当前位置:文档之家› 二元二次方程组知识讲解

二元二次方程组知识讲解

二元二次方程组知识讲解
二元二次方程组知识讲解

二元二次方程組知識講解

【學習目標】

1、知道二元二次方程の概念和二元二次方程組の概念,能夠判定給定の方程和方程組是否是二元二次方程或二元二次方程組;

2、瞭解二元二次方程(組)の解の概念,能判別給定の數值是否是方程(組)の解;

3、掌握由“代入法”解由一個二元一次方程和二元二次方程組成の方程組;

4、掌握用“因式分解法”解由兩個二元二次方程組成の方程組;

5、會熟練の列出方程組解應用題.並能根據具體問題の實際意義,檢查結果是否合理.

6、通過將實際生活中の問題抽象為方程模型の過程,讓學生形成良好思維習慣,學會從數學角度提出問題、理解問題.運用所學知識解決問題,發展應用意識,體會數學の情感與價值.

【知識網路】

【要點梳理】

要點一、二元二次方程

1. 定義:僅含有兩個未知數,並且含有未知數の項の最高次數是2の整式方程,叫做二元二次方程.

要點詮釋:

22

+++++=(a、b、c、d、e、f都是常數,且a、b、c中至少有一個不為零),其ax bxy cy dx ey f o

中22

ax bxy cy叫做這個方程の二次項,a、b、c分別叫做二次項係數,,

,,

dx ey叫做這個方程の一次項,

d、e分別叫做一次項係數,f叫做這個方程の常數項.

2.二元二次方程の解

能使二元二次方程左右兩邊の值相等の一對未知數の值,叫做二元二次方程の解.

要點詮釋:

二元二次方程有無數個解;二元二次方程の實數解の個數有多種情況.

要點二、二元二次方程組

1.概念:僅含有兩個未知數,各方程都是整式方程,並且含有未知數の項の最高次數為2,這樣の方程組叫做二元二次方程組.

要點詮釋:

不能認為由兩個二元二次方程組成の方程組才叫二元二次方程組,由一個二元一次方程和一個二元二次方程組成の方程組,也是二元二次方程組.

2. 二元二次方程組の解:

方程組中所含各方程の公共解叫做這個方程組の解.

要點三、二元二次方程組の解法

1. 代入消元法

代入消元法解“二·一”型二元二次方程組の一般步驟:

①把二元一次方程中の一個未知數用另一個未知數の代數式表示;

②把這個代數式代入二元二次方程,得到一個一元二次方程;

③解這個一元二次方程,求得未知數の值;

④把所求得の未知數の值分別代入二元一次方程,求得另一個未知數の值;

⑤所得の一個未知數の值和相應の另一個未知數の值分別組在一起,就是原方程組の解;

⑥寫出原方程組の解.

要點詮釋:

(1)解一元二次方程、分式方程和無理方程の知識都可以運用於解“二·一”型方程組;

(2)“二·一”型方程組最多有兩個解,要防止漏解和增解の錯誤.

2、因式分解法

(1) 當方程組中只有一個可分解為兩個二元一次方程の方程時,可將分解得到の兩個二元一次方程分別與原方程組中の另一個二元二次方程組成兩個“二·一”型方程組,解得這兩個“二·一”型方程組,所得の解都是原方程組の解.

(2) 當方程組中兩個二元二次方程都可以分解為兩個二元一次方程時,將第一個二元二次方程分解所得到の每一個二元一次方程與第二個二元二次方程分解所得の每一個二元一次方程組成新の方程組,可得到四個二元一次方程組,解這四個二元一次方程組,所得の解都是原方程組の解.

要點四、方程(組)の應用

應用二元二次方程組解應用題の一般步驟:

(1)審題;(2)設未知數(2個);(3)列二元二次方程組;(4)解方程組;(5)檢驗是否是方程の解以及是否符合實際;(6)寫出答案.

要點詮釋:

一定要檢驗一下結果是否符合實際問題の要求.

【典型例題】

類型一、二元二次方程(組)判斷

1.下列方程中,哪些是二元二次方程?是二元二次方程の請指出它の二次項、一次項和常數項.

2222(1) 1 ; (2)320;

1(3)20 ; (4)3 1.x y y y y x x y xy

+=-+=+-=++= 【思路點撥】該題主要依據二元二次方程の定義。

【答案與解析】

(1)是,二次項2

x 、一次項y ,常數項-1.

