当前位置:文档之家› 化归思想典型例题分析含答案

化归思想典型例题分析含答案

化归思想典型例题分析含答案
化归思想典型例题分析含答案

化归思想典型例题剖析

【例1】如图3-1-1,反比例函数y=-8x

与一次函数y=-x+2的图象交于A 、B 两点.

(1)求 A 、B 两点的坐标;

(2)求△AOB 的面积.

解:⑴解方程组82

y x y x ?=-???=-+? 得121242;24x x y y ==-????=-=?? 所以A 、B 两点的坐标分别为A (-2,4)B(4,-2

(2)因为直线y=-x+2与y 轴交点D 坐标是(0, 2), 所以11222,24422

AOD BOD S S ??=??==??= 所以246AOB S ?=+=

点拨:两个函数的图象相交,说明交点处的横坐标和纵坐标,既适合于第一个函数,又适合于第二个函数,所以根据题意可以将函数问题转化为方程组的问题,从而求出交点坐标.

【例2】解方程:22(1)5(1)20x x ---+=

解:令y= x —1,则2 y 2—5 y +2=0.

所以y 1=2或y 2=12 ,即x —1=2或x —1=12

. 所以x =3或x=32 故原方程的解为x =3或x=32

点拨:很显然,此为解关于x -1的一元二次方程.如果把方程展开化简后再求解会非常麻烦,所以可根据方程的特点,含未·知项的都是含有(x —1)所以可将设为y ,这样原方程就可以利用换元法转化为含有y 的一元二次方程,问题就简单化了.

【例3】如图 3-1-2,梯形 ABCD 中,AD ∥BC ,AB=CD ,对角

线AC 、BD 相交于O 点,且AC ⊥BD ,AD=3,BC=5,求AC 的长.

解:过 D 作DE ⊥AC 交BC 的延长线于E ,则得AD=CE 、

AC=DE .所以BE=BC+CE=8.

因为 AC ⊥BD ,所以BD ⊥DE .

因为 AB=CD , 所以AC =BD .所以GD=DE .

在Rt △BDE 中,BD 2+DE 2=BE 2

所以BD 2BE=4 2 ,即AC=4 2 . 点拨:此题是根据梯形对角线互相垂直的特点通过平移对角线将等腰梯形转化为直角三角形和平行四边形,使问题得以解决.

【例4】已知△ABC 的三边为a ,b ,c ,且222a b c ab ac bc ++=++,试判断△ABC 的形状. 解:因为222a b c ab ac bc ++=++,

所以222222222a b c ab ac bc ++=++,

即:222()()()0a b b c a c -+-+-=

所以a=b ,a=c , b=c

所以△ABC 为等边三角形.

点拨:此题将几何问题转化为代数问题,利用凑完全平方式解决问题.

【例5】△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=?,如图l ,根据勾股定理,则222a b c +=。

若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与c 2的关系,

并证明你的结论.

证明:过B 作BD ⊥AC ,交AC 的延长线于D 。

设CD 为x ,则有222BD a x =-

根据勾股定理,得2222()b x a x c ++-=.

即2222a b bx c ++=。 ∵0,0b x >>,

∴20bx >,∴222a b c +<。

点拨:勾股定理是我们非常熟悉的几何知识,

对于直角三角形三边具有:222a b c +=的关

系,那么锐角三角形、钝角三角形的三边又是怎样的关系呢?我们可以通过作高这条辅助线,将一般三角形转化为直角三角形来确定三边的关系.

