当前位置:文档之家› 化学除磷药剂投加量

化学除磷药剂投加量

化学除磷药剂投加量
化学除磷药剂投加量

化学除磷药剂投加量 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

生物除磷工艺同步化学除磷药剂

化学除磷原理

化学除磷是利用无机金属盐作为沉淀剂,与污水中的磷酸盐类物质反应形成难溶性含磷化合物与絮凝体,将污水中的溶解性磷酸盐分离出来。化学除磷的药剂主要有铁盐、铝盐和石灰,由于石灰对生物处理的pH影响较大,加之容易引起管道堵塞问题,给运行管理带来很多麻烦,一般在以生物除磷为主,化学除磷为辅的污水处理厂中很少采用。目前,国内常爱用铁盐或者铝盐作为沉淀剂,其与磷的化学反应式如下(1)、(2):

Al3++PO43- →Al PO4↓(1)

Fe3++PO43- →Fe PO4↓(2)

与沉淀反应相竞争的反应式金属离子与OH-的反应,反应式如下(3)、(4):

Al3++ 3OH- →Al (OH)3↓(3)

Fe3++ 3OH- →Fe (OH)3↓(4)

金属氢氧化物会形成大块的絮凝体,这对于沉淀产物的絮凝是有力的,同时还会吸附胶体状的物质、细微悬浮颗粒。

除磷药剂投加量的计算

由式(1)和式(2)可知去除1mol的磷酸盐,需要1mol的铁离子或者铝离子。由于在实际工程中,反应并不是100%的有效进行的,加之OH-会参与竞争反应,与金属离子反应,生成相应的氢氧化物,如(3)、(4)式,所以实际中化学沉淀药剂一般需要超量投加,以保证达到所需的出水P浓度。《给水排水设计手册》第五册和德国设计规范中都提到了同步沉淀化学除磷可按照1mol磷需要的铝盐或者铁盐来考虑,为了计算方便,实际中将摩尔换算成质量单位,如1molFe=56gFe,

1molAl=27gAl,1molP=31gP,也就是去除1kg的磷,当采用铁盐时需要投加:×

(56/31)=×= Fe/Kg P,当采用铝盐时需要投加:×(27/31)=×= Al/Kg P。

计算举例:

某城镇污水处理厂规模2万m3/d,已建成稳定运行,二沉池出水排放标准总磷≤L,运行数据表明二沉池出水实测总磷L,欲采用液体三氯化铁(FeCl3)作为同步化学除磷药剂,其有效成分为40%(400g/Kg FeCl3溶液),密度为L,求所需要的除磷药剂。

解:化学除磷欲除去的磷含量,

所需要的Fe的投加量至少为××20000×10-3=81Kg/d;

折算成每天需要有效成分为40%的FeCl3溶液体积为V=81×(56+×3)/(56××)=420L=d

若采用固体聚氯化铝(PAC)作为辅助化学除磷的药剂,有效成分为30%(300g Al2O3/Kg PAC),求所需要的除磷药剂

解:化学除磷欲除去的磷含量,

所需要的Al的投加量至少为××20000×10-3=39Kg/d;

折算成每天需要有效成分为30%的固体PAC质量为M=39×(27×2+16×3)/(27×2×)= PAC/d

理论计算量:

聚氯化铝(PAC)有效成分为30%(300g Al2O3/Kg PAC)(1gPAC含有)

除去1mg/L P盐,需要多少ppm的PAC( Al/Kg P)。

×1/= mg/L PAC,

则理论上每除去1mg/L P盐需要 mg/L PAC。

六水合三氯化铁(FeCl3·6H2O)含量98%(1g FeCl3·6H2O含有)

除去1mg/L P盐,需要多少ppm的FeCl3·6H2O( Fe/Kg P)。

×1/= mg/L FeCl3?6H2O

化学除磷计算

前言 在静止的或流动缓慢的水体中,如果磷的浓度过高,会造成水体的富营养化,其危害已众所周知,因而在污水处理中进行除磷是必要的。我国《污水综合排放标准》(8978—1996)规定,城市污水处理厂磷酸盐(以P计)一级排放标准为0.5mg/l。 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。本文主要介绍化学除磷的基本机理、主要工艺形式和药剂投加量的计算方法。 2 污水中的磷负荷 欧洲一些国家曾对生活污水中的总磷PT做过多次调查,主要结果见表1。 由人类食物产生的磷是不变的,但国内外目前普遍开始采用无磷洗涤剂,所以由洗涤剂产生的磷几年降低了许多。城市污水原水中的磷浓度在我国主要取决于工业废水中的磷含量。国外生活污水一般为10~25mg/l,我国一般为5~10mg/l。其大部分是无机化合磷,并是溶解状的,这一部分主要由来自洗涤剂的正磷酸盐和稠环磷酸盐组成。总磷中的一小部分是有机化合磷,其以溶解和非溶解状态存在。稠环磷酸盐(如P3O105-)和有机化合磷(核酸 )一般在污水管网中和污水处理中就已经转化为正磷酸盐(PO43-)。 3 化学除磷的基础 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程

涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异(如图1所示)。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 4 化学除磷药剂的类型 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2