(2)不是,因為只含一個未知數。

(3)不是,因為不是整式方程.

(4)不是,因為不含二次項.

【總結昇華】對於二元二次方程の定義要加深全面の理解.

舉一反三:

【變式】下列方程組中,哪些是二元二次方程組?

223231205(1) (2) (3) (4)1831235

y y x xy x x y xy y x y x xy x x y ?==-+=+=????????+=-=-+-=+=????? 【答案】根據二元二次方程組の定義可得(2)是.

類型二、二元二次方程組の解法

2. 解方程組: 224915 (1)23 5 (2)

x y x y ?-=?-=?

【解析】

解: 方程(1)可變形為 ()()232315 (3)x y x y -+=

把(2)代入(3)中,得 ()52315x y += 即233x y +=

於是,原方程組化為 233235x y x y +=??-=?

解這個二元一次方程組,得213x y =???=-??

所以原方程組の解是 213x y =???=-??

. 【總結昇華】這道例題採用“整體代入”の方法,將二元二次方程組化為二元一次方程組,這是一種“降次”の策略,要通過比較讓學生認識到“整體代入”の簡便性,從而加強審題の意識.加深對合理運算重要性の理解.

舉一反三:

【變式】解方程組:221 (1)

13 (2)

y x x y =+??+=? 【解析】將(1)代入(2),得 ()22113x x ++=.

整理,得260x x +-=,

解得123, 2x x =-=.

把13x =-代入(1),得 12;y =-

把22x =代入(1),得2 3.y =

所以原方程組の解是 12

1232 2; 3.

x x y y =-=????=-=??

3. 解方程組:

【思路點撥】當方程組中只有一個可分解為兩個二元一次方程の方程時,可將分解得到の兩個二元一次方程分別與原方程組中の另一個二元二次方程組成兩個“二·一”型方程組,解得這兩個“二·一”型方程組,所得の解都是原方程組の解.

【解析】(用因式分解法)

方程(1)可化為(x-2y)2+(x-2y)-2=0

即(x-2y+2)(x-2y-1)=0

∴x-2y+2=0 或x-2y-1=0

原方程組可化為:

分別解得:1194178x y ?=????=??

和2231x y =??=? 【總結昇華】二元二次方程組,一般可用代入法求解,當求出一個未知數の值代入求另一個未知數の值時,一定要代入到二元一次方程中去求,若針對二元二次方程の特點,採用特殊解法,則較為簡便. 舉一反三:

【變式】解方程組。

【解析】 將式(1)分解因式,得 (x+y)(3x-4y)-(3x-4y)=0

即 (3x-4y)(x+y-1)=0

∴ 3x-4y=0,或x+y-1=0.

故只需解下麵兩組方程組:

(1); (2)。

(1)由3x-4y=0,得y=

x ,代入x 2+y 2=25, 得x 2+x 2=25, x 2=16, x=±4, 即x 1=4, x 2=-4,

將x 1和x 2代入y=x ,得y 1=3, y 2=-3.

(2)由x+y-1=0,得y=1-x ,代入x 2+y 2=25,

得x 2+(1-x)2=25,整理,得x 2-x-12=0,

即 (x-4)(x+3)=0,

∴ x 3=4, x 4=-3. 當x 3=4時, y 3=-3;當x 4=-3時,y 4=4.

故原方程組の解為:;;;。

【總結昇華】此方程組是由兩個二元二次方程組成の方程組,在(1)式の等號左邊分解因式後將二元二次方程轉化為二元一次方程。

類型三、方程組の應用

4. 某塊長方形田の面積是864平方米,長與寬の和是60米,則長與寬各是多少米?

【答案與解析】

解:設該塊田の長是x 米,寬是y 米.由題意得,

86460

xy x y =??+=?, 解得,113624x y =??=?,222436

x y =??=?

考慮到實際情況,長應該大於寬,所以3624x y =??=?

符合實際. 答:長是36米,寬是24米.

5、已知方程組???+==+--201242kx y y x y

有兩組不相等の實數解,求k の取值範圍.

