验统计量,提出假设,根据显著性水平,作出判断。

13. 简述线性关系检验和回归系数检验的具体步骤。

14. 怎样评价回归分析的结果

回归分析结果的评价可以从以下几个方面:⑴回归系数的符号是否与理论或事先预期相一致;⑵自变量与因变量之间的线性关系,在统计上是否显著;⑶根据判定系数的大小,判断回归模型解释因变量取值差异的程度;⑷误差项的正态假定是否成立。

15. 什么是置信区间估计和预测区间估计?二者有何区别

置信区间估计是对x的一个给定值0x,求出y的平均值的区间估计。预测区间估计是对x 的一个给定值0x,求出y的一个个别值的区间估计。二者的区别是:置信区间估计的区间长度通常较短,而预测区间估计的区间长度要长,也就是说,估计y的平均值比预测y的一个特定值或个别值更精确。

16. 简要说明残差分析在回归分析中的作用。

残差分析在回归分析中的作用:回归分析是确定两种或两种以上变量间的定量关系的一种统计分析方法.判断回归模型的拟合效果是回归分析的重要内容,在回归分析中,通常用残差分析来判断回归模型的拟合效果,并判定关于误差项的正态假设是否成立。

数据分析的常见方法

一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率\回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似; C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。 对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。 五、相关分析 研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。 1、单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量; 2、复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的

11属性数据分析

技能训练十一属性数据分析 一、训练目的与要求 1.掌握属性数据分析方法。 2.掌握属性数据分析图表与原图形的组合。 二、训练准备 1.训练数据:本训练数据保存于文件夹Exercise-11中。 2.预备知识:属性分析的方法。 三、训练步骤与内容 1.数据准备 将训练数据复制,粘贴至各自文件夹内。 启动MAPGIS主程序。在主菜单界面中,点击参数按钮,在弹出的对话框中,设置工作目录最终指向Exercise-14(盘符依据各人具体情况设置)。 2.属性分析 执行如下命令:空间分析?空间分析?文件?装载区文件,加载要进行属性分析的数据文件。 Step1: 加载数据文件中所提供 的REGION.WP区文件 执行如下命令:属性分析?单属性分类统计?立体饼图,选择属性分析类型。

Step2: 属性 Step3: 选择分类属性字段为小麦,保留属性字段为乡名、水稻、玉米Step4: 设置分类方式为分段方式 Step5: 确定,退出设置 分类值域按图中所示输 入

分类统计结果图 3.保存文件 执行如下命令:文件?保存当前文件,换名保存属性分析所生成的图形文件,系统生成的表格文件(*.WB)不需要保存。 Step: 将缺省文件名改为“属性分析”,点 击保存按钮。按此方法依次将线、区 文件名均改为“属性分析” 4.文件组合 执行如下命令:图形处理?输入编辑?打开已有工程文件,打开所提供的Exercise-14.MPJ,在工程文件管理窗口,点击鼠标右键,选择“添加项目”选项,将前面生成的属性分析.WT、属性分析.WL、属性分析.WP添加进此工程文件。 关闭REGION.WP、POINT.WT、RIVER.WL和LINE.WL四个文件。 执行如下命令:其它?整块移动,调整属性分析.WT、属性分析.WL、属性分析.WP三个图形文件的位置,使与主图位置相适应。若此三个图形与主图相比过大的话,执行如下命令:其它?整图变换?键盘输入参数,来进行调整(注意应确定REGION.WP、POINT.WT、RIVER.WL 和LINE.WL四个文件处于关闭状态)。

相关性分析(相关系数)

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本. 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。 相关系数的计算公式为<见参考资料>. 其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式<见参考资料>. 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式<见参考资料>. 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。 简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数

数据分析中的变量分类

数据分析中的变量分类 数据分析工作每天要面对各种各样的数据,每种数据都有其特定的含义、使用范围和分析方法,同一个数据在不同环境下的意义也不一样,因此我们想要选择正确的分析方法,得出正确的结论,首先要明确分析目的,并准确理解当前的数据类型及含义。统计学中的变量指的是研究对象的特征,我们有时也称为属性,例如身高、性别等。每个变量都有变量值,变量值就是我们分析的内容,它是没有含义的,只是一个参与计算的数字,所以我们主要关注变量的类型,不同的变量类型有不同的分析方法。 变量主要是用来描述事物特征,那么按照描述的粗劣,有以下两种划分方法: 按基本描述划分 【定性变量】:也称为名称变量、品质变量、分类变量,总之就是描述事物特性的变量,目的是将事物区分成互不相容的不同组别,变量值多为文字或符号,在分析时,需要转化为特定含义的数字。 定性变量可以再细分为: 有序分类变量:描述事物等级或顺序,变量值可以是数值型或字符型,可以进而比较优劣,如喜欢的程度:很喜欢、一般、不喜欢 无序分类变量:取值之间没有顺序差别,仅做分类,又可分为二分类变量和多分类变量二分类变量是指将全部数据分成两个类别,如男、女,对、错,阴、阳等,二分类变量是一种特殊的分类变量,有其特有的分析方法。多分类变量是指两个以上类别,如血型分为A、B、AB、O 【定量变量】:也称为数值型变量,是描述事物数字信息的变量,变量值就是数字,如长度、重量、产量、人口、速度和温度。 定量变量可以再细分 连续型变量:在一定区间内可以任意取值,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。如身高、绳子的长度等。 离散型变量:值只能用自然数或整数单位计算,其数值是间断的,相邻两个数值之间不再有其他数值,这种变量的取值一般使用计数方法取得。 按照精确描述划分 【定类变量】