化学除磷药剂投加量

化学除磷药剂 化学除磷原理 化学除磷是利用无机金属盐作为沉淀剂,与污水中的磷酸盐类物质反应形成难溶性含磷化合物与絮凝体,将污水中的溶解性磷酸盐分离出来。化学除磷的药剂主要有铁盐、铝盐和石灰,由于石灰对生物处理的pH影响较大,加之容易引起管道堵塞问题;铝盐对人体和生物毒害比较大,给运行管理带来很多麻烦。一般在以生物除磷为主,化学除磷为辅的污水处理厂中很多采用。目前,国内常爱用铁盐作为沉淀剂,其与磷的化学反应式如下(1): Fe3++PO43- →Fe PO4↓(1) 与沉淀反应相竞争的反应式金属离子与OH-的反应,反应式如下(2): Fe3++ 3OH- →Fe (OH)3↓(2) 金属氢氧化物会形成大块的絮凝体,这对于沉淀产物的絮凝是有力的,同时还会吸附胶体状的物质、细微悬浮颗粒。 除磷药剂投加量的计算 由式(1)可知去除1mol的磷酸盐,需要1mol的铁离子。由于在实际工程中,反应并不是100%的有效进行的,加之OH-会参与竞争反应,与金属离子反应,生成相应的氢氧化物,如(2)式,所以实际中化学沉淀药剂一般需要超量投加,以保证达到所需的出水P浓度。《给水排水设计手册》第五册和德国设计规范中都提到了同步沉淀化学除磷可按照1mol磷需要1.5mol的铁盐来考虑,为了计算方便,实际中将摩尔换算成质量单位,如1molFe=56gFe,1molP=31gP,也就是去除1kg的磷,当采用铁盐时需要投加:1.5×(56/31)=1.5×1.8=2.7Kg Fe/Kg P, 计算举例: 某城镇污水处理厂规模2万m3/d,已建成稳定运行,二沉池出水排放标准总磷≤1.0mg/L,运行数据表明二沉池出水实测总磷2.5mg/L,欲采用液体三氯化铁(FeCl3)作为同步化学除磷药剂,其有效成分为40%(400g/Kg FeCl3溶液),密度为1.42Kg/L,求所需要的除磷药剂。

除磷剂的化学名称

除磷剂的化学名称 化学除磷剂如表所示: 磷的排放指标在我国已被列入导致水体富营养化的一个重要指标,有着严格的排放标准。而除磷的方法通常为生物除磷与化学除磷两种,化学除磷的除磷成本最低且有效,但它也必然使用到化学除磷剂进行混凝沉析沉淀除磷。除磷剂的种类根据其药剂的混凝过种与除磷的效果的差别,分为同种不同的种类。

常用的污水除磷药剂 1、铁盐除磷剂:是指铁系化合物药剂,以聚合硫酸铁、三氯化铁及硫酸亚铁为代表的主要除磷剂,是目前市场上兴新起的一种除磷剂,其效果要优于其它各类的药剂,其中高分子聚合硫酸铁对污水中的非溶解性磷的去除率可达到92%以上。以及最新出现在市场上的增强型除磷剂等等。 铁盐溶解于水中所生成的铁离子可中和水中的负电胶体颗粒,还可与磷酸盐发生反应生成磷酸铁沉淀物。其次常用除磷剂,其溶解于水中所生成的氧化铁或氢氧化铁具有胶粘作用可对磷酸盐进行吸附沉淀处理。另外,聚合硫酸铁作为高聚物溶解于水中形成的多核氢氧化铁具有强络合混凝性。 2、铝盐除磷剂:以硫酸铝、聚合氯化铝、铝酸钠为代表,这一类除磷剂的除磷效果绝大部分取决于氢氧化铝的吸附作用,也因此,它在除磷上不如铁盐。且由于其除磷后在水体中的残留铝离子长期的堆积会使动植物受到严重的危害,正在逐渐退出市场。 3、钙盐除磷剂:钙盐除磷剂是以石灰,片碱,复合碱等碱性药剂为代表的除磷剂。钙盐除磷是利用其与磷酸盐反应生成磷酸钙沉淀。这类除磷药剂的投加量受pH值、磷的形成、水中钙含量的影响比较大。且钙盐除磷所产生的污泥量比较大,加大了污泥的处理难度。 4、微生物絮凝剂除磷剂:这类药剂是通过对微生物的培养后所提取的具有强有力吸附絮絮作用的一种无毒害性的絮凝药剂。经长隆科技相关对比实验表明,这种微生物絮凝剂的具有PAM的絮凝效果,其上清液较为清澈,固液分层明显。而相对于微生物而言,它受温度、pH值的影响非常之小,是一种理想的新型絮凝药剂。但目前因为微生物絮凝剂的市场并不广泛,没有量产,所以应用

污水处理中的化学除磷

污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,

三种除磷剂的比较分析

三种除磷剂的比较分析 单击此处输入文字。 一.生产性试验期间进水TP值 (1) 二.生产性试验期间深度处理段药剂投加量 (2) 三.三种除磷剂的除磷效果对比 (2) 四.三种除磷剂的处理成本对比 (4) 五.试验期间生物除磷数据分析 (5) 六.三种药剂的优缺点对比 (7) 七.结论 (8) 生物除磷是一种较为经济的除磷技术,但是运行期间稳定性较差,去除效果受季节、水质变化影响大,出水水质监测中,经常出现TP超标的问题。而化学除磷则具有高效、廉价、运行稳定的特点。本文主要通过在污水分公司好氧池末端投加化学除磷药剂,探究聚合氯化铝(PAC)、益维磷和聚合硫酸铁(PFS)三种药剂的生产性除磷效果和处理成本。(说明:PAC试验数据取自10月整月数据,益维磷数据为11.03-11.15,聚铁数据为11.17-11.24) 一.生产性试验期间进水TP值 图1试验期间进水TP曲线图 由图1可以看出,在好氧池末端投加PAC作为化学除磷药剂期间,污水厂进水TP在2.34-8.21mg/L之间波动,均值为3.65mg/L;在益维磷投加期间进水TP在2.15-5.13之间波动,均值为3.88mg/L;在PFS投加期间,进水TP在3.79-4.57mg/L之间波动,均值为4.08mg/L,相比PAC与益维