典型相关分析及其应用实例

摘要 典型相关分析是多元统计分析的一个重要研究课题.它是研究两组变量之间相关的一种统计分析方法,能够有效地揭示两组变量之间的相互线性依赖关系.它借助主成分分析降维的思想,用少数几对综合变量来反映两组变量间的线性相关性质.目前它已经在众多领域的相关分析和预测分析中得到广泛应用. 本文首先描述了典型相关分析的统计思想,定义了总体典型相关变量及典型相关系数,并简要概述了它们的求解思路,然后深入对样本典型相关分析的几种算法做了比较全面的论述.根据典型相关分析的推理,归纳总结了它的一些重要性质并给出了证明,接着推导了典型相关系数的显著性检验.最后通过理论与实例分析两个层面论证了典型相关分析的应用于实际生活中的可行性与优越性. 【关键词】典型相关分析,样本典型相关,性质,实际应用

ABSTRACT The Canonical Correlation Analysis is an important studying topic of the Multivariate Statistical Analysis. It is the statistical analysis method which studies the correlation between two sets of variables. It can work to reveal the mutual line dependence relation availably between two sets of variables. With the help of the thought about the Principal Components, we can use a few comprehensive variables to reflect the linear relationship between two sets of variables. Nowadays It has already been used widely in the correlation analysis and forecasted analysis. This text describes the statistical thought of the Canonical Correlation Analysis firstly, and then defines the total canonical correlation variables and canonical correlation coefficient, and sum up their solution method briefly. After it I go deep into discuss some algorithm of the sample canonical correlation analysis thoroughly. According to the reasoning of the Canonical Correlation Analysis, sum up some of its important properties and give the identification, following it, I infer the significance testing about the canonical correlation coefficient. According to the analysis from the theories and the application, we can achieve the possibility and the superiority from canonical correlation analysis in the real life. 【Key words】Canonical Correlation Analysis,Sample canonical correlation,Character,Practical applications

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

(完整版)数形结合思想例题分析(可编辑修改word版)

(1- a )2 + b 2 a 2 + (1- b )2 (1- a )2 + (1- b )2 (1- a )2 + b 2 a 2 + (1- b )2 (1- a )2 + (1- b )2 y r x 数形结合思想例题分析 一、构造几何图形解决代数与三角问题: 1、证明恒等式: 例 1 已知 x 、 y 、 z 、 r 均为正数,且 x 2 + y 2 = z 2 , z ? = x 2 求证: rz = xy . C A B z 分析:由 x 2 + y 2 = z 2 , 自然联想到勾股定理。由 z ? = x 2 . 可以联想到 射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种 算法,结论的正确性一目了然。 证明:(略) 小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然后利用图形的几何性质去解决恒等式的证明问题。 2、证明不等式: 例 2 已知:0< a <1,0< b <1. 求证 + + + ≥ 2 2. 证明:如图,作边长为 1 的正方形 ABCD ,在 AB 上取点 E ,使 AE= a ;在 AD 上取点 G ,使 AG= b , 过 E 、G 分别作 EF//AD 交 CD 于 F ;作 GH//AB 交 BC 于 H 。设 EF 与 GH 交于点 O ,连接 AO 、BO 、CO 、DO 、AC 、BD. 由题设及作图知△ AOG 、△ BOE 、△ COF 、△ DOG 均为直角三角形,因此 OA = OB = OC = OD = 且 AC = BD = 由于 OA + OC ≥ AC , OB + OD ≥ BD . 所以: + + + ≥ 2 2. x 2 - r 2 x 2 - r 2 a 2 + b 2 a 2 + b 2 (1- a )2 + b 2 (1- a )2 + (1- b )2 a 2 + (1- b )2 2 a 2 + b 2