多值无序分类变量与连续变量的相关性检验问题

互助问答第26期:多值无序分类变量与连续变量的相关性检验问题 问题:因变量是多值无序分类(2以上,不是0,1那种)数据,自变量是一个 连续变量。我要想看是否显著相关应该用什么检验? 答案: (1)如果只是想看相关性的话,可以不必区分因变量和自变量,用‘多值无序分类数据’作为因子,‘连续变量’作为outcome,用F检验(ANOVA)就可 以了。如果F检验显著,则说明组间(0,1,2…)具有显著性差异,然后用组内相关性测算相关强度。这种方法可以通过Stata的anova命令来实现。 (2)检验相关性也可以采用非参数检验的办法。 (3)当然你也可以使用回归的方法来检验相关性。第一种回归:直接做‘连续变量’对‘多值无序分类数据’影响的回归,观察两个变量的显著性就可以了,因为两个变量的两个变量的相关性等价于直接单元回归。所使用的Stata命令为reg y x。 第二种回归:首先把多值无序分类数据’作为自变量,设置一组虚拟变量建模;然后把‘连续变量’当因变量,联合检验所有的系数都等于0就可以了。所使用的Stata命令为 reg y x1 x2 x(n-1)。 第三种回归:采用多值无序logit/probit回归,控制其他变量,以‘多值无序分类数据’为因变量,以‘连续变量’为自变量,观察其估计系数的显著性。可以通过Stata的mlogit命令来实现。 学术指导:张晓峒老师 本期解答人:中关村大街 编辑:冷萱杨芳Hollian 统筹:芋头易仰楠 技术:知我者 互助问答第27期:面板数据的stata设置问题 问题1:我的论文主题是FTA对东道国吸引外资的影响研究(FDI用的是两国之间的流量),因此,我的数据是三维的,也就是年份+东道国+母国(详细数据见图片---回归数据)。现在我想使用双固定效应模型(同时固定时间和个体),于是我就将(东道国+母国)进行编码,把其看成一个个国家组合,并且引入新的标量id,同时对其赋值(1、2、3.、、)。问题:在我进行回归时,使用xtset id year时出现乱码,请问老师该怎么解决呢?

数据分析-分布类别

各种分布 泊松分布 Poisson分布,是一种统计与概率学里常见到的离散概率分布。 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积、单位体积)内随机事件的平均发生率。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为 特征函数为: 泊松分布与二项分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的。 泊松分布可作为二项分布的极限而得到。一般的说,若 ,其中n很大, p很小,因而不太大时,X的分布接近于泊松分布。这个事实有时可将较难计算的二项分布转化为泊松分布去计算。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,某放射性物质发射出的粒子,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 卡方分布 卡方分布( 分布)是概率论与统计学中常用的一种概率分布。n 个独立的标准

正态分布变量的平方和服从自由度为n 的卡方分布。卡方分布常用于假设检验和置信区间的计算。 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成 一新的随机变量,其分布规律称为卡方分布(chi-square distribution),即分布(chi-square distribution),其中参数n称为自由度。正如正态分布中均值或方差不同就是另一个正态分布一样,自由度不同就是另一个分布。记为或者。 卡方分布与正态分布 卡方分布是由正态分布构造而成的一个新的分布,当自由度n很大时,分布 近似为正态分布。对于任意正整数x,自由度为 k的卡方分布是一个随机变量X 的机率分布。 期望和方差 分布的均值为自由度n,记为E( ) = n。分布的方差为2倍的自由度(2n),记为D( ) = 2n。 均匀分布 均匀分布(Uniform Distribution)是概率统计中的重要分布之一。 顾名思义,均匀,表示可能性相等的含义。 (1) 如果,则称X服从离散的均匀分布。 (2) 设连续型随机变量X的概率密度函数为,则称随机变