磷投加期间,进水TP稍有提高。 二.生产性试验期间深度处理段药剂投加量 图2试验期间深度处理段PAC投加量 由图2可以看出,试验期间,在好氧池末端投加三种药剂时,深度处理段PAC的投加量为PAC最多,益维磷与聚合硫酸铁相当。 三.三种除磷剂的除磷效果对比 图2三种除磷剂处理效果曲线图 益维磷与聚合硫酸铁生产性试验期间,对好氧池出水、二沉池出水及在线出水进行了跟踪。 由图2可以看出,益维磷投加期间,好氧池出水(加药前)PO43-在0.95-1.52mg/L之间波动,均值为1.22mg/L,加药后二沉池出水PO43-在0.74-1.12mg/L之间波动,均值达到0.92mg/L,经深度处理段除磷后在线出水TP稳定在0.3mg/L以下。 PFS投加期间,好氧池出水(加药前)PO43-在0.99-1.45mg/L之间波动,均值为1.21mg/L,加药后二沉池出水PO43-在0.68-0.98mg/L之间波动,均值达到0.84mg/L,经深度处理段除磷后在线出水TP在0.24-0.35mg/L以下,均值为0.29mg/L。 PAC投加期间,二沉池出水在0.73-1.31mg/L之间波动,整体呈上升趋势,均值为1.0mg/L,经深度处理段除磷后在线出水TP在0.18-0.42mg/L 之间波动,波动较大,存在超标风险,均值为0.32mg/L。 综上,对比二沉池出水PO43-数据,可以看出三种药剂的除磷效果为PFS>益维磷>PAC。 四.三种除磷剂的处理成本对比

化学除磷设计计算

化学除磷设计计算 (1)药剂投加点 化学除磷工艺可按化学药剂的投加地点来分类,实际中常采用的有:前置除磷、同步除磷和后置除磷。 前置除磷 前置除磷工艺的特点是化学药剂投加在沉砂池中、初沉池的进水渠(管)中、或者文丘里渠(利用涡流)中。其一般需要设置产生涡流的装置或者供给能量以满足混合的需要。相应产生的沉析产物(大块状的絮凝体)在初沉池中通过沉淀被分离。如果生物段采用的是生物滤池,则不允许使用铁盐药剂,以防止对填料产生危害(产生黄锈)。 前置除磷工艺由于仅在现有工艺前端增加化学除磷措施,比较适合于现有污水处理厂的改建,通过这一工艺步骤不仅可以除磷,而且可以减少生物处理设施的负荷。常用的化学药剂主要是石灰和金属盐药剂。前置除磷后控制剩余磷酸盐的含量为,完全能满足后续生物处理对磷的需要。 同步除磷 同步除磷是目前使用最广泛的化学除磷工艺,在国外约占所有化学除磷工艺的50%。其工艺是将化学药剂投加在曝气池出水或二沉池进水中,个别情况也有将药剂投加在曝气池进水或回流污泥渠(管)中。目前已确定对于活性污泥法工艺和生物转盘工艺可采用同步化学除磷方法,但对于生物滤池工艺能否将药剂投加在二次沉淀池进水中尚值得探讨。 后置除磷 后置除磷是将沉析、絮凝以及被絮凝物质的分离在一个与生物处理相分离的设施中进行,因此也叫二段法工艺。一般将化学药剂投加到二沉池后的一个混合池中,并在其后设置絮凝池和沉淀池(或气浮池)。 对于要求不严的受纳水体,在后置除磷工艺中可采用石灰乳液药剂,但必须 进行中和。 对出水pH值加以控制,如可采用CO 2 采用气浮池可以比沉淀池更好地去除悬浮物和总磷,但因为需要恒定供应空气因而运行费用较高。 后置除磷考虑利用滤池,也就是采用微过滤的方式。在二沉池出水管道加药,

化学除磷药剂选择

化学除磷药剂选择比较 为了生成非溶解性的磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙。许多高价金属离子药剂投加到污水中后都会与污水中的溶解性磷离子结合生成难溶解性的化合物,但出于经济原因考虑,用于磷沉析的金属盐药剂主要是Fe3+盐、Fe2+盐和Al3+盐,这些药剂是以溶液和悬浮液状态使用的。除金属盐药剂外,氢氧化钙也用作沉析药剂,反应生成不溶于水的磷酸钙。 常见的化学除磷使用的药剂则如表一所示: 表1 污水净化常用药剂

化学除磷药剂添加时在水体中的反应与所需条件如下: 石灰的混凝沉淀: 5Ca2+ + 4OH- + 3HPO42----Ca5OH(PO4)3 + 3H2O 为使磷的去除率达到90%以上,需要把pH值调到10.5-11.0以上。Ca/P的重量比为2.2:1以上。 沉折过程中,对于不溶解性的磷酸钙的形成起主要作用的不是Ca2+,而是OH-离子,因为随着pH值的提高,磷酸钙的溶解性降低,采用Ca(OH)2除磷要求的pH值为8.5以上。 但在pH值为8.5到10.5的范围内除了会产生磷酸钙沉析外,还会产生碳酸钙,这也许会导致在池壁或渠、管壁上结垢。其反应式 Ca2++CO32-→CaCO3 与钙进行磷酸盐沉析的反应除了受到PH值的影响,另外还受到碳酸氢根浓度(碱度)的影响。在一定的PH值惰况下,钙的投加量是与碱度成正比的。 对于软或中硬的污水,采用钙沉析时,为了达到所要求的PH值所需要的钙量是很少的,具有强缓冲能力的污水相反则要求较大的钙投加量。 铝盐的混凝沉淀: Al2(SO4) 3 + 6H2O----2Al(OH) 3+3SO42-+6CO2 Al2 (SO4) 3 + 2PO4----2AlPO4+3SO42- 在pH为6.0—6.5的条件下,每1mol的磷需要加铝1.5-3.0 mol。如果水显碱性,在加铝之前应先降低pH以减少Al(OH)3沉淀。 铁盐的混凝沉淀: Fe2(SO4)3 + 3HCO3----Fe(OH)3+2SO42-+3CO2