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

数形结合思想例题选讲

数形结合思想例题选讲 数形结合思想是“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。 应用数形结合的思想,应注意以下数与形的转化 (1)集合的运算及韦恩图 (2)函数及其图象 (3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线 以形助数常用的有 借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方 法; 以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。 例题选讲 类型一:集合的运算及韦恩图 利用数形结合的思想解决集合问题,常用的方法有数轴法、韦恩图法等。当所给问题的数量关系比较复杂,且没有学容斥原理前,不好找线索时,用韦恩图法能达到事半功倍的效果。 例1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( ) ().A M P S B 。()M P S ().I C M P S e ().I D M P S e 解:阴影部分是M 与P 的公共部分(转化为集合语言就是M P ),且在 S 的外部(转化为集合语言就是C I S ),故选C 。通过上述例子,我们知道:当应用题中牵 涉到集合的交集、并集、补集时,用韦恩图比用数轴法简便。 类型二:图表信息题 此类题目都有图形(或图表)作为已知条件,须联系函数的性质分析求解,解 决问题的关键是从已知图形(图表)中挖掘信息. 例2.直角梯形ABCD 如图(1),动点P 从B 点出发,由A D C B →→→沿边运动,设点P 运动的路 程为x ,ABP ?的面积为 )(x f .如果函数)(x f y =的图象如图(2),则ABC ?的面积为( ) A .10 B .16 C . 解:由)(x f y = 图象可知,当04()0x f x →由时由由4=x 及9=x 时)(x f 不变,说明P 点在DC 上,即所以AD=14-9=5,过D 作DG AB ⊥ 则DG=BC=4 3=∴AG ,由此可求出AB=3+5=8. 16482 1 21=??=?=?BC DB S ABC 选B 例3.在某种新型材料的研制中,实验人员获得了下列一组实验数据: 现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 A .y =2x -2 B.y = 21(x 2 -1) C.y =log 2x D.y =log 2 1x A B C D P 图(1)

浅谈化归思想方法在数学教学中的应用

浅谈化归思想方法在数学教学中的应用 墨红镇中学李慧连内容摘要:所谓化归法,是指通过数学内部的联系和矛盾运用,在转化中实现问题的规范化,即将待解问题转化为规范问题,从而使原问题得到解决的一种方法.这里的规范问题是指已经具有确定的解决方法和程序的问题,即运用原有知识已能解决的问题.而将一个问题化为规范问题的过程叫做问题的规范化.因此,简而言之,所谓化归就是问题的规范化、模式化。“化归”方法很多,但有一个原则是和原来的问题相比,“化归”后所得出的问题,应是已经解决或是较为容易解决的问题。在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 关键词:化归法简述运用操作实现化归 随着数学课程改革的深入,教师们已经认识到学生学习方法转变的必要性。数学教学是教师按照学生的认识规律和新课标特点,通过最优途径,指导学生掌握科学的学习方法,并获得具有选择和运用恰当有效学习方法的能力。重视方法指导是坚持“以学生为主体”和培养学生创新素养这一现代教育观念的体现,它能使学生主动参与认识过程,既能调动学生的积极性,又能向教师提出改进教法的反馈信息,有效发挥教法和学法的整体功能,最大限度地使用好教材。在数学方法论中有一种重要的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 一.化归法简述 在学习数学的各个环节中,解题的训练占有十分重要的地位。它既是掌握所学数学知识的必要手段,也是培养和提高数学能力的重要途径。解题的实质就是把数学的一般原理运用于题目的条件或条件的推论而进行的一系列推理,直到求出题目解答为止的过程。这一过程是一种复杂的思维活动的过程。解决问题的过程,实际是转化的过程,即对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。如抽象转化为具体,未知转化为已知,立体转化为平面,高次转化为低次,多元转化为一元,超越运算转化为代数运算等等。这就是数学方法论中的一种新的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,假设有一个数学问题甲,一下子不能直接求解,于是人们将甲问题的求解化为乙问题的求解,然后通过乙问题的求解返回去得出甲问题的求解,这就是化归的基本想法。利用化归法解决问题的过程可以简单地用以下框图表示:

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

最新小学数学六年级下册《数形结合解决问题》

小学数学六年级下册《数形结合解决问 题》

青岛版小学数学六年级下册《数形结合解决问题》精品教案 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。 【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗? 学生思考后举例。 【设计意图】教师给学生一定的思考时间,可以使学生对所学过的用图形来研究问题的有关知识进行初步的梳理,从而为本节课的学习做好铺垫。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现?