用SPSS对分类变量进行相关分析_光环大数据培训

https://www.doczj.com/doc/cf14528816.html, 用SPSS对分类变量进行相关分析_光环大数据培训图形化解决方案——网络图 网络图适合多分类型变量之间的相关分析,是一种更为生动和直观地展示两个或多个分类型变量相关特征的图形。图形由节点和节点间的连线组成,每个节点对应一个分类取值,连线代表两个分类变量不同类型的组合。 根据图形,最细连线代表44人,最粗连线代表237人,可见Plus service (附加服务套餐)节点和未流失节点之间的连线最粗,选择附加服务套餐的用户相对而言比较忠实,而选择基本服务类型的用户保持情况不如选择附加服务的用户保持情况理想。 以上过程可采用Clementine的web节点实现。 数值型解决方案——交叉表分析 图形化方法并不能正确反映两分类变量之间的相关程度,因此精细的数值分析是必要的。两分类变量之间的相关分析通常采用交叉表分析,或称为列联表分析方法。包括两部分,第一,两分类变量交叉计算和对比频数,第二,在交叉表的基础上利用卡方检验衡量二者之间的关系。 1、交叉表频数对比分析的解读 由表可知,用户总体保持率72.6%,流失率27.4%,用户保持情况不太理想。

https://www.doczj.com/doc/cf14528816.html, 总体而言,样本量较小的情况下,四种套餐的占比分布情况不甚明了。 其中最突出的是,附加服务的客户忠诚度相对较高,保持率达到84.3%,高出总体保持率,流失率在四个套餐中最低,仅15.7%,低于总体流失率。可见,不同类型套餐用户的保持和流失存在差异。 因此说,客户流失与套餐类型是相关联的。 2、卡方检验解读 卡方检验原假设:行与列分类变量相互独立,没有相关关系。由卡方检验表看出,其sig值为0.000,小于小概率事件的界定值0.01,由小概率事件不发生可以知道,原假设即二者独立这个说法是不合理的,也就是说套餐类型和客户流失是有极显著的相关关系。 以上交叉表分析可利用 SPSS 实现。 为什么大家选择光环大数据! 大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请大数据领域具有多年经验的讲师,提高教学的整体质量与教学水准。讲师团及时掌握时代的技术,将时新的技能融入教学中,让学生所学知识顺应时代所需。通过深入浅出、通俗易懂的教学方式,指导学生较快的掌握技能知识,帮助莘莘学子实现就业梦想。

常用相关分析方法及其计算

二、常用相关分析方法及其计算 在教育与心理研究实践中,常用的相关分析方法有积差相关法、等级相关法、质量相关法,分述如下。 (一)积差相关系数 1. 积差相关系数又称积矩相关系数,是英国统计学家皮尔逊(Pearson )提出的一种计算相关系数的方法,故也称皮尔逊相关。这是一种求直线相关的基本方法。 积差相关系数记作XY r ,其计算公式为 ∑∑∑===----= n i i n i i n i i i XY Y y X x Y y X x r 1 2 1 2 1 ) ()() )(( (2-20) 式中i x 、i y 、X 、Y 、n 的意义均同前所述。 若记X x x i -=,Y y y i -=,则(2-20)式成为 Y X XY S nS xy r ∑= (2-21) 【 式中 n xy ∑称为协方差,n xy ∑的绝对值大小直观地反映了两列变量的一致性程 度。然而,由于X 变量与Y 变量具有不同测量单位,不能直接用它们的协方差 n xy ∑来表示两列变量的一致性,所以将各变量的离均差分别用各自的标准差 除,使之成为没有实际单位的标准分数,然后再求其协方差。即: ∑∑?= = )()(1Y X Y X XY S y S x n S nS xy r Y X Z Z n ∑?= 1 (2-22) 这样,两列具有不同测两单位的变量的一致性就可以测量计算。 计算积差相关系数要求变量符合以下条件:(1)两列变量都是等距的或等比的测量数据;(2)两列变量所来自的总体必须是正态的或近似正态的对称单峰分布;(3)两列变量必须具备一一对应关系。 2. 积差相关系数的计算