加药系统的计算

加药系统的计算 1、溶液池容积 计算公式:1417aQ w cn = 式中W 1——溶液池的容积(m 3); Q ——设计处理水量(m 3/h ); a ——混凝剂最大投加量(mg/L ) c ——混凝剂的浓度,一般采用5%~20%; n ——每日调制次数,一般不超过3次。 例:Q=1500 m 3 /h 混凝剂为聚丙稀酰胺,最大投药量为30mg/L ,药溶液浓度为c=10%,混凝剂每日配置次数为2次。 1417aQ w cn ==30150041715n ××=3.6 m 3 a =30 mg/L ,Q=1500 m 3 /h , c=10%(注意:在带入上式计算时,c 值为百分数的份数值), n=2次 溶液池采用钢混结构 ,溶液池设置2个,每个容积W 1。 单池尺寸:B ×L ×H=5.5×3.0×(1.3+0.3+0.3)m 高度中包括超高0.3m,沉渣0.3米。 溶液池实际有效容积: W 1′=5.5×3.0×1.3=21.44 m 3(满足要求)。 池旁设工作台,宽1,0~1.5米,池底坡度为0.02。底部设置DN100mm 的放空管,采用硬聚氯乙烯管,池内壁用环氧树脂进行防腐处理。沿池面接入药剂稀释用给水管DN80mm 一条,于两池分设放水阀门,按1h 放满考虑。 2、溶解池容积 计算公式:W 2=(0.2~0.3) W 1 式中:W 2——溶解池容积(m 3);一般采用(0.2~0.3) W 1; W 1——溶液池容积(m 3)。 例: 溶解池的容积W 2 =0.28 W 1=0.28×21.44=6.0 m 3 溶解池的尺寸:B ×L ×H=2.0m ×2.0m ×(1.5+0.3+0.2)m 高度中含超高0.3米,底部沉渣高0.2米。为方便操作,池顶高出地面0.8米。 溶解池实际有效容积:W 2′=2.0m ×2.0m ×1.5m=6.0 m 3

各种加药计算

各种加药计算 1. 浓联氨的需用量的计算: N2H4= c*d*v*1000/w (kg) 式中:c——欲配溶液的百分比浓度 d——所配制溶液的比重(稀联氨溶液可取1.0g/m3) v——所配稀联氨溶液体积m3 w——浓联氨的百分比浓度(一般为40%) 2.一般是程序控制,连续加入. 1. 氢氧化钠和碳酸钠加药量的计算 (1) 空锅上水时给水所需加碱量 X1=(YD-JD +JD+ JDGMV 式中 :X1 一一空锅上水时 , 需加 NaOH 或 Na2C03 的量 ,g; YD 一一给水总硬度 ,mmol/L; JD 一一给水总碱度 ,mmol/L; JDG 一一锅水需维持的碱度 ,mmol/L; V 一一锅炉水容量 ,m3; M 一一碱性药剂摩尔质量 ; 用 NaOH 为 40 g/mol, 用Na2C03 为 53g/mol 。 (2) 锅炉运行时给水所需加碱量 1) 对于非碱性水可按下式计算 X2=(YD-JD +JDGP)M 式中 :X2 一一每吨给水中需加 NaOH 或 Na2C03 的量 ,g/t; PL 一锅炉排污率 ,10-2; 其余符号同上式。 如果 NaOH 和 NazC03 同时使用时 , 则在上述各公式中应分别乘以其各自所占的质量分数 , 如 NaOH 的用量占总碱量的η×10-2, 则 Na2C03 占 (1-η) ×10-2 , 两者的比例应根据给水水质而定。一般对于高硬度水、碳酸盐硬度高或续硬度高的水质宜多用 NaOH, 而对于以非碳酸盐硬度为主的水质 , 应以 Na2C03 为主 , 少加或不加 NaOH 。 2) 对于碱性水 , 也可按上式计算 , 但如果当 JDG 以标准允许的最高值代入后 , 计算结果出现负值 , 则说明原水钠钾碱度较高 , 将会引起锅水碱度超标 , 宜采用偏酸性药剂 , 如 Na2HP04 、 NaHJ04 等。 2. 磷酸三纳 (Na3P04 · 12H20) 用量计算 磷酸三纳在锅内处理软水剂中 , 一般用来作水渣调解剂 和消除残余硬度用。当单独采用锅内水处理时 , 加药量是按经验用量计算。

化学除磷简介

化 学 除 磷 简 介

污水处理厂化学除磷
一、 现状 由于广泛使用含磷洗涤剂,我国城市污水中普遍含有一定量的 磷,一般为 5-10mg/L。磷是藻类繁殖所需各种成分中的限制性因素 之一, 水体中磷含量的高低与水体富营养化程度有密切的关系。 同时, 对于引发水体富营养化而言,磷的作用远大于氮的作用,水体中磷的 浓度达到一定数值时就可以引起水体的富营养化。因此,在污水处理 中进行除磷是必要的。我国《城镇污水处理常污染物排放标准》 (GB18918-2002)中明确规定,自 2006 年 1 月 1 日起建设的污水处 理厂总磷指标的一级 A 排放标准为 0.5mg/L。 污水中的磷可以通过 化学和生物两种方法去除。生物除磷是一种相对经济的除磷方法,但 由于现阶段生物除磷工艺还无法保证出水总磷稳定达到 0.5mg/L 标准 的要求,所以常需要采用或辅助以化学除磷措施。 二、 化学除磷原理 化学除磷主要是通过化学沉析过程完成的, 化学沉析是指通过向 污水中投加无机金属盐药剂与污水中溶解性的盐类(如磷酸盐)反应 生成颗粒状、非溶解性的物质。实际上投加化学药剂后,污水中进行 的不仅是沉析反应,同时还发生着化学絮凝作用,即形成的细小的非 溶解状的固体物互相粘结成较大形状的絮凝体。
2

