当前位置:文档之家› 山东大学操作系统实验6死锁问题实验

山东大学操作系统实验6死锁问题实验

山东大学操作系统实验6死锁问题实验
山东大学操作系统实验6死锁问题实验

计算机科学与技术学院实验报告

操作系统实验四存储管理

师学院计算机系 实验报告 (2014—2015学年第二学期) 课程名称操作系统 实验名称实验四存储管理 专业计算机科学与技术(非师)年级2012级 学号B2012102147 姓名秋指导教师远帆 实验日期2015-05-20

图1 word运行情况 “存使用”列显示了该应用程序的一个实例正在使用的存数量。 5) 启动应用程序的另一个实例并观察它的存需求。 请描述使用第二个实例占用的存与使用第一个实例时的存对比情况: 第二个实例占用存22772K,比第一个实例占用的存大很多 4:未分页合并存。 估算未分页合并存大小的最简单法是使用“任务管理器”。未分页合并存的估计值显示在“任务管理器”的“性能”选项卡的“核心存”部分。 总数(K) :________220___________ 分页数:_____________________ 未分页(K) :_________34__________ 图2核心存

C 简单基本NTFS 30G 良好(系 统) D 简单基本NTFS 90G 良好 E 简单基本NTFS 90G 良好 F 简单基本NTFS 88 G 良好 图3磁盘情况 6:计算分页文件的大小。 要想更改分页文件的位置或大小配置参数,可按以下步骤进行: 1) 右键单击桌面上的“我的电脑”图标并选定“属性”。 2) 在“高级”选项卡上单击“性能选项”按钮。 3) 单击对话框中的“虚拟存”区域中的“更改”按钮。 请记录: 所选驱动器的页面文件大小: 驱动器:______________F_____________________ 可用空间:___________9825_____________________ MB 初始大小(MB) :_____ 2048______________________ 最大值(MB) :________4092_____________________ 所有驱动器页面文件大小的总数: 允的最小值:________16____________________ MB

操作系统实验实验1

广州大学学生实验报告 1、实验目的 1.1、掌握进程的概念,明确进程的含义 1.2、认识并了解并发执行的实质 2.1、掌握进程另外的创建方法 2.2、熟悉进程的睡眠、同步、撤消等进程控制方法 3.1、进一步认识并发执行的实质 3.2、分析进程竞争资源的现象,学习解决进程互斥的方法 4.1、了解守护进程 5.1、了解什么是信号 5.2、INUX系统中进程之间软中断通信的基本原理 6.1、了解什么是管道 6.2、熟悉UNIX/LINUX支持的管道通信方式 7.1、了解什么是消息 7.2、熟悉消息传送的机理 8.1、了解和熟悉共享存储机制 二、实验内容 1.1、编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统 中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示'a',子进程分别显示字符'b'和字符'c'。试观察记录屏幕上的显示结果,并分析原因。 1.2、修改上述程序,每一个进程循环显示一句话。子进程显示'daughter …'及 'son ……',父进程显示'parent ……',观察结果,分析原因。 2.1、用fork( )创建一个进程,再调用exec( )用新的程序替换该子进程的内容 2.2、利用wait( )来控制进程执行顺序 3.1、修改实验(一)中的程序2,用lockf( )来给每一个进程加锁,以实现进程之间的互斥 3.2、观察并分析出现的现象 4.1、写一个使用守护进程(daemon)的程序,来实现: 创建一个日志文件/var/log/Mydaemon.log ; 每分钟都向其中写入一个时间戳(使用time_t的格式) ; 5.1、用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按^c键);捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child process1 is killed by parent! Child process2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止: Parent process is killed! 5.2、用软中断通信实现进程同步的机理

计算机操作系统习题及答案

1)选择题 (1)为多道程序提供的可共享资源不足时,可能出现死锁。但是,不适当的 _C__ 也可能产生死锁。 A. 进程优先权 B. 资源的线性分配 C. 进程推进顺序 D. 分配队列优先权 (2)采用资源剥夺法可以解除死锁,还可以采用 _B___ 方法解除死锁。 A. 执行并行操作 B. 撤消进程 C. 拒绝分配新资源 D. 修改信号量 (3)发生死锁的必要条件有四个,要防止死锁的发生,可以通过破坏这四个必要条件之一来实现,但破坏 _A__ 条件是不太实际的。 A. 互斥 B. 不可抢占 C. 部分分配 D. 循环等待 (4)为多道程序提供的资源分配不当时,可能会出现死锁。除此之外,采用不适当的_ D _ 也可能产生死锁。 A. 进程调度算法 B. 进程优先级 C. 资源分配方法 D. 进程推进次序 (5)资源的有序分配策略可以破坏 __D___ 条件。 A. 互斥使用资源 B. 占有且等待资源 C. 非抢夺资源 D. 循环等待资源 (6)在 __C_ 的情况下,系统出现死锁。 A. 计算机系统发生了重大故障 B. 有多个封锁的进程同时存在 C. 若干进程因竞争资源而无休止地相互等待他方释放已占有的资源 D. 资源数大大小于进程数或进程同时申请的资源数大大超过资源总数 (7)银行家算法在解决死锁问题中是用于 _B__ 的。 A. 预防死锁 B. 避免死锁 C. 检测死锁 D. 解除死锁 (8)某系统中有3个并发进程,都需要同类资源4个,试问该系统不会发生死锁的最少资源数是 _C__ 。 A. 12 B. 11 C. 10 D. 9 (9)死锁与安全状态的关系是 _A__ 。 A. 死锁状态一定是不安全状态 B. 安全状态有可能成为死锁状态 C. 不安全状态就是死锁状态 D. 死锁状态有可能是安全状态 (10)如果系统的资源有向图 _ D __ ,则系统处于死锁状态。 A. 出现了环路 B. 每个进程节点至少有一条请求边 C. 没有环路 D. 每种资源只有一个,并出现环路 (11)两个进程争夺同一个资源,则这两个进程 B 。