利用公式 (2-20)计算相关系数,应先求两列变量各自的平均数与标准差,再求离中差的乘积之和。在统计实践中,为方便使用数据库的数据格式,并利于计算机计算,一般会将(2-20)式改写为利用原始数据直接计算XY r 的公式。即: ∑∑∑∑∑∑∑---= 2 22 2) () (i i i i i i i i XY y y n x x n y x y x n r (2-23) (二)| (三)等级相关 在教育与心理研究实践中,只要条件许可,人们都乐于使用积差相关系数来度量两列变量之间的相关程度,但有时我们得到的数据不能满足积差相关系数的计算条件,此时就应使用其他相关系数。 等级相关也是一种相关分析方法。当测量得到的数据不是等距或等比数据,而是具有等级顺序的测量数据,或者得到的数据是等距或等比的测量数据,但其所来自的总体分布不是正态的,出现上述两种情况中的任何一种,都不能计算积差相关系数。这时要求两列变量或多列变量的相关,就要用等级相关的方法。 1. 斯皮尔曼(Spearman)等级相关 斯皮尔曼等级相关系数用R r 表示,它适用于两列具有等级顺序的测量数据,或总体为非正态的等距、等比数据。 斯皮尔曼等级相关的基本公式如下: ) 1(612 2--=∑n n D r R (2-24) 式中: Y X R R D -=____________对偶等级之差; n ____________对偶数据个数。 , 如不用对偶等级之差,而使用原始等级序数计算,则可用下式 )]1() 1(4[13+-+?-= ∑n n n R R n r Y X R (2-25) 式中: X R ___________X 变量的等级; Y R ____________Y 变量的等级; n ____________对偶数据个数。 (2-25)式要求∑∑=Y X R R ,∑∑=2 2Y X R R ,从而保证22Y X S S =。在观测变量中没有相同等级出现时可以保证这一条件。但是,在教育与心理研究实践中,搜集到的观测变量经常出现相同等级。在这种情况下,∑∑=Y X R R 的条件仍可得

实验十四 属性数据分析

实验十四属性数据分析 一、实验目的 1.掌握属性数据分析方法。 2.掌握属性数据分析图表与原图形的组合。 二、实验准备 1.实验数据:本实验数据保存于文件夹Exercise-14中。 2.预备知识:属性分析的方法。 三、实验步骤与内容 1.数据准备 将实验数据复制,粘贴至各自文件夹内。 启动MAPGIS主程序。在主菜单界面中,点击参数按钮,在弹出的对话框中,设置工作目录最终指向Exercise-14(盘符依据各人具体情况设置)。 2.属性分析 执行如下命令:空间分析?空间分析?文件?装载区文件,加载要进行属性分析的数据文件。 Step1: 加载数据文件中所提供 的REGION.WP区文件执行如下命令:属性分析?单属性分类统计?立体饼图,选择属性分析类型。

Step2: 属性 Step4: 设置分类方 式为分段方 式 Step3: 选择分类属 性字段为小 麦,保留属 性字段为乡 名、水稻、 玉米 Step5: 确定,退出 设置 分类值域按图中所示输 入

分类统计结果图 3.保存文件 执行如下命令:文件?保存当前文件,换名保存属性分析所生成的图形文件,系统生成的表格文件(*.WB)不需要保存。 Step: 将缺省文件名改为“属性分析”,点 击保存按钮。按此方法依次将线、区 文件名均改为“属性分析” 4.文件组合 执行如下命令:图形处理?输入编辑?打开已有工程文件,打开所提供的Exercise-14.MPJ,在工程文件管理窗口,点击鼠标右键,选择“添加项目”选项,将前面生成的属性分析.WT、属性分析.WL、属性分析.WP添加进此工程文件。 关闭REGION.WP、POINT.WT、RIVER.WL和LINE.WL四个文件。 执行如下命令:其它?整块移动,调整属性分析.WT、属性分析.WL、属性分析.WP三个图形文件的位置,使与主图位置相适应。若此三个图形与主图相比过大的话,执行如下命令:其它?整图变换?键盘输入参数,来进行调整(注意应确定REGION.WP、POINT.WT、RIVER.WL和LINE.WL四个文件处于关闭状态)。 完成后,保存此工程文件。

统计学分析方法

统计分析方法总结 分享 胡斌 00:06分享,并说:统计 1.连续性资料 1.1 两组独立样本比较 1.1.1 资料符合正态分布,且两组方差齐性,直接采用t检验。 1.1.2 资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。 1.1.3 资料方差不齐,(1)采用Satterthwate 的t’检验;(2)采用非参数检验,如Wilcoxon检验。 1.2 两组配对样本的比较 1.2.1 两组差值服从正态分布,采用配对t检验。 1.2.2 两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。 1.3 多组完全随机样本比较 1.3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。 1.3.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用成组的Wilcoxon检验。 1.4 多组随机区组样本比较 1.4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。 1.4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni 法校正P值,然后用符号配对的Wilcoxon检验。 ****需要注意的问题: (1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t检验或方差分析。因为统计学上有中心极限定理,假定大样本是服从正态分布的。 (2)当进行多组比较时,最容易犯的错误是仅比较其中的两组,而不顾其他组,这样作容易增大犯假阳性错误的概率。正确的做法应该是,先作总的各组间的比较,如果总的来说差别有统计学意义,然后才能作其中任意两组的比较,这些两两比较有特定的统计方法,如上面提到的LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。**绝不能对其中的两组直接采用t检验,这样即使得出结果也未必正确** (3)关于常用的设计方法:多组资料尽管最终分析都是采用方差分析,但不同设计会有差别。常用的设计如完全随即设计,随机区组设计,析因设计,裂区设计,嵌套设计等。 2.分类资料