三、化学除磷药剂 为了生成非溶解性的磷酸盐化合物, 用于化学除磷的化学药剂主 要是金属盐药剂和氢氧化钙。 许多高价金属离子药剂投加到污水中后 都会与污水中的溶解性磷离子结合生成难溶解性的化合物, 但出于经 济原因考虑,用于磷沉析的金属盐药剂主要是 Fe 盐、Fe2+盐和 Al3+ 盐,这些药剂是以溶液和悬浮液状态使用的。除金属盐药剂外,氢氧 化钙也用作沉析药剂,反应生成不溶于水的磷酸钙。 污水化学除磷 中常用的药剂类型详见表 1。 表1
类型 名称
3+
污水净化常用药剂
分子式 状态
固体
Al2(SO4)3·18H2O
硫酸铝
Al2(SO4)3·14H2O
液体
nAl2(SO4)3·xH2O+mFe2(SO4)3·yH2O 铝盐 AlCl3 氯化铝 AlCl3+FeCl3
固体
液体
液体
聚合氯化铝
[Al2(OH)nCl6-n]m
液体
二价铁盐
硫酸亚铁
FeSO4·7H2O
固体
3

水管理方案计划药剂及其投加方法

目录 反渗透专用药剂及投加方法 (2) 第一节絮凝剂 (2) 一 MPT150絮凝剂 (2) 二 FT317 絮凝剂 (3) 三絮凝剂投加方法(计算) (3) 第二节阻垢剂 (4) 一 MDC150 专用阻垢剂 (4) 二 MDC220 专用阻垢剂 (5) 三阻垢剂投加方法 (6) 三阻垢剂投加方法计算 (7) 第三节膜杀菌剂 (8) 一 BiomateMBC 2881膜杀菌剂 (8) 二 Biomate TM MBC881杀菌剂 (9) 三反渗透杀菌剂的投加计算 (9) 第四节膜清洗剂 (11) 一 Kleen MCT103膜清洗剂 (11) 二 Kleen MCT511膜清洗剂 (12) 附录:水处理反渗透专用药剂 (13)

反渗透专用药剂及投加方法 第一节絮凝剂 絮凝剂的介绍: (1) 作用:能够使水中小分子胶体,颗粒聚集成大分子胶体,颗粒而被去除的药剂. 常用的絮凝剂为美国通用MPT150. (2) MPT150絮凝剂是专为多介质过滤器显著改善胶体的去除率而设计,MPT150简洁地说是高分子有机凝结剂,可以直接在多介质过滤器前加入。 一 MPT150絮凝剂 产品特点 1.与反渗透膜相容,不会在薄膜上沉积 2.经过认证可用于瓶装饮用水,饮用水用合格认证 (ANSI/NSF60认证)标准 3.与HyperSoerse MDC150,MDC220,MDC756,MDC754,MDC702兼容 4.增强膜的抗裂性 5.超高分子量,絮凝效果非常好 6.用途说明MPT150是一种高分子量的有机絮凝剂,通过改进性的合成和官能团合理的定位,使其絮凝性能大为增 强。对于城市水二次过滤等低浊水的处理是较为适合的。 已经广泛应用于石油、化工电力、饮料等行业的水处理系 统中。 产品特性外观:外观:清澈的琥珀色液体 密度:1.1±0.05 PH(2%):6.0±1.0 冰点:-3°C 最低储藏温度:0°C 粘度:103.6cp(25°C) 注意事项 特别注意性质相反的阻垢剂/分散剂和絮凝剂会引起凝结反应,导致膜的严重污染,MPT150适合与MDC754/MDC220阻垢剂配合使用,这款絮凝剂是为了与MDC754/MDC220相互联合使用而设计。 用量 典型的加药量范围是0.2-2.5ppm,最合适的用量根据进入多介质过滤器前的水质状况而定。常规的药剂稀释浓度是1%-2%。重要说明

污水处理中化学除磷药剂如何投加

污水处理中化学除磷药剂如何投加 化学除磷的投加位置 化学除磷的基本原理是将溶解性的磷转化为化学沉淀物,在污泥沉淀过程中去除。用于废水中化学沉淀除磷的化学物质有铁盐、铝盐和钙盐,其中铁盐较为常用。 化学除磷药剂的投加量需结合整个处理系统进行考虑。应充分利用生物除磷作用对磷的吸收,使化学药剂得到有效利用,并使污泥的产量最小化。 根据出水中的磷浓度的不同目标,化学药剂可以在不同的投加点投加,若在初沉池中进行化学除磷,还需要考虑下游微生物对磷的需求。若投加药剂去除了过量的磷,则生物系统将面临营养物质缺乏的问题。 铁或亚铁化合物可以在初沉池前投加,并在初沉池中沉淀。铁盐的除磷效果取决于反应时间的长短。完全反应需要5 ~ 10min,因此需要铁盐与污水的混合反应区以形成难溶沉淀物。 若没有条件设置混合反应区,则需将药剂投加在更上游的区域,以保证足够的停留时间。铁盐也可以在二沉池前投加,铁盐沉淀物在沉淀池上游形成,并在沉淀池中从系统中分离。 亚铁盐在曝气池前投加,因为亚铁离子氧化成铁离子需要消耗额外的氧气;过量投加会增加出水中的离子浓度,因此亚铁离子不能在二沉池中投加。过量或未反应的亚铁离子一旦被带入消毒系统,将消耗氯气,同时形成沉淀(提高出水总悬浮固体TSS浓度)。 此外,若采用紫外线消毒系统,铁会干扰紫外线的吸收,在灯管上形成淤积,加快灯管的清洗频率。建议每个污水处理厂进行小试,以确定达到出水溶解性磷目标值所需的实际摩尔投加量。