山东大学操作系统实验五理发师问题报告

计算机科学与技术学院操作系统实验报告 实验题目:理发店问题 理发店问题:假设理发店的理发室中有3个理发椅子和3个理发师,有一个可容纳4个顾客坐等理发的沙发。此外还有一间等候室,可容纳13位顾客等候进入理发室。顾客如果发现理发店中顾客已满(超过20人),就不进入理发店。 在理发店内,理发师一旦有空就为坐在沙发上等待时间最长的顾客理发,同时空出的沙发让在等候室中等待时间最长的的顾客就坐。顾客理完发后,可向任何一位理发师付款。但理发店只有一本现金登记册,在任一时刻只能记录一个顾客的付款。理发师在没有顾客的时候就坐在理发椅子上睡眠。理发师的时间就用在理发、收款、睡眠上。 请利用linux系统提供的IPC进程通信机制实验并实现理发店问题的一个解法。 实验目的: 进一步研究和实践操作系统中关于并发进程同步与互斥操作的一些经典问题的解法,加深对于非对称性互斥问题有关概念的理解。观察和体验非对称性互斥问题的并发控制方法。进一步了解Linux系统中IPC进程同步工具的用法,训练解决对该类问题的实际编程、调试和分析问题的能力。 硬件环境: Inter(R)Core(TM)i5-3210M CPU @ 2.50GHz 内存:4GB 硬盘:500G 软件环境: XUbuntu-Linux 操作系统 Gnome 桌面 2.18.3 BASH_VERSION='3.2.33(1)-release gcc version 4.1.2

gedit 2.18.2 OpenOffice 2.3 实验步骤: 1、问题分析: 为了解决本实验的同步问题,采用共享内存,信号量,消 息队列三种IPC 同步对象处理。 客户程序思想: 每一个客户把自己的请求当做一条消息发送到相应的消息 队列中去,并通过阻塞等待接收消息的方式来等待理发师 最终帮自己理发。每一个客户先判断sofa 是不是坐满了,如 果没有就坐在沙发上等,否者就判断waitroom 是不是坐满 了,如果没有,就坐在waitroom 等,只要有一个坐在sofa 的客户离开sofa 理发,理发师就会到waitroom 找最先来的 客户,让他进入sofa 等待。 理发师程序思想: 理发师查看sofa 上有没有人,没有就睡3 秒,然后再一次 看有没有人,如果有人,就到沙发请最先来的客户来理发。 账本互斥的实现: Semaphore mutex=1 ; Sofa 队列的长度和wait 队列的长度的实现: 在顾客进程中设置两个变量sofa_count,wait_count,分别保存沙发

操作系统实验报告_实验五

实验五:管道通信 实验内容: 1.阅读以下程序: #include #include #include main() { int filedes[2]; char buffer[80]; if(pipe(filedes)<0) //建立管道,filedes[0]为管道里的读取端,filedes[1]则为管道的写入端 //成功则返回零,否则返回-1,错误原因存于errno中 err_quit(“pipe error”); if(fork()>0){ char s[ ] = “hello!\n”; close(filedes[0]); //关闭filedes[0]文件 write(filedes[1],s,sizeof(s)); //s所指的内存写入到filedes[1]文件内 close(filedes[1]); //关闭filedes[0]文件 }else{ close(filedes[1]); read(filedes[0],buffer,80); //把filedes[0]文件传送80个字节到buffer缓冲区内 printf(“%s”,buffer); close(filedes[0]); } } 编译并运行程序,分析程序执行过程和结果,注释程序主要语句。

2.阅读以下程序: #include #include #include main() { char buffer[80]; int fd; unlink(FIFO); //删除FIFO文件 mkfifo(FIFO,0666); //FIFO是管道名,0666是权限 if(fork()>0){ char s[ ] = “hello!\n”;

操作系统死锁习题集

死锁习题 一、填空题 2.死锁产生的原因是。 3.产生死锁的四个必要条件是、、、。 二、单项选择题 1.两个进程争夺同一个资源。 (A)一定死锁(B)不一定死锁 (C)不死锁(D)以上说法都不对 4.如果发现系统有的进程队