【答案與解析】 解:

由②代入①並整理得:01)42(22=+-+x k x k ,

∵方程組有兩組不相等の實數解,

∴?????>+-=--=?≠0

16164)42(0222k k k k , 即???<≠10k k ∴當k <1且k ≠0時,原方程組有兩個不相等の實數解.

【總結昇華】通過消元,轉化為我們熟悉の一元二次方程來解是解決此類問題の一般方法.

舉一反三:

【變式】m 為何值時,方程組?

??=+=+m y x y x 2022有兩組相同の實數解,並求出這時方程組の解. 【答案】102±=m ;當102=m 時,?????==1010y x ;當102-=m 時,?????-=-=1010y x .

6. 小傑與小麗分別從相距27千米のA 、B 兩地同時出發相向而行,3小時後相遇.相遇後兩人按原來の速度繼續前進, 小傑到達B 地比小麗到達A 地早 1小時21分.求兩人の行進速度分別是多少?

【解析】設兩人の行進速度分別是x 千米/小時,y 千米/小時

列出方程組.??

???=-=+6021127272733x y y x . 解這個方程組,得54x y =??=?

,3645x y =-??=?(不合題意舍去) 經檢驗54

x y =??=?是原方程組の解。 答:兩人の行進速度分別是5千米/小時,4千米/小時.

【總結昇華】根據題意,與路程及時間相關の一些數量,分別存在著等量關係 :

小傑3小時の行進路程 + 小麗3小時の行進路程 =總路程

小麗走完全程時間 -小傑走完全程時間 =小傑比小麗早到の時間

本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!

二元二次方程组-解法-例题

二元二次方程的解法 二次方程组的基本思想和方法 方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。因法和技巧是解二元二次方程组的关键。 型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 程组的解法 元法(即代入法) 二·一”型方程组的一般方法,具体步骤是: 次方程中的一个未知数用另一个未知数的代数式表示; 数式代入二元二次方程,得到一个一元二次方程; 元二次方程,求得一个未知数的值; 的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; 个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 与系数的关系 二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一根,解这个方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。注意 二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。 比较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。

程组的解法 中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二型方程组,所得的解都是原方程组的解。 中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 析:例1.解方程组 观察这个方程组,不难发现,此方程组除可用代入法解外,还可用根与系数的关系,通过构造一个以x, y为根的一元二次方程来求解。 1)得y=8-x..............(3) 把(3)代入(2),整理得x2-8x+12=0. 解得x1=2, x2=6. (3),得y1=6. 把x2=6代入(3),得y2=2. 所以原方程组的解是。

初一下数学讲义 -《二元一次方程组》全章复习与巩固(基础)知识讲解

《二元一次方程组》全章复习与巩固(基础)知识讲解 【学习目标】 1.了解二元一次方程组及其解的有关概念; 2.掌握消元法(代入或加减消元法)解二元一次方程组的方法; 3.理解和掌握方程组与实际问题的联系以及方程组的解; 4.掌握二元一次方程组在解决实际问题中的简单应用; 5.通过对二元一次方程组的应用,培养应用数学的理念. 【知识网络】 【要点梳理】 要点一、二元一次方程组的相关概念 1. 二元一次方程的定义 定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解 定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释: 二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来, 即二元一次方程的解通常表示为? ??b a ==y x 的形式.

3. 二元一次方程组的定义 定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452 x y x +=??=?. 要点诠释: (1)它的一般形式为111222 a x b y c a x b y c +=??+=?(其中1a ,2a ,1b ,2b 不同时为零). (2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组. (3)符号“{”表示同时满足,相当于“且”的意思. 4. 二元一次方程组的解 定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释: (1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解. (2)方程组的解要用大括号联立; (3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组???=+=+6 252y x y x 无 解,而方程组? ??-=+-=+2221y x y x 的解有无数个. 要点二、二元一次方程组的解法 1.解二元一次方程组的思想 转化消元 一元一次方程 二元一次方程组 2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程: ①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示 y (或x ) ,即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程; ③解这个一元一次方程,求出x (或y )的值; ④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.