数据挖掘中客户的特征化及其划分(一)

数据挖掘中客户的特征化及其划分(一) 摘要]良好客户关系已成为电子商务时代制胜的关键。在激烈的市场竞争中,客户关系管理逐渐成为企业关注的焦点。深入研究客户和潜在客户是在市场中保持竞争力的关键。本文通过对客户行为的特征化分析,以数据挖掘为分析工具,对客户关系管理进行了讨论,给出了相应的划分方法,使用这些划分方法,对客户进行分析是有意义的。 关键词]客户关系管理数据挖掘聚类分析 一、引言 在激烈的市场竞争中,客户关系管理(CustomerRelationshipManagement)逐渐成为各企业关注的焦点。一个成熟的CRM系统要能够有效地获取客户的各种信息,识别客户与企业间的关系及所有交互操作,寻找其中的规律,为客户提供个性化的服务,为企业决策提供支持。 在企业与客户的交互操作中,“二八原则”是值得借鉴的,即20%的客户对企业做出80%的利润贡献。但究竟谁是那20%的客户?又如何确定特定消费群体的消费习惯与消费倾向,进而推断出相应消费群体或个体下一步的消费行为?这都是企业需要认真研究的问题。 二、客户的特征化及其划分 企业认识客户和潜在客户是在市场保持竞争力的关键。特征分析是了解客户和潜在客户的极好方法,包括对感兴趣对象范围进行一般特征的度量。一旦知道带来最大利润客户的特征和行为,就可以直接将其应用到寻找潜在客户之中。有效寻找客户,认识哪些人群像自己的客户。因此,在争取客户的活动中,对感兴趣对象进行特征化及其划分是很有意义的。 对客户的特征化,顾名思义就是用数据来描述或给出客户(潜在客户)特征的活动。特征化可以在数据库(或数据库的不同部分)上进行。这些不同部分也称为划分,通常他们互不包含。 划分分析(SegmentationAnalysis)通常用于根据利润和市场潜力划分客户。如:零售商按客户在所有零售商店的总体购买行为,将客户划分为若干描述他们各自购买行为的区域,这样零售商可以评估哪些客户有最大利润。划分是把数据库分成互不相交部分或分区的活动。一般有两种方法:市场驱动法和数据驱动法。市场驱动法需要决定那些对业务有重要影响的特征,即需要预先选择一些特征变量(属性),以最终定义得到划分。数据驱动法是利用数据挖掘中的聚类技术或要素分析技术寻找同质群体。 三、数据挖掘的概念 数据挖掘(DataMining)是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的、事先未知的潜在有用信息。通过数据挖掘提取的知识表示为概念、规则、规律、模式等,它对企业的趋势预测和行为决策提供支持。 1.分类分析 分类是指将数据映射到预先定义好的群组或类。分类要求基于数据属性值来定义类别,通过数据特征来描述类别。根据它与预先定义好的类别相似度,划分到某一类中去。分类的主要应用是导出数据的分类模型,然后使用模型预测。 2.聚类分析 聚类是对抽象样本集合分组的过程。与分类不同之处在于聚类操作要划分的类是事先未知。按照同一类中对象之间较高相似度原则进行划分,目的是使同一类别个体之间距离尽可能小,不同类别中个体间距离尽可能大。类的形成是由数据驱动的。 3.关联规则 关联规则是从大量的数据中挖掘出有价值的描述数据项之间相互关联的知识。关联规则中有两个重要概念:支持度(Support)和信任度(Confidence)。它们是两个度量有关规则的方法,描述了被挖掘出规则的有用性和确定性。关联规则挖掘,希望发现事务数据库中数据项之间的关联,这些规则往往能反映客户的购买行为模式。

卡方检验与相关回归

卡方检验 本讲涉及的卡方检验(同上一讲的拟合优度检验有所不同)要用于推断两个或多个总体率、构成比是否有差别;两个分类变量间是否存在关联等;两个等级变量间是否存在线性趋势。通常我们作卡方检验只用到了Crosstabs命令中极少部分的功能。 Crosstabs: 例如某医生用两种药物治疗十二指肠溃疡,问两种药物疗效是否不同,数据间胃溃疡.sav: Rows框用于选择行变量;Columns框用于选择列变量;Layer指的是分层分析,将分层变量选入Layer框中,在同一层中的变量使用相同的设置,而不同层中的变量分别使用各自层的设置。如果要让不同的变量做不同的分析,则将其选入Layer框,并用Previous和Next设为不同层。 Display clustered bar charts复选框显示复式条图。