化学除磷的投加量 通常磷沉淀所需的铁盐摩尔投加量基于出水期望的溶解性磷浓度而非进水磷浓度。若初沉池将磷的浓度降低到1mg/L,需要投加的铁盐Fe3+: P的摩尔比为1.67:1或质量比3:1;在二级处理系统中去除0.5 mg/L溶解性磷需要投加的铁盐Fe3+:P的摩尔比2.27:1或质量比4.1:1。 此外,投加铁离子无法使出水中溶解性磷浓度低于0.10mg/L。要达到这个浓度,则需要投加的铁盐与磷的摩尔比为12:1。 药剂存储和操作问题 铁盐或亚铁盐呈酸性,因此需考虑存储和操作的问题。可用玻璃纤维增强塑料(FRP)或聚乙烯存储池来存储氯化铁、氯化亚铁、硫酸铁或硫酸亚铁。计量泵可采用蠕动泵、螺杆泵或隔膜泵。应尽量在接近投加点附近添加,以减少电镀作用的影响。泵体需采用聚氯乙烯(PVC)材料。管道、阀门及配件需采用PVC或过氯乙烯(CPVC)材料。

几种化学除磷药剂效果分析

几种化学除磷药剂效果分析 水体中磷含量的高低与水体的富营养化程度直接相关。废水除磷的方法有很多,主要有化学法、物理法、生物法。本文简单介绍下化学除磷法。化学除磷法是通过投加化学药剂,去除水中磷的方法。化学除磷法中最重要的是化学除磷药剂的选择,化学除磷药剂主要是铝盐、铁盐、和钙盐。常用的有石灰、硫酸铝、氯化铝、三氯化铁、硫酸铁、硫酸亚铁、聚合硫酸铁等。 几种化学药剂的除磷效果分析: 铁盐除磷反应分析: 铁盐除磷的代表有聚合硫酸铁、硫酸亚铁、三氯化铁等。 铁盐除磷反应方程式: 主反应:Fe3++PO3-4=FePO4↓Fe2++PO3-4=Fe3(PO4)2↓ 副反应:Fe3++3HCO-3=Fe(OH)3↓+3CO2

铁盐除磷的过程如下:铁盐溶解于水中后,三价铁与水中的磷酸根发生反应生成难以溶解的磷酸盐,同时铁盐溶解吸水后发生水解反应和聚合反应,生成具有较长线性结构的多核羟基络合物。这些含铁的羟基络合物能有效降低或消除水体中胶体的ξ电位,通过电中和,吸附架桥及絮体的卷扫作用使胶体凝聚,再通过沉淀分离将磷去除。 铝盐除磷反应分析: 铝盐除磷的代表为:聚合氯化铝、硫酸铝等。铝盐除磷的机理主要是利用氢氧化铝的吸附作用。 铝盐除磷的反应方程式如下: Al3++HnPO(3-n)4=AlPO4↓+nH+ 铝盐除磷的原理是:当铝盐投加于水体中时,三价铝与磷酸根发生反应,同时三价铝水解生成单核络合物,单核络合物通过进一步的碰撞组合,形成多核络合物。这些多核络合物都具有较高的正电荷和较高的比表面积,能够凝聚沉淀,

中和水中的胶体电荷,降低水中的ξ电位,促进了胶体和悬浮物等快速脱稳、凝聚,再通过沉淀将磷去除。 钙盐除磷反应分析: 钙盐除磷的反应方程式:Ca2++HCO-3+OH-=CaCO3↓+H2O 5Ca2++4OH-+3HPO2-4=Ca5(OH)(PO4)3↓+3H2O 钙盐通常是以石灰的形式投加的,石灰投加到水中后可以与水中的碳酸根发生反应生产不溶物碳酸钙,同时过量的钙离子还可与水中的磷酸盐发生反应生成羟基磷灰石沉淀物,碳酸钙同时作为增重剂有助于磷酸物的沉淀,从而将磷除去。 在实际的除磷工程中,应根据不同地区水体的情况及处理目标及现场工艺选择合适的除磷药剂。

化学除磷的设计计算

化学除磷的设计计算 1前言 在静止的或流动缓慢的水体中,如果磷的浓度过高,会造成水体的富营养化,其危害已众所周知,因而在污水处理中进行除磷是必要的。我国《污水综合排放标准》(8978—1996)规定,城市污水处理厂磷酸盐(以P计)一级排放标准为0.5mg/l。 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。本文主要介绍化学除磷的基本机理、主要工艺形式和药剂投加量的计算方法。 2污水中的磷负荷 欧洲一些国家曾对生活污水中的总磷PT做过多次调查,主要结果见表1。 由人类食物产生的磷是不变的,但国内外目前普遍开始采用无磷洗涤剂,所以由洗涤剂产生的磷几年降低了许多。城市污水原水中的磷浓度在我国主要取决于工业废水中的磷含量。国外生活污水一般为10~25mg/l,我国一般为5~10mg/l。其大部分是无机化合磷,并是溶解状的,这一部分主要由来自洗涤剂的正磷酸盐和稠环磷酸盐组成。总磷中的一小部分是有机化合磷,其以溶解和非溶解状态存在。稠环磷酸盐(如P3O105-)和有机化合磷(核酸)一般在污水管网中和污水处理中就已经转化为正磷酸盐(PO43-)。 3化学除磷的基础 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中 溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,