二元一次方程基本概念及基本解法讲解

二元一次方程 一、二元一次方程的概念: 含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 注意:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 练习1:已知下列方程,其中是二元一次方程的有________. (1)2x -5=y ; (2)x -1=4; (3)xy =3; (4)x+y =6; (5)2x -4y =7; (6)102x + =;(7)2 51x y +=;(8)132x y +=;(9)280x y -=;(10)462x y +=. 【变式1】下列方程中,属于二元一次方程的有( ) A .71xy -= B .2131x y -=+ C .4535x y x y -=- D . 2 31x y - = 二、二元一次方程的解: 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 注意: (1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2, 5. x y =?? =?. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程. 如:10x y +=的解可以是241 ,,869x x x y y y ===?????? ===??? 等等 练习2:二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程解的是( ) A .0 12 x y =?? ?=-?? B .11x y =??=? C .10x y =??=? D .11x y =-?? =-? 【变式2】若方程24ax y -=的一个解是2 1 x y =?? =?,则a= . 三、二元一次方程组 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 注意:组成方程组的两个方程不必同时含有两个未知数,例如? ??=-=+520 13y x x 也是二元一次方 程组. 练习3:下列方程组中,是二元一次方程组的是( )

二元一次方程组的相关概念基础知识讲解

二元一次方程(组)的相关概念(基础)知识讲解 【学习目标】 1.理解二元一次方程、二元一次方程组及它们的解的含义; 2.会检验一组数是不是某个二元一次方程(组)的解. 【要点梳理】 要点一、二元一次方程 含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 要点二、二元一次方程的解 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释: (1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这

个二元一次方程. 要点三、二元一次方程组 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如也是二元一次方程组. 要点四、二元一次方程组的解 一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释: (1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个. 【典型例题】 类型一、二元一次方程 1.已知下列方程,其中是二元一次方程的有. (1)25=y;(2)1=4;(3)=3;(4)=6;(5)24y=7; (6);(7);(8);(9);(10).【思路点拨】按二元一次方程满足的三个条件一一检验.

初中数学二元二次方程组解法

2.3 方程与不等式 2.3.1 二元二次方程组解法 方程 22260x xy y x y +++++= 是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中2x ,2xy ,2 y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项. 我们看下面的两个方程组: 224310,210; x y x y x y ?-++-=?--=? 222220,560. x y x xy y ?+=??-+=?? 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组. 下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解. 例1 解方程组 22440,220.x y x y ?+-=?--=? 分析:二元二次方程组对我们来说较为生疏,在解此方程组时,可以将其转化为我们熟悉的形式.注意到方程②是一个一元一次方程,于是,可以利用该方程消去一个元,再代入到方程①,得到一个一元二次方程,从而将所求的较为生疏的问题转化为我们所熟悉的问题. 解:由②,得 x =2y +2, ③ 把③代入①,整理,得 8y 2+8y =0, 即 y (y +1)=0. 解得 y 1=0,y 2=-1. 把y 1=0代入③, 得 x 1=2; 把y 2=-1代入③, 得x 2=0. 所以原方程组的解是 ①②

112,0x y =??=?, 220,1. x y =??=-? 说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解. 例2 解方程组 7,12.x y xy +=??=? ① ②

由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组_1

由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 第一课时 一、教学目标 1.使学生掌握由一个二元二次方程和一个可以分解为两个二元一次方程组成的方程组的解法。 2。通过例题的分析讲解,进一步提高学生的分析问题和解决问题的能力; 3。通过一个二元二次方程解法的分析,使学生进一步体会“消元”和“降次”的数学思想方法,继续向学生渗透“转化”的辨证唯物主义观点。 二、重点·难点·疑点及解决办法

1.教学重点:通过把一个二元二次方程分解为两个二元一次方程来解由两个二元二次方程组成的方程组。 2.教学难点:正确地判断出可以分解的二元二次方程。 3.教学疑点:降次后的二元一次方程与哪个方程重新组成方程组,一定要分清楚。 4.解决办法:(1)看好哪个二元二次方程能分成两个二元一次方程,它们之间是“或”的关系,不能联立成方程组。(2)分解好的二元一次方程应与另一个二元二次方程组成两个二元二次方程组。 三、教学过程 1.复习提问 (1)我们所学习的二元二次方程组有哪几种类型? (2)解二元二次方程组的基本思想是什么? (3)解由一个二元一次方程和一个二元二次方程组成的方程组的基本方法