Suppress table 复选框禁止在结果中输出行×列表(主要用于表格过于巨大时为了节省空间)。 Exact 选项含义同前Statistics 对话框,用于定义所需计算的统计量。 接着要在statistics 中定义如何分析,以及如果相了解两变量间关联应该如何选关联指标: Chi-square 复选框:计算Pearson χ2值。请注意作卡方检验时一定要满足总例数与理论数足够大的要求 ,系统会在卡方检验表格下提示有多少格子的理论数小于5 Correlations 复选框:计算行、列两变量的Pearson 相关系数(主要用于行、列变量都是计量资料的两变量相关分析,并计算Pearson 关联系数r 又称为ρ)和Spearman 等级相关系数(主要用于分析行、列变量均为等级变量,计算Spearman 等级相关系数又称为秩相关系数r s 或又称为ρs )。 *比如两正态变量间的Pearson 相关系数可以用crosstab 过程计算,只要将correlations 勾上即可 在列联表的分析中,除了计算卡方值外,有时还要了解行列变量间的关联密切程度;SPSS 为我们提供了针对行列变量均为无序分类(Nominal )、等级变量(Ordinal )的列联表关联程度的衡量指标: Nominal 表示是否分析两个分类(通常指无序分类)变量间关联性,其下可计算4个指标: 1)Contingency coefficient 复选框:即列联系数,在分析行列变量间关联性时使用;其值为n C +=22 χχ界于0~1之间(但是如果行列数较少比如仅有2行2列,该系数最大只能到0.707;而 四行四列则可以达到0.87,所以它的大小除了放映两个变量间的关联性还和表格的维度有关,因此该指标较少用于不同维度列联表间关联性比较);该系数越大表示两变量间关联性越大,反之则较小。

Pearson Kendall和Spearman三种相关分析方法的异同

两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用 spearman或kendall相关 Pearson 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料 Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料 注: 1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关 2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearman 或 Kendall相关。 3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。 肯德尔(Kendall)U系数又称一致性系数,是表示多列等级变量相关程度的一种方法。该方法同样适用于让K个评委(被试)评定N件事物,或1个评委(被试)先后K次评定N 件事物所得的数据资料,只不过评定时采用对偶评定的方法,即每一次评定都要将N个事物两两比较,评定结果如下表所示,表格中空白位(阴影部分可以不管)填入的数据为:若i 比j好记1,若i比j差记0,两者相同则记。一共将得到K张这样的表格,将这K张表格重叠起来,对应位置的数据累加起来作为最后进行计算的数据,这些数据记为γij。

SPSS双变量相关性分析

数学建模SPSS 双变量相关性分析 关键词:数学建模相关性分析SPSS 摘要:在数学建模中,相关性分析是很重要的一部分,尤其是在双变量分析时, 要根据变量之间的联系建立评价指标,并且通过这些指标来进行比对赋值而做出 评价结果。本文由数学建模中的双变量分析出发, 首先阐述最主要的三种数据分 析:Pearson 系数,Spearman 系数和Kendall 系数的原理与应用,再由实际建模 问题出发,阐述整个建模过程和结果。 相关性分析是指对两个或多个具备相关性的变量元素进行分析, 从而衡量两 个变量因素的相关密切程度。相关性的元素之间需要存在一定的联系或者概率才 可以进行相关性分析。相关性不等于因果性,也不是简单的个性化,相关性所涵 盖的范围和领域几乎覆盖了我们所见到的方方面面,相关性在不同的学科里面的 定义也有很大的差异。 双变量相关分析中有三种数据分析:Pearson 系数,Spearman 系数和Kendall 系数。 Pearson 相关系数用来衡量两个数据集合是否在一条线上面,它用来衡量定 距变量间的线性关系。如衡量国民收入和居民储蓄存款、身高和体重、高中成绩 和高考成绩等变量间的线性相关关系。 当两个变量都是正态连续变量,而且两者 之间呈线性关系时,表现这两个变量之间相关程度用积差相关系数,主要有 Pearson 简单相关系数r 。 X X Y Y r ------------------------------------- 2 — 2 \ X X Y Y Spearman 相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关 分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对 于服从Pearson 相关系数的数据亦可计算 Spearman 相关系数,但统计效能要低 一些。Spearman 相关系数的计算公式可以完全套用 Spearman 相关系数计算公式, 但公式中的x 和y 用相应的秩次代替即可。 设有n 组观察对象,将Xi 、Yi (i=1,2,…,n )分别由小到大编秩。并用 Pi 表示Xi 的秩,Qi 表示Yi 的秩 两者秩和为: 两者平均秩为: 秩相关系数r s 计算公式为: l XY l XX I YY n(n + 1) 2 =(n + 1) =2 Pave