反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异(如图1所示)。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 4化学除磷药剂的类型

次氯酸钠投加量计算

市面上的次氯酸钠原液纯度为10%,为了精确投加、防止结晶,我们稀释成1%的次氯酸钠溶液。即原液与水的比例为1 :9。设备的药箱容积为200L,即往药箱中加:20公斤药,180公斤水。共200公斤溶液。按照次氯酸钠溶液的密度为1来计算,即1升次氯酸钠溶液=1公斤=1千克 水处理次氯酸钠投加的计算 近日,大连悦威水处理公司为一家食品有限公司安装了一套100g每小时的次氯酸按投加器。次氯酸钠投加器使用液体次氯酸钠药剂,按照生活用水水质要求,投药量通常为1-2ppm。本工程用先进的100g流量型次氯酸钠投加器,最大投加量为100g/h,可根据流量变化在10-100%范围内调节产量。 在设备安装、调试、培训的过程中,甲方负责设备操作的同志非常认真负责,我公司工作人员对其进行了深入的指导培训。包括次氯酸钠投加量的计算方法、设备的运行操作说明。1000毫克等于1克那1毫升水等于1000毫克,也就是1克, 1)次氯酸钠药液的配比: 市面上的次氯酸钠原液纯度为10%,为了精确投加、防止结晶,我们稀释成1%的次氯酸钠溶液。即原液与水的比例为1 :9。设备的药箱容积为200L,即往药箱中加: 20公斤药,180公斤水。共200公斤溶液。 按照次氯酸钠溶液的密度为1来计算,即1升次氯酸钠溶液=1公斤=1千克 2)次氯酸钠加药量的计算: 要求水处理中投加次氯酸钠(有效氯)的浓度为0.3毫克/升=0.3克/吨,保证水中细菌、微生物全部杀死,达到生活应用水标准。 平均每小时处理井水70吨,那么每小时投加的纯的次氯酸钠(有效氯)为: 70吨/小时 × 0.3克/吨 = 21克/小时 那么每小时投加的1% 浓度的次氯酸钠溶液为21克÷1%= 2100克=2.1千克 3)一箱药能够用的时间: 药箱200公斤,一小时加2.1公斤,那么一箱药用的时间: 200千克 ÷ 2.1千克/小时=95小时, 平均每天用水12小时,95÷12=7.8天。即平均每不到一个多星期用完一箱200公斤次氯酸钠溶液。常见的次氯酸钠药液的配比: 1、自来水消毒杀菌,加药量一般为1~3mg/l。 2、热电厂循环水、海水杀菌除藻,加药量一般为3~5mg/l。 3、污水处理后生产的中水,加药量一般为5~10mg/l。 石油行业的回填水(注水),加药量一般为3~6mg/l。 4、医院废水杀菌消毒,加药量一般为30~50mg/l。 5、养殖业、畜禽舍的消毒杀菌,加药量一般为5~10mg/l。 6、畜产品消毒杀菌,加药量一般为1~3mg/l。 7、蔬菜、果品及食品的杀菌消毒,加药量一般为1~3mg/l。 8、酒店、饭店、医院、食品与肉类加工企业及公共设施环境的消毒,加药量一般为1~3mg/l。 9、游泳池杀菌消毒,加药量一般为3~5mg/l。 10、含氰废水处理,加药量一般为40~50mg/l。 11、纺织印染的胚布漂白,加药量一般为1~3g/l;造纸业的纸张漂白,加药量一般为0.5~

除磷剂使用方法技术指导书

邓州市河流除磷工程

目录 一、水中磷的存在形式 (2) 1.1、存在形式 (2) 1.2、总磷的测定原理介绍 (3) 1.2.1、消解原理 (3) 1.2.2、分光光度计原理 (3) 二、除磷方法简介 (5) 2.1、除磷机理 (5) 2.2、除磷方法 (5) 2.2.1、化学除磷法 (5) 2.2.2、生物除磷法 (6) 三、除磷剂简介 (7) 3.1、铝盐化学除磷药剂 (7) 3.2、铁盐化学除磷药剂 (7) 3.3、氢氧化钙除磷药剂 (7) 3.4、复合新型除磷药剂 (8) 四、除磷剂使用方法 (9) 4.1、投加量的确定 (9) 4.2、直接投加法 (9) 4.3、稀释之后投加法 (9) 五、相关水质量标准和排放标准 (10) 5.1、地表水环境质量标准 (10) 5.2、污水综合排放标准 (10)

一、水中磷的存在形式 1.1、存在形式 随着工农业生产的增长、人口的急剧增加、含磷洗涤剂和农药化肥的大量使用,水体中的磷盐日益增加。虽然氮磷同为水体生物的重要营养物质,但是藻类等水生生物对磷更敏感,而且当水体中的氮浓度较低时,水体中的蓝藻、绿藻可通过固氮作用来补充氮浓度不足,可见磷是水体富营养化的最主要的控制因子。因此,有效降低排放废水中的磷含量已成为防治水体富营养化的重要途径之一。 天然水和废水中含有的磷绝大多数以各种形式的磷酸盐存在,也有有机磷的化合物。从化学形式上看,水中的磷化合物可分以下几类。它们存再于水溶液中,腐殖质粒子中和水生生物中。 (1) 正磷酸盐,即PO43-、HPO 42-、H 2 PO 4 -。 (2) 缩合磷酸盐,包括焦磷酸盐、偏磷酸盐、聚合磷酸盐等,如P 2O 7 4-、P 3 O 10 5-、HP 3 O 9 2- 等。 (3) 有机磷化合物(如磷脂等)。 一般天然水体中磷酸盐的含量不高。化肥、冶炼、合成洗涤剂等行业的工业废水及生活污水中含有较多的磷存在。磷是生物生长必须的元素之一。但水中含磷量过高时(如超过0.2mg/L),则可能造成藻类过度的繁殖,甚至数量上达到有害的程度(称为富营氧化或优氧化),此时则会造成湖泊、河流等水体的透明度降低,水质变坏。所以磷是评价水质的重要指标之一。