是什么?其主要步骤是什么? (4)解方程组:。 (5)把下列各式分解因式: ①;②;③。 关于问题设计的说明: 由于二元二次方程组的第一节课已经向学生阐明了我们所研究的二元二次方程组有两种类型.其一是由一个二元一次方程和一个二元二次方程组成的二元二次方程组;其二是由 两个二元二次方程所组成的方程组.由于第一种类型我们已经研究完,使学生自然而然地接 受了第二种类型研究的要求.关于问题(2)的提出,由于两种类型的二元二次方程组的解题思想均为“消元”和“降次”,所以问题(2)让学生懂得“消元”和“降次”的数学思想,贯穿于解二元二次方程组的始终.问题(3)、(4)是对上两节课内容的复习,以便学生对已学过的知识得到进一步的巩固.由于本节课的学习内容是由两个二元二次方程

北师大版八年级数学二元一次方程组知识总结及训练讲解学习

二元一次方程组知识总结及训练 ◆知识讲解 1.二元一次方程组的有关概念 二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1?的整式方程叫做二元一次方程. 二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集. 二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 2.二元一次方程组的解法 代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法. 3.二元一次方程组的应用 对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤: (1)选定几个未知数; (2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组; (3)解方程组,得到方程组的解; (4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.

◆例题解析 例1 已知21x y =??=?是方程组2(1)21 x m y nx y +-=??+=?的解,求(m+n )的值. 【分析】由方程组的解的定义可知21x y =??=?,同时满足方程组中的两个方程,将21x y =??=? 代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值. 【解答】把x=2,y=1代入方程组2(1)21 x m y nx y +-=??+=?中,得 22(1)12211m n ?+-?=??+=? 由①得m=-1,由②得n=0. 所以当m=-1,n=0时,(m+n )=(-1+0)=-1. 【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程. 例2 (2008,长沙市)“5.12”汶川大地震后,灾区急需大量帐篷.?某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000?顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;?若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶. (1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶? (2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感? 【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y 顶,则210523178x y x y +=??+=? 解得:x=41;y=32 答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶. (2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务. 可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.

最新二元二次方程组的解法

二元二次方程的解法 一、内容综述: 1.解二元二次方程组的基本思想和方法 解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。因此,掌握好消元和降次的一些方法和技巧是解二元二次方程组的关键。 2.二元二次方程组通常按照两个方程的组成分为“二·一”型和“二·二”型,又分别成为Ⅰ型和Ⅱ型。 “二·一”型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 “二·一”型方程组的解法 (1)代入消元法(即代入法) 代入法是解“二·一”型方程组的一般方法,具体步骤是: ①把二元一次方程中的一个未知数用另一个未知数的代数式表示; ②把这个代数式代入二元二次方程,得到一个一元二次方程; ③解这个一元二次方程,求得一个未知数的值; ④把所求得的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; ⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 (2)逆用根与系数的关系 对“二·一”型二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一元二次方程z2-az+b=0的两个根,解这个方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。 注意:不要丢掉一个解。 此方法是解“二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。

以上两种是比较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 注意:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。 “二·二”型方程组的解法 (i) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解。 (ii) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 注意:“二·一”型方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 二、例题分析: 例1.解方程组 分析:仔细观察这个方程组,不难发现,此方程组除可用代入法解外,还可用根与系数的关系,通过构造一个以x, y为根的一元二次方程来求解。 解法一:由(1)得y=8-x (3) 把(3)代入(2),整理得x2-8x+12=0. 解得x1=2, x2=6. 把x1=2代入(3),得y1=6. 把x2=6代入(3),得y2=2. 所以原方程组的解是。 解法二:根据根与系数的关系可知:x, y是一元二次方程,

二元一次方程组的解法(讲解+练习)

第八讲 二元一次方程组 一、知识梳理 (一)二元一次方程组的有关概念 1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。 2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。任何一个二元一次方程都有无数个解。 3.方程组和方程组的解 (1)方程组:由几个方程组成的一组方程叫作方程组。 (2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。 4.二元一次方程组和二元一次方程组的解 (1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。 (2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。 (二)二元一次方程组的解法: 1.代入消元法 2.加减消元法 二、典例剖析 专题一:代入消元法: 1、直接代入 例1 解方程组?? ?=--=. 134,32y x x y 跟踪训练: ?? ?-==+738 25x y y x 2、变形代入 例2 解方程组???=+=-. 1043,95y x y x 跟踪训练: ???-=--=-.2354, 42y x y x 小结:代入消元法的方法(步骤): (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数. (3)解所得到的一元一次方程,求得一个未知数的值. (4)把所求得的一个未知数的值代入原方程,求出另一个未知数的值,写出方程组的解.