学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 【设计意图】将原始数据和统计图同时呈现,可以给学生造成视觉上的冲击。原始数据杂乱无章而统计图简单明了,能够帮助阅读的人有效的提取信息。对于用图形描述数据的优越性,学生一目了然。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 【设计意图】学生个人的想法可能是粗浅的、片面的,而通过小组交流,倾听他人的想法和意见,可以进一步完善自己的想法。教师在学生交流的基础上运用多媒体呈现相关的例子,通过这些数形结合的直观的例子,让学生充分感受数形结合在数学学习中的应用。 三、拓展延伸。

典型相关分析SPSS例析

典型相关分析 典型相关分析(Canonical correlation )又称规则相关分析,用以分析两组变量间关系的一种方法;两个变量组均包含多个变量,所以简单相关和多元回归的解惑都是规则相关的特例。典型相关将各组变量作为整体对待,描述的是两个变量组之间整体的相关,而不是两个变量组个别变量之间的相关。 典型相关与主成分相关有类似,不过主成分考虑的是一组变量,而典型相关考虑的是两组变量间的关系,有学者将规则相关视为双管的主成分分析;因为它主要在寻找一组变量的成分使之与另一组的成分具有最大的线性关系。 典型相关模型的基本假设:两组变量间是线性关系,每对典型变量之间是线性关系,每个典型变量与本组变量之间也是线性关系;典型相关还要求各组内变量间不能有高度的复共线性。典型相关两组变量地位相等,如有隐含的因果关系,可令一组为自变量,另一组为因变量。 典型相关会找出一组变量的线性组合**=i i j j X a x Y b y =∑∑与 ,称 为典型变量;以使两个典型变量之间所能获得相关系数达到最大,这一相关系数称为典型相关系数。i a 和j b 称为典型系数。如果对变量进 行标准化后再进行上述操作,得到的是标准化的典型系数。 典型变量的性质 每个典型变量智慧与对应的另一组典型变量相关,而不与其他典型变量相关;原来所有变量的总方差通过典型变量而成为几个相互独立的维度。一个典型相关系数只是两个典型变量之间的相关,不能代

表两个变量组的相关;各对典型变量构成的多维典型相关,共同代表两组变量间的整体相关。 典型负荷系数和交叉负荷系数 典型负荷系数也称结构相关系数,指的是一个典型变量与本组所有变量的简单相关系数,交叉负荷系数指的是一个典型变量与另一组变量组各个变量的简单相关系数。典型系数隐含着偏相关的意思,而典型负荷系数代表的是典型变量与变量间的简单相关,两者有很大区别。 重叠指数 如果一组变量的部分方差可以又另一个变量的方差来解释和预测,就可以说这部分方差与另一个变量的方差之间相重叠,或可由另一变量所解释。将重叠应用到典型相关时,只要简单地将典型相关系数平方(2 CR),就得到这对典型变量方差的共同比例,代表一个典型变量的方差可有另一个典型变量解释的比例,如果将此比例再乘以典型变量所能解释的本组变量总方差的比例,得到的就是一组变量的方差所能够被另一组变量的典型变量所能解释的比例,即为重叠系数。 例1:CRM(Customer Relationship Management)即客户关系管理案例,有三组变量,分别是公司规模变量两个(资本额,销售额),六个CRM实施程度变量(WEB网站,电子邮件,客服中心,DM 快讯广告Direct mail缩写,无线上网,简讯服务),三个CRM绩效维度(行销绩效,销售绩效,服务绩效)。试对三组变量做典型相关分析。

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC中,C=90°,AB=c,AC=b,BC=a。 2 2 2 (1)三边之间的关系: a + b =c 。(勾股定理) (2)锐角之间的关系:A+B=90°; (3)边角之间的关系:(锐角三角函数定义) sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 2.斜三角形中各元素间的关系: 在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。(1)三角形内角和:A+B+C=π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 a sin A b sin B c sin C 2R (R为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 2 2 2 2 2 2 2 2 2 a = b + c -2bc cos A; b =c +a -2ca cos B; c =a +b -2ab cos C。 3 .三角形的面积公式: (1)S =1 2 ah a= 1 2 bh b= 1 2 ch c(h a、h b、h c 分别表示a、b、c 上的高); (2)S =1 2 ab sin C= 1 2 bc sin A= 1 2 ac sin B; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