列就说明系统有可能发生死锁了。 (A)互斥(B)可剥夺 (C)循环等待(D)同步 5.预先静态分配法是通过破坏条件,来达到预防死锁目的的。 (A)互斥使用资源/循环等待资源 (B)非抢占式分配/互斥使用资源 (C) 占有且等待资源/循环等待资源 (D)循环等待资源/互斥使用资源 7.下列关于死锁的说法中,正确的是? 1)有环必死锁; 2)死锁必有环; 3)有环无死锁; 4)死锁也无环 8.资源有序分配法的目的是? 1)死锁预防; 2)死锁避免; 3)死锁检测; 4)死锁解除 8.死锁的预防方法中,不太可能的一种方法使()。

A 摈弃互斥条件 B 摈弃请求和保持条件 C 摈弃不剥夺条件 D 摈弃环路等待条件 10. 资源的按序分配策略可以破坏()条件。 A 互斥使用资源 B 占有且等待资源 C 不可剥夺资源 D 环路等待资源 三、多项选择题 1.造成死锁的原因是_________。 (A)内存容量太小(B)系统进程数量太多,系统资源分配不当 (C)CPU速度太慢(D)进程推进顺序不合适 (E)外存容量太小 2.下列叙述正确的是_________。 (A)对临界资源应采取互斥访问方式来实现共享 (B)进程的并发执行会破坏程序的“封

闭性” (C)进程的并发执行会破坏程序的“可再现性” (D)进程的并发执行就是多个进程同时占有CPU (E)系统死锁就是程序处于死循环3.通常不采用_________方法来解除死锁。 (A)终止一个死锁进程(B)终止所有死锁进程 (C)从死锁进程处抢夺资源(D)从非死锁进程处抢夺资源 (E)终止系统所有进程 5.通常使用的死锁防止策略有_________。 (A)动态分配资源(B)静态分配资源 (C)按序分配资源(D)非剥夺式分配资源 (E)剥夺式分配资源 四、名词解释 1死锁

山东大学操作系统实验报告4进程同步实验

山东大学操作系统实验报告4进程同步实验

计算机科学与技术学院实验报告 实验题目:实验四、进程同步实验学号: 日期:20120409 班级:计基地12 姓名: 实验目的: 加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互斥 操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案。了解 Linux 系统中 IPC 进程同步工具的用法,练习并发协作进程的同步与互斥操作的编程与调试技术。 实验内容: 抽烟者问题。假设一个系统中有三个抽烟者进程,每个抽烟者不断地卷烟并抽烟。抽烟者卷起并抽掉一颗烟需要有三种材料:烟草、纸和胶水。一个抽烟者有烟草,一个有纸,另一个有胶水。系统中还有两个供应者进程,它们无限地供应所有三种材料,但每次仅轮流提供三种材料中的两种。得到缺失的两种材料的抽烟者在卷起并抽掉一颗烟后会发信号通知供应者,让它继续提供另外的两种材料。这一过程重复进行。请用以上介绍的 IPC 同步机制编程,实现该问题要求的功能。 硬件环境: 处理器:Intel? Core?i3-2350M CPU @ 2.30GHz ×4 图形:Intel? Sandybridge Mobile x86/MMX/SSE2 内存:4G 操作系统:32位 磁盘:20.1 GB 软件环境: ubuntu13.04 实验步骤: (1)新建定义了producer和consumer共用的IPC函数原型和变量的ipc.h文件。

(2)新建ipc.c文件,编写producer和consumer 共用的IPC的具体相应函数。 (3)新建Producer文件,首先定义producer 的一些行为,利用系统调用,建立共享内存区域,设定其长度并获取共享内存的首地址。然后设定生产者互斥与同步的信号灯,并为他们设置相应的初值。当有生产者进程在运行而其他生产者请求时,相应的信号灯就会阻止他,当共享内存区域已满时,信号等也会提示生产者不能再往共享内存中放入内容。 (4)新建Consumer文件,定义consumer的一些行为,利用系统调用来创建共享内存区域,并设定他的长度并获取共享内存的首地址。然后设定消费者互斥与同步的信号灯,并为他们设置相应的初值。当有消费进程在运行而其他消费者请求时,相应的信号灯就会阻止它,当共享内存区域已空时,信号等也会提示生产者不能再从共享内存中取出相应的内容。 运行的消费者应该与相应的生产者对应起来,只有这样运行结果才会正确。

操作系统实验二

操作系统实验 实验二进程管理 学号 1215108019 姓名李克帆 学院信息学院 班级 12电子 2

实验目的 1、理解进程的概念,明确进程和程序的区别。 2、理解并发执行的实质。 3、掌握进程的创建、睡眠、撤销等进程控制方法。 实验内容与要求 基本要求:用C语言编写程序,模拟实现创建新的进程;查看运行进程;换出某个进程;杀死进程等功能。 实验报告内容 1、进程、进程控制块等的基本原理。 进程是现代操作系统中的一个最基本也是最重要的概念,掌握这个概念对于理解操作系统实质,分析、设计操作系统都有其非常重要的意义。为了强调进程的并发性和动态性,可以给进程作如下定义:进程是可并发执行的程序在一个数据集合上的运行过程,是系统进行资源分配和调度的一个独立单位。 进程又就绪、执行、阻塞三种基本状态,三者的变迁图如下: I/完时间片 进程调 I/请