专题二:加减消元法 例3、解方程组(1)?? ?=+=-524y x y x (2)???=-=-322543y x y x (3)?? ?=+=+. 1034, 1353y x y x 跟踪训练:(1) (2) 注意: ⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便. ⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好. [变式练习]选择适当的方法解下列方程组 (1)???=+---=+.5)3()1(2),1(32x y x y (2)???-=+---=+--23 )3(5)4(44 )3()4(2y x y x 专题三:有关二元一次方程组以及解的问题: 例4、(1)已知方程2 m -1 n -8(m-2)x +(n+3)y =5是二元一次方程,求m,n 的值。 (2) 求方程x+2y=5在自然数围的解。 ?? ?=+=-10 237 24y x y x

高一数学二元二次方程组解法

方程 22260x xy y x y +++++= 是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项. 我们看下面的两个方程组: 224310,210; x y x y x y ?-++-=?--=? 222220,560. x y x xy y ?+=??-+=?? 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组. 下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解. 例1 解方程组 22440,220.x y x y ?+-=?--=? 分析:二元二次方程组对我们来说较为生疏,在解此方程组时,可以将其转化为我们熟悉的形式.注意到方程②是一个一元一次方程,于是,可以利用该方程消去一个元,再代入到方程①,得到一个一元二次方程,从而将所求的较为生疏的问题转化为我们所熟悉的问题. 解:由②,得 x =2y +2, ③ 把③代入①,整理,得 8y 2+8y =0, 即 y (y +1)=0. ①

解得 y 1=0,y 2=-1. 把y 1=0代入③, 得 x 1=2; 把y 2=-1代入③, 得x 2=0. 所以原方程组的解是 112,0x y =??=?, 22 0,1.x y =??=-? 说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解. 例2 解方程组 7,12.x y xy +=??=? 解法一:由①,得 7.x y =- ③ 把③代入②,整理,得 27120y y -+= 解这个方程,得 123,4y y ==. 把13y =代入③,得14x =; 把24y =代入③,得23x =. 所以原方程的解是 114,3x y =??=?, 223,4. x y =??=? 解法二:对这个方程组,也可以根据一元二次方程的根与系数的关系,把,x y 看作一个一元二次方程的两个根,通过解这个一元二次方程来求,x y . 这个方程组的,x y 是一元二次方程 27120z z --= 的两个根,解这个方程,得 3z =,或4z =. 所以原方程组的解是 114,3;x y =?? =? 223,4. x y =??=? 练 习: ①

二元一次方程组解法详解

一、二元一次方程组解法总结 1、二元一次方程组解法的基本思想 二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想. 即二元一次方程组形如:ax=b(a,b为已知数)的方程. 2、代入消元法 由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法. 3、用代入消元法解二元一次方程组的步骤 (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数. (3)解所得到的一元一次方程,求得一个未知数的值. (4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解. 4、加减消元法 两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法. 5、加减消元法解二元一次方程组的一般步骤 (1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;

(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求得一个未知数的值; (4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值; (5)把求出的未知数的值写成的形式. 6、二元一次方程组解的情况 若二元一次方程组(a1,a2,b1,b2,c1,c2均为不等于0的已知数),则 (1)当时,这个方程组只有唯一解; (2)当时,这个方程组无解; (3)当时,这个方程组有无穷多个解. 二、重难点知识归纳 二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题. 三、典型例题讲解 例1、(1)下列方程中是二元一次方程的有() ①②③ ④mn+m=7⑤x+y=6 A.1个B.2个C.3个D.4个

解二元二次方程组

课题解二元二次方程组 一、知识回顾 二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式. 二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程. 解二元一次方程组的一般方法是代入消元法和加减消元法 1、例题 例1、解方程组 31 220 x y x y =+ ? ? -= ? 练习1 解方程组 21 324 x y y x -=- ? ? -= ? 例2、解方程组 326 249 x y x y += ? ? += ? 练习2 解方程组 35 242 x y x y -+= ? ? -= ? 例3、解方程组 31 430 4239 x y z x y z x y z -+-= ? ? -+= ? ?++= ? 练习3 解方程组 24 230 35 x y z x y z x y z -+-=- ? ? ++= ? ?-+=- ? 2、巩固练习