中考数学专题复习_数形结合思想

中考数学专题复习——数形结合思想 一、知识梳理 数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的。 华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休。”这充分说明了数形结合在数学学习中的重要性,是中考数学的一个最重要数学思想。 二、典型例题 (一)在数与式中的应用 例1、实数a 、b 在数轴上的位置如图所示,化简2 ||a a b +-=_________。 (二)在方程、不等式中的应用 例2、已知关于x 的不等式组0 20x a x ->?? ->? 的整数解共有2个,则a 的取值范围是____________。 例3、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( ) A .203210x y x y +-=??--=?, B .2103210x y x y --=??--=? , C .2103250x y x y --=?? +-=? , D .20210x y x y +-=?? --=? , (三)在锐角三角函数中的应用 例4、画△ABC ,使cosA=2 1 ,AB =2cm ,∠A 的对边可以在长为1cm 、2cm 、3cm 中任选,这 样的三角形可以画_______个。 (四)在函数中的应用 例5、如图为二次函数2y ax bx c =++的图象,在下列说法中: ①0ac <;②方程20ax bx c ++=的根为11x =-,23x =; ③0a b c ++>;④当1x >时,y 随着x 的增大而增大. a b 0 · P (1,1) 1 1 2 2 3 3 -1 -1 O x y x y O 3 -1

化归思想方法在解题中的应用

化归思想方法在解题中的应用 汕头金平职业技术学校李顺生 摘要:化归,指的是转化与归结.即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题,从而最终解决原问题的一种思想。近几年高考,随着试题由知识立意向能力立意的转变,不断加大化归思想的考查力度。如此,重视化归思想在高中数学教学中的应用显得尤其重要。 关键词:新课程解题渗透化归数学思想 近几年高考试题十分重视数学思想方法的考查,特别是考查能力的试题,其解答过程都蕴含着重要的数学思想方法。“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只能满足于解出来,只有做到对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。 在中学数学中,化归不仅是一种重要的解题思想,也是一种最基本的思维策略。所谓的化归,指的是转化与归结。即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题,从而最终解决原问题的一种思想。 化归应遵循一定的原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利运用熟知的知识、经验和问题来解决。(2)简单化原则:将复杂的问题化归为简单问题,通过以简单问题的解决,达到复杂问题的目的,或获得某种解题的启示和依据。(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。(5)正难则反原则:当问题正面讨论遇到困

(完整版)解三角形三类经典题型

解三角形三类经典类型 类型一 判断三角形形状 类型二 求范围与最值 类型三 求值专题 类型一 判断三角形形状 例1:已知△ABC 中,bsinB=csinC,且C B A 2 22sin sin sin +=,试判断三角形的形状. 解:∵bsinB=csinC,由正弦定理得 sin 2B=sin 2 C ,∴ sinB=sinC ∴ B=C 由 C B A 222sin sin sin += 得 2 22c b a += ∴三角形为等腰直角三角形. 例2:在△ABC 中,若B=ο 60,2b=a+c,试判断△ABC 的形状. 解:∵2b=a+c, 由正弦定理得2sinB=sinA+sinC,由B=ο 60得sinA+sinC=3 由三角形内角和定理知sinA+sin(A -ο 120)=3,整理得 sin(A+ο30)=1 ∴A+ο ο ο 60,9030==A 即,所以三角形为等边三角形. 例3:在△ABC 中,已知2 2 tan tan b a B A =,试判断△ABC 的形状. 解:法1:由题意得 B A A B B A 2 2sin sin cos sin cos sin =,化简整理得sinAcosA=sinBcosB 即sin2A=sin2B ∴2A=2B 或2A+2B=π ∴A=B 或2 π = +B A ,∴三角形的形状为等腰三角形或直角三角形. 法2:由已知得22cos sin cos sin b a A B B A =结合正、余弦定理得2 222222222b a bc a c b b a c b c a a =-+? -+? , 整理得0))((2 2 2 2 2 =-+-c b a b a ∴ 2 2222c b a b a =+=或 即三角形为等腰三角形或直角三角形 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= C B C B cos cos sin sin ++,试判断三角形的形状. 解:(1)由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC -cosBsinC=0即sin(B -C)=0 ∴ B=C 即三角形为等腰三角形. (2)由已知得 sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。 一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 ⒈化陌生的问题为熟悉的问题 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉化简单问题为容易问题 简单化原则就是把比较复杂的问题转化为比较简单的易于确定解决方案的问题,从而使问题获解。中学数学受多年应试教育的影响,有些问题被复杂化了,而学生对于这类问题却又相当头疼,所以通过化归,将问题变为比较简单的形式、关系结构,或者通过问题的简单化,获得解决复杂问题的思路,往往更容易让学生接受。 ⒊化抽象问题为具体直观问题 具体化就是把比较抽象的问题转化为比较具体、直观的问题,以便形象地把握问题所涉及的各个对象之间的关系,使问题易于求解。新课程标准提出:数学教学要紧密联系生活实际,注重探索和合作,由具体到抽象。但绝不是只要让学生直观感受,满足于具体的现象而忽视问题的本质。对于抽象的关系,可以让学生对一些具体的关系进行观察、比较、分析、归纳,逐步提高他们的思维的能力。 ⒋从一般到特殊,从特殊再到一般。 极端化原则就是运用极端化位置或状态的特性引出一般位置或状态下的特性,从而获得解决问题的思路。这也是我们常说的从一般到特殊再到一般。 ⒌条件和结论的和谐统一。 所谓“和谐”指的是配合得适当和匀称。和谐化原则就是在对问题进行化归时,要注意把条件和结论的表现形式转化为更具数、式与形内部固有的和谐统一特点的形式,以帮助我们去确定解决问题的方法。 三、化归思想的要点 1、化归思想方法的实施应有明确的对象、设计好目标、选择好方法。