由于多个程序并发执行,各程序需要轮流使用CPU,当某程序不在CPU上运行时,必须保留其被中断的程序的现场,包括:断点地址、程序状态字、通用寄存器的内容、堆栈内容、程序当前状态、程序的大小、运行时间等信息,以便程序再次获得CPU时,能够正确执行。为了保存这些内容,需要建立—个专用数据结构,我们称这个数据结构为进程控制块PCB (Process Control Block)。 进程控制块是进程存在的惟一标志,它跟踪程序执行的情况,表明了进程在当前时刻的状态以及与其它进程和资源的关系。当创建一个进程时,实际上就是为其建立一个进程控制块。 在通常的操作系统中,PCB应包含如下一些信息: ①进程标识信息。为了标识系统中的各个进程,每个进程必须有惟一的标识名或标识数。 ②位置信息。指出进程的程序和数据部分在内存或外存中的物理位置。 ③状态信息。指出进程当前所处的状态,作为进程调度、分配CPU的依据。 ④进程的优先级。一般根据进程的轻重缓急其它信息。 这里给出的只是一般操作系统中PCB所应具有的内容,不同操作系统的PCB结构是不同的,我们将在2.8节介绍Linux系统的PCB结构。就 执行阻塞 程度为进程指定一个优先级,优先级用优先数表示。 ⑤进程现场保护区。当进程状态变化时(例如一个进程放弃使用CPU),它需要将当时的CPU现场保护到内存中,以便再次占用CPU时恢复正常运行,有的系统把要保护的CPU 现场放在进程的工作区中,而PCB中仅给出CPU现场保护区起始地址。 ⑥资源清单。每个进程在运行时,除了需要内存外,还需要其它资源,如I/O设备、外存、数据区等。这一部分指出资源需求、分配和控制信息。 ⑦队列指针或链接字。它用于将处于同一状态的进程链接成一个队列,在该单元中存放下一进程PCB首址。 ⑧其它信息。 这里给出的只是一般操作系统中PCB所应具有的内容,不同操作系统的PCB结构是不同的,我们将在2.8节介绍Linux系统的PCB结构。 2、程序流程图。

操作系统死锁练习及答案

死锁练习题 (一)单项选择题 l系统出现死锁的根本原因是( )。A.作业调度不当B.系统中进程太多C.资源的独占性D.资源管理和进程推进顺序都不得当 2.死锁的防止是根据( )采取措施实现的。A.配置足够的系统资源B.使进程的推进顺序合理C.破坏产生死锁的四个必要条件之一D.防止系统进入不安全状态 3.采用按序分配资源的策略可以防止死锁.这是利用了使( )条件不成立。A.互斥使用资源B循环等待资源c.不可抢夺资源D.占有并等待资源 4.可抢夺的资源分配策略可预防死锁,但它只适用于( )。A.打印机B.磁带机c.绘图仪D.主存空间和处理器 5.进程调度算法中的( )属于抢夺式的分配处理器的策略。A.时间片轮转算法B.非抢占式优先数算法c.先来先服务算法D.分级调度算法 6.用银行家算法避免死锁时,检测到( )时才分配资源。A.进程首次申请资源时对资源的最大需求量超过系统现存的资源量B.进程己占用的资源数与本次申请资源数之和超过对资源的最大需求量c.进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足尚需的最大资源量D进程已占用的资源数与本次申请的资源数 之和不超过对资源的最大需求量,且现存资源能满足本次申请量,但不能满足尚需的最大资源量 7.实际的操作系统要兼顾资源的使用效率和安全可靠,对资源的分配策略,往往采用( )策略。A死锁的防止B.死锁的避免c.死锁的检测D.死锁的防止、避免和检测的混合(二)填空题 l若系统中存在一种进程,它们中的每一个进程都占有了某种资源而又都在等待其中另一个进程所占用的资源。这种等待永远不能结束,则说明出现了______。2.如果操作系统对 ______或没有顾及进程______可能出现的情况,则就可能形成死锁。3.系统出现死锁的四