1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C . 1x +4y=6 D .4x=24 y - 2.下列方程组中,是二元一次方程组的是( ) A .2284 23119 (23754624) x y x y a b x B C D x y b c y x x y +=+=-=??=??? ? ? ?+=-==-=???? 3.二元一次方程5a -11b=21 ( ) A .有且只有一解 B .有无数解 C .无解 D .有且只有两解 4.方程y=1-x 与3x+2y=5的公共解是( ) A .3333 (2422) x x x x B C D y y y y ==-==-????? ? ? ? ===-=-???? 5.若│x -2│+(3y+2)2=0,则的值是( ) A .-1 B .-2 C .-3 D .32 6.下列各式,属于二元一次方程的个数有( ) ①xy+2x -y=7; ②4x+1=x -y ; ③ 1 x +y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .4 二、解方程组 (1)???=-=+6)3(242y x (2)? ??=-=+1123332y x y x (3)? ??=+=-172305y x y x (4)???? ?=-=+34 31332n m n m (5)10232523x y x y z x y z +=??-+=??+-=? (6)04239328a b c a b c a b c ++=?? ++=??-+=? 二、新知展望

典型二元二次方程与应用题

二元二次方程组解法与应用题 教学目标 1.理解二元二次方程的概念 2.能正确地把方程整理成二元二次方程的一般形式,知道各项名称和各项系数 3.理解二元二次方程解的概念,会解二元二次方程组 4.会列代数方程(组)解简单的应用题 教学重难点 1.熟练运用“消元”、“降次”的数学思想方法解二元二次方程,从而提高分析问题和解决问题的能力 2.熟练掌握数学符号语言与文字的互译以及数量关系的分析,会建立数学模型 3.理解应用题中的现实问题,会分辨,排除不符题意的解 知识梳理 二元二次方程和方程组 仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程. 关于x,y 的二元二次方程的一般形式是: 22ax bxy cy dx ey f 0+++++=(a,b,c,d,e,f 为常数)其中,22 ax ,bxy,cy 叫做这个方程的二次项,a,b,c 分别叫做二次项系数; dx,ey 叫做这个方程的一次项,d,e 分别叫做一次项系数;f 叫做这个方程的常数项. 使二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解 由一个二元二次方程和一个二元一次方程组成的方程或两个二元二次方程组成的方程组是二元二次方程组 方程组中所含各方程的公共解叫做这个方程组的解 解二元二次方程组的基本思想是消元和降次,消元就是化二元为一元,降次就是把二次降为一次,因此可以通过消元和降次把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程. 对于由一个二元一次方程和一个二元二次方程组成的二元二次方程组来说,代入消元法是解这类方程组的基本方法 应用题 在实际问题中,经常会遇到一个(多个)未知量得问题,我们可以列方程(组)来求解. 通过列方程来解某些实际问题,应注意检验,不仅要检验求得的解是否适合方程,还要检验所得得解是否符合实际意义.

二元二次方程组的解法

二元二次方程的解法 : 次方程组的基本思想和方法 程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方方法和技巧是解二元二次方程组的关键。 方程组通常按照两个方程的组成分为“二·一”型和“二·二”型,又分别成为Ⅰ型和Ⅱ型。 是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 方程组的解法 元法(即代入法) 二·一”型方程组的一般方法,具体步骤是: 方程中的一个未知数用另一个未知数的代数式表示; 式代入二元二次方程,得到一个一元二次方程; 二次方程,求得一个未知数的值; 这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; 未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 与系数的关系

二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一元二方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。 掉一个解。 二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。 较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。 方程组的解法 中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二一”型方程组,所得的解都是原方程组的解。 组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 一”型方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 :