相关性分析

相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。 相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法 相关性的元素之间需要存在一定的联系或者概率才可以进行相关性分析。相关性不等于因果性,也不是简单的个性化,相关性所涵盖的范围和领域几乎覆盖了我们所见到的方方面面,相关性在不同的学科里面的定义也有很大的差异。 分类: 1、线性相关分析:研究两个变量间线性关系的程度。用相关系数r来描述 (1)正相关:如果x,y变化的方向一致,如身高与体重的关系,r>0;一般地, ·|r|>0.95 存在显著性相关; ·|r|≥0.8 高度相关; ·0.5≤|r|<0.8 中度相关; ·0.3≤|r|<0.5 低度相关; ·|r|<0.3 关系极弱,认为不相关 (2)负相关:如果x,y变化的方向相反,如吸烟与肺功能的关系,r<0; (3)无线性相关:r=0。 如果变量Y与X间是函数关系,则r=1或r=-1;如果变量Y与X间是统计关系,则-1

2、偏相关分析:研究两个变量之间的线性相关关系时,控制可能对其产生影响的 变量。如控制年龄和工作经验的影响,估计工资收入与受教育水平之间的相关关系 3、距离分析:是对观测量之间或变量之间相似或不相似程度的一种测度,是一种广义的距离。分为观测量之间距离分析和变量之间距离分析(1)不相似性测度: ·a、对等间隔(定距)数据的不相似性(距离)测度可以使用的统计量有Euclid欧氏距离、欧氏距离平方等。 ·b、对计数数据使用卡方。 ·c、对二值(只有两种取值)数据,使用欧氏距离、欧氏距离平方、尺寸差异、模式差异、方差等。 (2)相似性测度: ·a、等间隔数据使用统计量Pearson相关或余弦。 ·b、测度二元数据的相似性使用的统计量有20余种 分析的类别: 网络分析、 财务分析、又称有用性分析,是财务会计的一部分,是指会计信息要同信息使 用者的经济决策相关联,即人们可以利用会计信息做出有关的经济决策,相关性分 析的目的在于提高使用者的经济决策能力和预测能力 经济分析、相关性的统计与分析是经济学中常用的一种方法。相关性是指当两 个因素之间存在联系,一个典型的表现是:一个变量会随着另一个变量变化。相关 又会分成正相关和负相关两种情况 统计分析、相关性系数的计算过程可表示为:将每个变量都转化为标准单位, 乘积的平均数即为相关系数。两个变量的关系可以直观地用散点图表示,当其紧密 地群聚于一条直线的周围时,变量间存在强相关性 数学分析、当两个变量的标准差都不为零时,相关性系数才有定义。当一个或 两个变量带有测量误差时,他们的相关性就会受到削弱 几何分析、对于居中的数据来说(居中也就是每个数据减去样本均值,居中后 它们的平均值就为0),相关性系数可以看作是两个随机变量中得到的样本集向量 之间夹角的cosine函数 大气分析、对回归因素所引起的变差与总变差之间的相关性分析

第八章 分类数据分析

第九章 列联分析 一、填空题 1、设R 为列联表的行数,C 为列联表的列数,则进行拟合优度检验时所用统计量2χ的自由度为 。 2、设0f 为列联表中观察值频数,e f 为期望值频数,则进行拟合优度检验时所用统计量2χ= 。 3、在列联分析中,观察值总数为n ,RT 为列联表中给定单元的行合计,CT 为给定单元列合计,则该给定单元频数期望值为 。 4、在列联分析中,观察值总数为500,列联表中给定单元的行合计数为140,列合计数为162,则该给定单元频数期望值为 。 5、在3×4列联分析中,统计量2 2 0()e e f f f χ-=∑(其中0f 为观测值频数,e f 为期望值频数)的自由度为____________。 6、对来自三个地区的原料质量进行检验时,先把它们分成三个等级,在随机抽取400间进行检验,经分析得知原料质量与地区之间的关系实现著的,现计算得2300χ=,则?相关系数等于 。 7、?相关系数是描述两个分类变量之间相关程度的统计量,它主要用于描述 的列联表数据。 8、若两个分类变量之间完全相关。则?相关系数的取值为 。 9、当列联表中两个变量相互独立时,计算的列联相关系数C= 。 10、利用2 χ分布进行独立性检验,要求样本容量必须足够大,特别是每个单元中的期望频数e f 不能过小,如果只有两个单元,则每个单元的期望频数必须 。 二、单项选择题 1、列联分析是利用列联表来研究( ) A 、两个分类变量的关系 B 、两个数值型变量的关系 C 、一个分类变量和一个数值型变量的关系 D 、连个数值型变量的分布 2、设R 为列联表的行数,C 为列联表的列数,则进行拟合优度检验时所用统计量2χ的自由度为( ) A 、R B 、 C C 、R ×C D 、(R-1)×(C-1) 3、若两个分类变量之间完全相关。则?相关系数的取值为( ) A 、0 B 、小于1 C 、大于1 D 、1=? 4、当列联表中两个变量相互独立时,计算的列联相关系数C ( ) A 、等于1 B 、大于1 C 、等于0 D 、小于0 5、利用2χ分布进行独立性检验,要求样本容量必须足够大,特别是每个单元中的期望频数e f 不能过小,如果只有两个单元,则每个单元的期望频数必须( ) A 、等于或大于1 B 、 C 值等于?值 C 、等于或大于5 D 、等于或大于10 6、一所大学准备采取一项学生上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名男生和120名女生进行调查,得到结果如下: A 、48和39 B 、102和81 C 、15和14 D 、25和19 7、一所大学准备采取一项学生上网收费的措施,为了解男女学生对这一措施的看法,分别抽取了150名