山大操作系统实验2

操作系统实验报告 ——线程和进/线程管道通信实验 张咪软件四班一、实验要求 设有二元函数f(x,y) = f(x) + f(y) 其中: f(x) = f(x-1) * x (x >1) f(x)=1 (x=1) f(y) = f(y-1) + f(y-2) (y> 2) f(y)=1 (y=1,2) 请编程建立3个并发协作进程,它们分别完成f(x,y)、f(x)、f(y) 。 二、实验目的 通过 Linux 系统中线程和管道通信机制的实验,加深对于线程控制和管道通信概念的理解,观察和体验并发进/线程间的通信和协作的效果 ,练习利用无名管道进行进/线程间通信的编程和调试技术。 三、实验环境 实验环境均为Linux操作系统,开发工具为gcc和g++。 四、实验思路 要实现三个函数,要创建三个进程,两个子进程和一个父进程。一个子进程实现f(x),另一个实现f(y)。因为f(x,y)=f(x)+f(y),所以在父进程和子进程间建立通信,子进程将当前值传给父进程,父进程进行计算。而且由于父进程的f(x,y)中的x和f(x)中的x一一对应,所以这些进程应该同步的并发向前走,否则f(x,y)的值就是错的。 五、算法设计 1.创建进程,每个子进程的执行代码段实现对应函数功能。 2.建立父进程和子进程间的通信。由于管道的读写默认的通信方式为同步读写方式,即如果管道读端无数据则读命令阻塞直到数据到达,反之如果管道写端有数据则写命令阻塞直到数据被读走。所以同步并发的问题可以通过管道实现。建立两个管道,pipe1和pipe2,f(x)通过pipe1向父进程写入f(x)的值。同理f(y)通过pipe2向父进程写入f(y)的值。父进程根据这两个值实现函数f(x,y)功能。 六、实验过程: 新建一个文件夹,在该文件夹中建立以下名为ppipe.c的C语言程序。 编写代码,保存。 输入gcc ppipe.c命令, 生成默认的可执行文件a.out。 执行a.out:。 执行并调试ppipe程序。

操作系统实验报告4

《操作系统》实验报告 实验序号: 4 实验项目名称:进程控制

Printf(“child Complete”); CloseHandle(pi.hProcess); CloseHandle(pi hThread); ﹜ 修改后: #include #include int main(VOID) { STARTUPINFO si; PROCESS_INFORMA TION pi; ZeroMemory(&si,sizeof(si)); si.cb=sizeof(si); ZeroMemory(&pi,sizeof(pi)); if(!CreateProcess(NULL, "c:\\WINDOWS\\system32\\mspaint.exe", NULL, NULL, FALSE, 0, NULL, NULL, &si,&pi)) { fprintf(stderr,"Creat Process Failed"); return -1; } WaitForSingleObject(pi.hProcess,INFINITE); printf("child Complete"); CloseHandle(pi.hProcess); CloseHandle(pi.hThread); } 在“命令提示符”窗口运行CL命令产生可执行程序4-1.exe:C:\ >CL 4-1.cpp

实验任务:写出程序的运行结果。 4.正在运行的进程 (2)、编程二下面给出了一个使用进程和操作系统版本信息应用程序(文件名为4-5.cpp)。它利用进程信息查询的API函数GetProcessVersion()与GetVersionEx()的共同作用。确定运行进程的操作系统版本号。阅读该程序并完成实验任务。 #include #include

操作系统实验五

操作系统 实验报告 哈尔滨工程大学

一、实验概述 1. 实验名称 进程的同步 2. 实验目的 1.使用EOS的信号量,编程解决生产者—消费者问题,理解进程同步的意义。 2.调试跟踪EOS信号量的工作过程,理解进程同步的原理。 3.修改EOS的信号量算法,使之支持等待超时唤醒功能(有限等待),加深理解进程同步的原理。 3. 实验类型 验证 二、实验环境 OS Lab 三、实验过程 3.1 准备实验 按照下面的步骤准备本次实验: 1. 启动OS Lab。 2. 新建一个EOS Kernel项目。 3. 生成EOS Kernel项目,从而在该项目文件夹中生成SDK文件夹。 4. 新建一个EOS应用程序项目。 5. 使用在第3步生成的SDK文件夹覆盖EOS应用程序项目文件夹中的SDK文件夹。 3.2 使用EOS的信号量解决生产者-消费者问题 按照下面的步骤查看生产者-消费者同步执行的过程: 1. 使用pc.c文件中的源代码,替换之前创建的EOS应用程序项目中EOSApp.c文件内的源代码。 2. 按F7生成修改后的EOS应用程序项目。 3. 按F5启动调试。OS Lab会首先弹出一个调试异常对话框。 4. 在调试异常对话框中选择“否”,继续执行。 5. 立即激活虚拟机窗口查看生产者-消费者同步执行的过程。 6. 待应用程序执行完毕后,结束此次调试。 3.3 调试EOS信号量的工作过程 3.3.1 创建信号量 按照下面的步骤调试信号量创建的过程:

1. 按F5启动调试EOS应用项目。OS Lab会首先弹出一个调试异常对话框。 2. 在调试异常对话框中选择"是",调试会中断。 3. 在main函数中创建Empty信号量的代码行(第77行) EmptySemaphoreHandle=CreateSemaphore(BUFFER_SIZE, BUFFER_SIZE, NULL); 添加一个断点。 4. 按F5继续调试,到此断点处中断。 5. 按F11调试进入CreateSemaphore函数。可以看到此API函数只是调用了EOS内核中的PsCreateSemaphoreObject函数来创建信号量对象。 6. 按F11调试进入semaphore.c文件中的PsCreateSemaphoreObject函数。在此函数中,会在EOS内核管理的内存中创建一个信号量对象(分配一块内存),而初始化信号量对象中各个成员的操作是在PsInitializeSemaphore函数中完成的。 7. 在semaphore.c文件的顶部查找到PsInitializeSemaphore函数的定义(第19行),在此函数的第一行(第39行)代码处添加一个断点。 8. 按F5继续调试,到断点处中断。观察PsInitializeSemaphore函数中用来初始化信号量结构体成员的值,应该和传入CreateSemaphore函数的参数值是一致的。 9. 按F10单步调试PsInitializeSemaphore函数执行的过程,查看信号量结构体被初始化的过程。打开"调用堆栈"窗口,查看函数的调用层次。 3.3.2 等待、释放信号量 等待信号量(不阻塞) 生产者和消费者刚开始执行时,用来放产品的缓冲区都是空的,所以生产者在第一次调用WaitForSingleObject函数等待Empty信号量时,应该不需要阻塞就可以立即返回。按照下面的步骤调试: 1. 删除所有的断点(防止有些断点影响后面的调试)。 2. 在eosapp.c文件的Producer函数中,等待Empty信号量的代码行 (144)WaitForSingleObject(EmptySemaphoreHandle, INFINITE); 添加一个断点。 3. 按F5继续调试,到断点处中断。 4. WaitForSingleObject 函数最终会调用内核中的PsWaitForSemaphore函数完成等待操作。所以,在semaphore.c文件中PsWaitForSemaphore函数的第一行(第68行)添加一个断点。 5. 按F5继续调试,到断点处中断。 6. 按F10单步调试,直到完成PsWaitForSemaphore函数中的所有操作。可以看到此次执行并没有进行等待,只是将Empty信号量的计数减少了1(由10变为了9)就返回了。 如图所示,empty的初始值为10。 在完成PsWaitForSemaphore函数中的所有操作后empty的值变成了9。 释放信号量(不唤醒) 1. 删除所有的断点(防止有些断点影响后面的调试)。

《操作系统原理》5资源管理(死锁)习题

第五章死锁练习题 (一)单项选择题 1.系统出现死锁的根本原因是( )。 A.作业调度不当B.系统中进程太多C.资源的独占性D.资源管理和进程推进顺序都不得当 2.死锁的防止是根据( )采取措施实现的。 A.配置足够的系统资源B.使进程的推进顺序合理 C.破坏产生死锁的四个必要条件之一D.防止系统进入不安全状态 3.采用按序分配资源的策略可以防止死锁.这是利用了使( )条件不成立。 A.互斥使用资源B循环等待资源C.不可抢夺资源D.占有并等待资源 4.可抢夺的资源分配策略可预防死锁,但它只适用于( )。 A.打印机B.磁带机C.绘图仪D.主存空间和处理器 5.进程调度算法中的( )属于抢夺式的分配处理器的策略。 A.时间片轮转算法B.非抢占式优先数算法C.先来先服务算法D.分级调度算法 6.用银行家算法避免死锁时,检测到( )时才分配资源。 A.进程首次申请资源时对资源的最大需求量超过系统现存的资源量 B.进程己占用的资源数与本次申请资源数之和超过对资源的最大需求量 C.进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足尚需的最大资源量 D进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足本次申请量,但不能满足尚需的最大资源量 7.实际的操作系统要兼顾资源的使用效率和安全可靠,对资源的分配策略,往往采用( )策略。 A死锁的防止B.死锁的避免C.死锁的检测D.死锁的防止、避免和检测的混合 (二)填空题 1.若系统中存在一种进程,它们中的每一个进程都占有了某种资源而又都在等待其中另一个进程所占用的资源。这种等待永远不能结束,则说明出现了______。 2.如果操作系统对______或没有顾及进程______可能出现的情况,则就可能形成死锁。 3.系统出现死锁的四个必要条件是:互斥使用资源,______,不可抢夺资源和______。 4.如果进程申请一个某类资源时,可以把该类资源中的任意一个空闲资源分配给进程,则说该类资源中的所有资源是______。 5.如果资源分配图中无环路,则系统中______发生。 6.为了防止死锁的发生,只要采用分配策略使四个必要条件中的______。 7.使占有并等待资源的条件不成立而防止死锁常用两种方法:______和______. 8静态分配资源也称______,要求每—个进程在______就申请它需要的全部资源。 9.释放已占资源的分配策略是仅当进程______时才允许它去申请资源。 10.抢夺式分配资源约定,如果一个进程已经占有了某些资源又要申请新资源,而新资源不能满足必须等待时、系统可以______该进程已占有的资源。 11.目前抢夺式的分配策略只适用于______和______。 12.对资源采用______的策略可以使循环等待资源的条件不成立。 13.如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于______。14.只要能保持系统处于安全状态就可______的发生。 15.______是一种古典的安全状态测试方法。 16.要实现______,只要当进程提出资源申请时,系统动态测试资源分配情况,仅当能确保系统安全时才把资源分配给进程。