二元一次方程组知识点归纳讲解学习

二元一次方程组知识点梳理 1、把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。 2、有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。 3、二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。 4、二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。 5、二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 6、二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。 7、一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。 消元的方法有两种: 代入消元法通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。 例:解方程组x+y=5 ①6x+13y=89 ②解:由①得x=5-y ③把③带入②,得6(5-y)+13y=89 y=59/7 把y=59/7带 入③,x=5-59/7 即x=-24/7 ∴x=-24/7 y=59/7 为方程组的解加减消元法利用等式的性质使方程组中两个方程中的某一个未知数前的系数化为相等或相反,然后把两个方程相加(或相减),以消去这个未知数,使方程只含有一个未知数而得以求解,再代入方程组的其中一个方程。像这种解二元一次方程组的方法叫做加减消元法,简称加减法。 一般:①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数; ②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程; 例:解方程组x+y=9①x-y=5② 解:①+②2x=14 即x=7 把x=7带入①得7+y=9 解得y=-2 ∴x=7 y=-2 为方程组的解 8、二元一次方程组的解有三种情况: 1)有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解 2)有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解 3)无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。 注意:用加减法或者用代入消元法解决问题时,应注意用哪种方法简单,避免计算麻烦或导致计算错误。

二元二次方程组练习题

代数方程组练习 1、方程组???--=+=3 212x x y x y 的解是 。 2、方程组???=+=-1 23422y x y x 的解是 。 3、解方程组???=--=+0 )3)(2(2022y x y x y x 时可先化为 和 两个方程组。 4、方程组???????==+61 1-16511y x y x 的解是 。 二、选择题: 1、由方程组???=+++-=-04)1()1(122y x y x 消去y 后得到的方程是( ) A 、03222=--x x B 、05222 =+-x x C 、01222=++x x D 、09222=++x x 2、方程组???=-+++=+03202y x x y x 解的情况是( ) A 、有一组实数解 B 、有两组不同的实数解 C 、没有实数解 D 、不能确定 3、方程组???=--=-+00122m x y y x 有唯一解,则m 的值是( ) A 、2 B 、2- C 、2± D 、以上答案都不对 4、方程组???+==m x y x y 2有两组不同的实数解,则( ) A 、m ≥41- B 、m >41- C 、4 1-<m <41 D 、以上答案都不对 三、解下列方程组: 1、???=-=+15 522y x y x ; 2、???=+=+25722y x y x

3、?????=--=+-0 352122222y xy x y xy x ; 4、???==+127xy y x ; 5、???==+613 22xy y x 四、m 为何值时,方程组 ???=+=+m y x y x 2022只有一组实数解,并求出这时方程组的解。

二元二次方程组-解法-例题

二元二次方程的解法 1.解二元二次方程组的基本思想和方法 解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。因此,掌握好消元和降次的一些方法和技巧是解二元二次方程组的关键。 2.“二·一”型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 “二·一”型方程组的解法 (1)代入消元法(即代入法) 代入法是解“二·一”型方程组的一般方法,具体步骤是: ①把二元一次方程中的一个未知数用另一个未知数的代数式表示; ②把这个代数式代入二元二次方程,得到一个一元二次方程; ③解这个一元二次方程,求得一个未知数的值; ④把所求得的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; ⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 (2)逆用根与系数的关系 对“二·一”型二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一元二次方程z2-az+b=0的两个根,解这个方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。注意:不要丢掉一个解。 此方法是解“二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。 以上两种是比较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 注意:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。 “二·二”型方程组的解法 (i) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解。 (ii) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方

25二元一次方程组解法(一)--代入法(提高) 知识讲解

二元一次方程组解法—代入法(提高)知识讲解 【学习目标】 1. 理解消元的思想; 2. 会用代入法解二元一次方程组. 【要点梳理】 要点一、消元法 1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想. 2.消元的基本思路:未知数由多变少. 3.消元的基本方法:把二元一次方程组转化为一元一次方程. 要点二、代入消元法 通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法. 要点诠释: (1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的. (2)代入消元法的技巧是: ①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解; ②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便; (3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便. 【典型例题】 类型一、用代入法解二元一次方程组 1.用代入法解方程组: 237 338 x y x y += ? ? -= ? ① ② 【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x 用y表示出来,代入②,这样会使计算比较简便. 【答案与解析】 解:由①得 73 2 y x - =③ 将③代入② 73 338 2 y y - ?-=,解得 1 3 y=. 将 1 3 y=代入③,得x=3 所以原方程组的解为 3 1 3 x y = ? ? ? = ?? . 【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.

相关主题
文本预览
相关文档 最新文档