九年级数学下册《解直角三角形》典型例题(含答案)

《解直角三角形》典型例题 例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ; (2)由a b B =tan ,知 ; (3)由c a B = cos ,知860cos 4cos =?==B a c . 说明 此题还可用其他方法求b 和c . 例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴ 设 ,则 由勾股定理,得 ∴ . ∴ . 解法二 133330tan =?=?=b a 说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中, 于D ,若 ,解三 角形ABC .

分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手. 解在Rt中,有: ∴ 在Rt中,有 说明(1)应熟练使用三角函数基本关系式的变形,如: (2)平面几何中有关直角三角形的定理也可以结合使用,本例中 “”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值: 所以解直角三角形问题,应开阔思路,运用多种工具. 例4在中,,求. 分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差; (2)不是直角三角形,可构造直角三角形求解.

解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有 ; 在中,,且 , ∴; 于是,有, 则有 说明还可以这样求:

2020中考数学 数形结合思想专题练习(含答案)

2020中考数学 数形结合思想专题练习 1.已知直线y 1=2x -1和y 2=-x -1的图象如图X5-1所示,根据图象填空. (1)当x ______时,y 1>y 2;当x ______时,y 1=y 2;当x ______时,y 1<y 2; (2)方程组的解集是____________. 图X5-1 图X5-2 2.已知二次函数y 1=ax 2+bx +c (a ≠0)与一次函数y 2=kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2)(如图X5-2所示),则能使y 1>y 2成立的x 的取值范围是____________. 3.如图X5-3,正三角形ABC 的边长为3 cm ,动点P 从点A 出发,以每秒1 cm 的速度,沿A →B →C 的方向运动,到达点C 时停止.设运动时间为x (单位:秒),y =PC 2,则y 关于x 的函数的图象大致为( ) 图X5-3 A B C D 4.如图X5-4,半径为2的圆内接等腰梯形ABCD ,它的下底AB 是圆的直径,上底CD 的端点在圆周上,则该梯形周长的最大值是______. 图X5-4 21, 1y x y x =-?? =-- ?