山大操作系统实验-1

操作系统原理实验报告——实验一 张咪软件工程四班 一、实验目的 加深对于进程并发执行概念的理解。实践并发进/线程 的创建和控制方法。观察和体验进程的动态特性。进 一步理解进程生命期期间创建、变换、撤销状态变换 的过程。掌握进程控制的方法,了解父子进程间的控 制和协作关系。练习Linux系统中进/线程创建与控制 有关的系统调用的编程和调试技术。 二、实验要求 编写一个多进程并发执行程序。父进程每隔3秒重复建立两个子进程,首先创建的让其执行ls命令,之后创建执行让其执行ps命令,并控制ps命令总在ls命令之前执行。 三、实验软硬件环境 实验环境均为Linux操作系统,开发工具为gcc和g++。 四、实验思路 调用fock()创建子进程。创建键盘中断信号后,使用pause()可以暂停子进程执行,继续创建新的子进程。子进程并发执行子进程可以首先通过键盘中断信号唤醒子进程。通过exec()调用族装入一个新的执行程序。在建立子进程2并且唤醒子进程1后子进程sleep(seconds = 5)。这样就可以先执行ps后执行ls。。最后就是父进程的结束,程序结束。 五、实验模型 六、调试排错

1、首先遇到的问题是,对linux的操作不熟悉,不太明白makefile怎么使用,直接用了gcc 2、在创建多个子进程上遇到了问题,在fock()后又直接跟了一个fork(),这样创建的子进程是子进程的子进程,而不是父进程创建的第二个子进程。所以应该在else语句块后面,也就是主进程执行段继续创建。一般情况下,fork()按如下规则编程: main() { pid_t pid; pid=fork(); if(pid<0) { // 建立子进程失败 { printf("Create Process fail!\n"); exit(EXIT_FAILURE); } if (pid = = 0) //子进程代码; //如果需要创建子进程,可以按该方法嵌套 else //父进程代码 //如果需要创建子进程,可以按该方法嵌套 } 3、后来父进程与子进程无法重复建立,执行一次就结束了,又加了一个while循环实现重复建立,但无法退出,一直执行。又加了一个count计数变量,执行五次后停止。 七、实验结果 父进程首先创建了子进程a,子进程1暂停。父进程继续创建子进程b。子进程b唤醒了子进程a,子进程a进入sleep()。子进程2执行ps退出,子进程1执行ls。循环五次退出。

操作系统实验四

青岛理工大学课程实验报告

算法描述及实验步骤 功能:共享存储区的附接。从逻辑上将一个共享存储区附接到进程的虚拟地址空间上。用于建立调用进程与由标识符shmid指定的共享内存对象之间的连接。 系统调用格式:virtaddr=shmat(shmid,addr,flag) 该函数使用头文件如下: #include #include #include (8)shmdt( ) 功能:用于断开调用进程与共享内存对象之间的连接,成功时返回0,失败返回-1。 系统调用格式: int shmdt(shmaddr) char *shmaddr;/*采用shmat函数的返回值*/ (9)shmctl( ) 功能:共享存储区的控制,对其状态信息进行读取和修改。用于对已创建的共享内存对象进行查询、设置、删除等操作。 系统调用格式:shmctl(shmid,cmd,buf) 该函数使用头文件如下: #include #include #include 2、步骤: (1)定义进程变量(2)定义两个字符数组 (3)创建管道(4)如果进程创建不成功,则空循环(5)如果子进程创建成功,pid为进程号(6)锁定管道 (7)给Outpipe赋值(8)向管道写入数据 (9)等待读进程读出数据(10)解除管道的锁定 (11)结束进程等待子进程结束(12)从管道中读出数据 (13)显示读出的数据(14)父进程结束 创建jincheng.c 插入文字

调 试 过 程 及 实 验 结 果 运行: 运行后: 总 结 (对实验结果进行分析,问题回答,实验心得体会及改进意见) 虽然对pipe()、msgget()、msgsnd()、msgrcv()、msgctl()、shmget()、shmat()、 shmdt()、shmctl()的功能和实现过程有所了解,但是运用还是不熟练,过去没 见过,所以运行了一个简单的程序。 利用管道机制、消息缓冲队列、共享存储区机制进行进程间的通信,加深了对 其了解。 (1)管道通信机制,同步的实现过程:当写进程把一定数量的数据写入pipe, 便去睡眠等待,直到读进程取走数据后,再把它唤醒。当读进程读一空pipe 时,也应睡眠等待,直到写进程将数据写入管道后,才将之唤醒,从而实现进 程的同步。 管道通信的特点:A管道是半双工的,数据只能向一个方向流动;需要双方通 信时,需要建立起两个管道;B. 只能用于父子进程或者兄弟进程之间(具有亲 缘关系的进程);C.单独构成一种独立的文件系统:管道对于管道两端的进程而

操作系统实验指导及实验五个

操作系统实验指导及实验五个 前言 1.实验总体目标 通过学生自己动手设计实验验证理论知识,使学生掌握操作系统特征和功能,掌握不同调度算法下进程的调度、进程控制、进程调度与死锁,并必须掌握作业管理、存储器管理、设备管理和文件管理的主要原理。加深对操作系统基本原理理解。 ⒉适用专业 计算机科学与技术 ⒊先修课程 C语言程序设计、计算机组成原理、数据结构 ⒋实验课时分配