常用相关分析方法及其计算

二、常用相关分析方法及其计算 在教育与心理研究实践中,常用的相关分析方法有积差相关法、等级相关法、质量相关法,分述如下。 (一)积差相关系数 1. 积差相关系数又称积矩相关系数,是英国统计学家皮尔逊(Pearson )提出的一种计算相关系数的方法,故也称皮尔逊相关。这是一种求直线相关的基本方法。 积差相关系数记作XY r ,其计算公式为 ∑∑∑===----= n i i n i i n i i i XY Y y X x Y y X x r 1 2 1 2 1 ) ()() )(( (2-20) 式中i x 、i y 、X 、Y 、n 的意义均同前所述。 若记X x x i -=,Y y y i -=,则(2-20)式成为 Y X XY S nS xy r ∑= (2-21) 式中n xy ∑称为协方差,n xy ∑的绝对值大小直观地反映了两列变量的一致性程 度。然而,由于X 变量与Y 变量具有不同测量单位,不能直接用它们的协方差 n xy ∑来表示两列变量的一致性,所以将各变量的离均差分别用各自的标准差 除,使之成为没有实际单位的标准分数,然后再求其协方差。即: ∑∑?= = )()(1Y X Y X XY S y S x n S nS xy r Y X Z Z n ∑?= 1 (2-22) 这样,两列具有不同测两单位的变量的一致性就可以测量计算。 计算积差相关系数要求变量符合以下条件:(1)两列变量都是等距的或等比的测量数据;(2)两列变量所来自的总体必须是正态的或近似正态的对称单峰分布;(3)两列变量必须具备一一对应关系。 2. 积差相关系数的计算 利用公式 (2-20)计算相关系数,应先求两列变量各自的平均数与标准差,再

定性属性数据分析复习题

属性数据分析复习题 一、 填空(每题4分,共20分) 1. 按数据取值分类,人的身高,性别,受教育程度分别属于计量数据,名义数据,有序数据 2. 度量定性数据离散程度的量有离异比率, G-S 指数,熵 3. 分类数据的检验方法主要有2χ检验和似然比检验 4. 二值逻辑斯蒂线性回归模型的一般形式是011ln 1k k p x x p βββ=+++- 5. 二维列联表的对数线性非饱和模型有 3 种 二、 案例分析题(每题20分,共60分) 1.P40习题二1,给出上分位数20.05(5)11.07χ= 0123456:0.3,0.2,0.2,0.1,0.1,0.1H p p p p p p ====== 220.0518.0567(5)11.07χχ=>=,落入拒绝域,故拒绝原假设,即认为这些数据与 消费者对糖果颜色的偏好分布不相符 2.P42表 3.1独立性检验,给出上分位数2 0.05(1) 3.84χ= 012:H p p =(即认为肺癌患者中吸烟比例与对照组中吸烟比例相等) 112:H p p ≠

未连续性修正的: 22 2 2112212210.051212()106(6011332)9.6636(1) 3.8463439214n n n n n n n n n χχ++++-?-?===>=??? 带连续性修正的: 22 11221221220.051212(||)106(|6011332|53)27.9327(1) 3.8463439214 n n n n n n n n n n χχ++++--?-?-===>=??? 均落入拒绝域,故拒绝原假设,即认为肺癌患者中吸烟比例与对照组中吸烟比例不等 3.P83表 4.3 独立性检验,给出上分位数2 0.05(2) 5.99χ= 0:ij i j H p p p ++=(即认为男性和女性对啤酒的偏好无显著性差异) 220.0590.685(2) 5.99χχ=>=,落入拒绝域,故拒绝原假设,即认为男性和女性对 啤酒的偏好有显著性差异 三、简答(每题10分) 1.谈谈你对p 值的认识 P 值是: 1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。 2) 拒绝原假设的最小显著性水平。 3) 观察到的(实例的)显著性水平。 4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。 P 值(P value )就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P 值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P 值越小,我们拒绝原假设的理由越充分。总之,P 值越小,表明结果越显著。 统计学根据显著性检验方法所得到的P 值,一般以P < 0.05 为显著, P<0.01 为非常显著 2.写出三维列联表各种独立性之间的关系

相关主题
文本预览
相关文档 最新文档