5.某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔枝种植面积为24万亩.调查分析结果显示,从2009年开始,该市荔枝种植面积y(单位:万亩)随着时间x(单位:年)逐年成直线上升,y与x之间的函数关系如图X5-5. (1)求y与x之间的函数关系式(不必注明自变量x的取值范围); (2)该市2012年荔枝种植面积为多少万亩? 图X5-5 6.某公司推销一种产品,设x(单位:件)是推销产品的数量,y(单位:元)是推销费,图X5-6表示该公司每月付给推销员推销费的两种方案,看图解答下列问题: (1)求y1与y2的函数解析式; (2)解释图中表示的两种方案是如何付推销费的? (3)如果你是推销员,应如何选择付费方案? 图X5-6

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 向阳乡初级中学 周红林 【摘要】化归思想是中学数学最重要的思想方法之一。本文从化归的功能,化归的原则,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,力求比较全面地体现化归思想在初中数学解题中的作用和地位。 【关键词】化归思想 化归的原则 教学策略 化归思想要点 新课程标准指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础。”“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”从中我们可以看出新课程标准下的数学教学更加突出培养学生的数学思想的重要性,而数学思想同样离不开数学方法的支持。 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。

一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 ⒈熟悉化原则 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉简单化原则 简单化原则就是把比较复杂的问题转化为比较简单的易于确定

SPSS典型相关分析及结果解释

SPSS典型相关分析及结果解释 SPSS 11.0 - 23.0 典型相关分析 1方法简介 如果要研究一个变量和一组变量间的相关,则可以使用多元线性回归,方程的复相关系数就是我们要的东西,同时偏相关系数还可以描述固定其他因素时某个自变量和应变量间的关系。但如果要研究两组变量的相关关系时,这些统计方法就无能为力了。比如要研究居民生活环境与健康状况的关系,生活环境和健康状况都有一大堆变量,如何来做?难道说做出两两相关系数?显然并不现实,我们需要寻找到更加综合,更具有代表性的指标,典型相关(Canonical Correlation)分析就可以解决这个问题。 典型相关分析方法由Hotelling提出,他的基本思想和主成分分析非常相似,也是降维。即根据变量间的相关关系,寻找一个或少数几个综合变量(实际观察变量的线性组合)对来替代原变量,从而将二组变量的关系集中到少数几对综合变量的关系上,提取时要求第一对综合变量间的相关性最大,第二对次之,依此类推。这些综合变量被称为典型变量,或典则变量,第1对典型变量间的相关系数则被称为第1典型相关系数。一般来说,只需要提取1~2对典型变量即可较为充分的概括样本信息。 可以证明,当两个变量组均只有一个变量时,典型相关系数即为简单相关系数;当一组变量只有一个变量时,典型相关系数即为复相关系数。故可以认为典型相关系 1

数是简单相关系数、复相关系数的推广,或者说简单相关系数、复相关系数是典型相关系数的特例。 2引例及语法说明 在SPSS中可以有两种方法来拟合典型相关分析,第一种是采用Manova过程来拟合,第二种是采用专门提供的宏程序来拟合,第二种方法在使用上非常简单,而输出的结果又非常详细,因此这里只对它进行介绍。该程序名为Canonical correlation.sps,就放在SPSS的安装路径之中,调用方式如下: INCLUDE 'SPSS所在路径\Canonical correlation.sps'. CANCORR SET1=第一组变量的列表 /SET2=第二组变量的列表. 在程序中首先应当使用include命令读入典型相关分析的宏程序,然后使用cancorr名称调用,注意最后的“.”表示整个语句结束,不能遗漏。 这里的分析实例来自曹素华教授所著《实用医学多因素统计分析方法》第176页:为了研究兄长的头型与弟弟的头型间的关系,研究者随机抽查了25个家庭的两兄弟的头长和头宽,数据见文件canonical lianxiti.sav,希望求得两组变量的典型变量及典型相关系数。显然,代表兄长头形的变量为第一组变量,代表弟弟头形的变量为第二组变量,这里希望求得的是两组变量间的相关性,在语法窗口中键入的程序如下: INCLUDE 'D:\SpssWin\Canonical correlation.sps'. 请使用时改为各自相应的安装目录 CANCORR SET1=long1 width1 列出第一组变量 2

相关主题
文本预览
相关文档 最新文档