⒌ 有70台中等配置的计算机组成的小型局域网的实验室环境。计算机的具体要求:(1)Pentium 133Hz以上的CPU;(2)建议至少256MB的内存;(3)建议硬盘至少2GB,并有1GB空闲空间。(4)安装Windows操作系统及C语言编译程序或Linux虚拟环境。 ⒍实验总体要求 培养计算机专业的学生的系统程序设计能力,是操作系统课程的一个非常重要的环节。通过操作系统上机实验,可以培养学生程序设计的方法和技巧,提高学生编制清晰、合理、可读性好的系统程序的能力,加深对操作系统课程的理解。使学生更好地掌握操作系统的基本概念、基本原理、及基本功能,具有分析实际操作系统、设计、构造和开发现代操作系统的基本能力。 实验要求做到: 1)详细描述实验设计思想、程序结构及各模块设计思路; 2)详细描述程序所用数据结构及算法; 3)明确给出测试用例和实验结果; 4)为增加程序可读性,在程序中进行适当注释说明; 5)认真进行实验总结,包括:设计中遇到的问题、解决方法与收获等;

6)实验报告撰写要求结构清晰、描述准确逻辑性强; 7)实验过程中,同学之间可以进行讨论互相提高,但绝对禁止抄袭。 ⒎本实验的重点、难点及教学方法建议 重点:理解进程调度中PCB的设计,以实现对进程的调度。 难点:进程调度程序的设计,设备管理程序的设计。 教学方法建议:力争在本指导书的帮助下,独立设计程序以加深理解。

操作系统(死锁)试题

第五章死锁 一.选择题 1.为多道程序提供的可共享资源不足时,可能出现死锁。但是,不适当的 C 也可能产生死锁。 (A)进程优先权(B)资源的线性分配 (C)进程推进顺序(D)分配队列优先权 2.采用资源剥夺法可以解除死锁,还可以采用 B 方法解除死锁。 (A)执行并行操作(B)撤销进程 (C)拒绝分配新资源(D)修改信号量 3.产生死锁的四个必要条件是:互斥、 B 循环等待和不剥夺。 (A)请求与阻塞(B)请求与保持 (C)请求与释放(D)释放与阻塞 4.在分时操作系统中,进程调度经常采用算法。 (A)先来先服务(B)最高优先权 (C)时间片轮转(D)随机 5.资源的按序分配策略可以破坏条件。 (A)互斥使用资源(B)占有且等待资源 (C)非抢夺资源(D)循环等待资源 6.在 C 情况下,系统出现死锁。 (A)计算机系统发生了重大故障 (B)有多个封锁的进程同时存在 (C)若干进程因竞争而无休止地相互等待他方释放已占有的资源 (D)资源数远远小于进程数或进程同时申请的资源数量远远超过资源总数 7。银行家算法在解决死锁问题中是用于 B 的。 (A)预防死锁(B)避免死锁 (C)检测死锁(D)解除死锁 8.支持多道程序设计的操作系统在运行过程中,不断地选择新进程运行来实现CPU的共享,但其中不是引起操作系统选择新进程的直接原因。 (A)运行进程的时间片用完 (B)运行进程出错 (C)运行进程要等待某一事件发生 (D)有新进程进入就绪队列 9. 在下列解决死锁的方法中,属于死锁预防策略的是 B 。 (A)银行家算法 (B)有序资源分配法 (C)死锁检测法 (D)资源分配图化简法 二、综合题 1.若系统运行中出现如表所示的资源分配情况,改系统是否安全?如果进程P2此时提出资源申请(1,2,2,2),系统能否将资源分配给它?为什么?

山大操作系统实验5

进程同步实验 张咪 软件四班一、实验目的 总结和分析示例实验和独立实验中观察到的调试和运行信息,说明您对与解决非对称性互斥操作的算法有哪些新的理解和认识?为什么会出现进程饥饿现象?本实验的饥饿现象是怎样表现的?怎样解决并发进程间发生的饥饿现象?您对于并发进程间使用消息传递解决进程通信问题有哪些新的理解和认识?根据实验程序、调试过程和结果分析写出实验报告。 二、实验要求 理发店问题:假设理发店的理发室中有3个理发椅子和3个理发师,有一个可容纳4个顾客坐等理发的沙发。此外还有一间等候室,可容纳13位顾客等候进入理发室。顾客如果发现理发店中顾客已满(超过20人),就不进入理发店。在理发店内,理发师一旦有空就为坐在沙发上等待时间最长的顾客理发,同时空出的沙发让在等候室中等待时间最长的的顾客就坐。顾客理完发后,可向任何一位理发师付款。但理发店只有一本现金登记册,在任一时刻只能记录一个顾客的付款。理发师在没有顾客的时候就坐在理发椅子上睡眠。理发师的时间就用在理发、收款、睡眠上。请利用linux系统提供的IPC进程通信机制实验并实现理发店问题的一个解法。 三、实验环境 实验环境均为Linux操作系统,开发工具为gcc和g++。 四、实验思路 约束: 1.设置一个count变量来对顾客进行计数,该变量将被多个顾客进程互斥地访问并修改,通过一个互斥信号量mutext来实现。 count>20时,就不进入理发店。 7

相关主题
文本预览
相关文档 最新文档