化学除磷药剂投加量

创作编号:BG7531400019813488897SX 创作者:别如克* 生物除磷工艺同步化学除磷药剂 化学除磷原理 化学除磷是利用无机金属盐作为沉淀剂,与污水中的磷酸盐类物质反应形成难溶性含磷化合物与絮凝体,将污水中的溶解性磷酸盐分离出来。化学除磷的药剂主要有铁盐、铝盐和石灰,由于石灰对生物处理的pH影响较大,加之容易引起管道堵塞问题,给运行管理带来很多麻烦,一般在以生物除磷为主,化学除磷为辅的污水处理厂中很少采用。目前,国内常爱用铁盐或者铝盐作为沉淀剂,其与磷的化学反应式如下(1)、(2): Al3++PO43- →Al PO4↓(1) Fe3++PO43- →Fe PO4↓(2) 与沉淀反应相竞争的反应式金属离子与OH-的反应,反应式如下(3)、(4): Al3++ 3OH- →Al (OH)3↓(3) Fe3++ 3OH- →Fe (OH)3↓(4) 金属氢氧化物会形成大块的絮凝体,这对于沉淀产物的絮凝是有力的,同时还会吸附胶体状的物质、细微悬浮颗粒。 除磷药剂投加量的计算 由式(1)和式(2)可知去除1mol的磷酸盐,需要1mol的铁离子或者铝离子。由于在实际工程中,反应并不是100%的有效进行的,加之OH-会参与竞争反应,与金属离子反应,生成相应的氢氧化物,如(3)、(4)式,所以实际中化学沉淀药剂一般需要超量投加,以保证达到所需的出水P 浓度。《给水排水设计手册》第五册和德国设计规范中都提到了同步沉淀化

学除磷可按照1mol磷需要1.5mol的铝盐或者铁盐来考虑,为了计算方便,实际中将摩尔换算成质量单位,如1molFe=56gFe,1molAl=27gAl,1molP=31gP,也就是去除1kg的磷,当采用铁盐时需要投加:1.5×(56/31)=1.5×1.8=2.7Kg Fe/Kg P,当采用铝盐时需要投加:1.5×(27/31)=1.5×0.87=1.3Kg Al/Kg P。 计算举例: 某城镇污水处理厂规模2万m3/d,已建成稳定运行,二沉池出水排放标准总磷≤1.0mg/L,运行数据表明二沉池出水实测总磷2.5mg/L,欲采用液体三氯化铁(FeCl3)作为同步化学除磷药剂,其有效成分为40%(400g/Kg FeCl3溶液),密度为1.42Kg/L,求所需要的除磷药剂。 解:化学除磷欲除去的磷含量2.5-1.0=1.5mg/L, 所需要的Fe的投加量至少为2.7×1.5×20000×10-3=81Kg/d; 折算成每天需要有效成分为40%的FeCl3溶液体积为V=81×(56+35.5×3)/(56×0.4×1.42)=420L=0.42m3/d 若采用固体聚氯化铝(PAC)作为辅助化学除磷的药剂,有效成分为30%(300g Al2O3/Kg PAC),求所需要的除磷药剂 解:化学除磷欲除去的磷含量2.5-1.0=1.5mg/L, 所需要的Al的投加量至少为1.3×1.5×20000×10-3=39Kg/d; 折算成每天需要有效成分为30%的固体PAC质量为M=39×(27×2+16×3)/(27×2×0.3)=245.56Kg PAC/d 理论计算量: 聚氯化铝(PAC)有效成分为30%(300g Al2O3/Kg PAC)(1gPAC含有0.159gAl) 除去1mg/L P盐,需要多少ppm的PAC?(1.3Kg Al/Kg P)。 1.3×1/0.159=8.18 mg/L PAC, 则理论上每除去1mg/L P盐需要8.18 mg/L PAC。 六水合三氯化铁(FeCl3·6H2O)含量98%(1g FeCl3·6H2O含有0.203gFe)

芬顿试剂的投加比例量计算

芬顿试剂的投加比例量计算 时间:2015-03-10 16:21 来源:原创作者:admin 点击: 8111 次 芬顿试剂的应用 芬顿试剂法是通过硫酸亚铁与双氧水相结合的一种深度处理工艺,利用硫酸亚铁和双氧水的强氧化还原性,生成反应强氧化性的羟基自由基,与难降解的有机物生成自由基,在化工废水中普遍应用,在电镀废水处理中最为广泛。芬顿法反应化 学方程式可以将许多高污物,如高cod,高磷,高氨氮与色度得以有效降解。 芬顿药剂的投加比例量计算 芬顿药剂主要组成包括硫酸亚铁与双氧水,这两种药剂也常被单独用于废水处理中,硫酸亚铁主要作为还原剂、混凝剂使用,而双氧水则作为强氧化剂使用。硫酸亚铁中2价铁离子与双氧水(H2O2)的强氧化还用作用生成羟基自由基的过程。两者组合技术则为高级强氧化技术。 先确定好芬顿硫酸亚铁与双氧水投加顺序,再根据废水性质计算出芬顿试剂的投加量,比如除COD,如果芬顿体系中如果氧化性物质多,那么硫酸亚铁的比例就要大一些,如果还原性物质多双氧水就要多一点,一般有机物体现为还原性,所以若是除COD的话,按照需要氧化200ppm的COD计算,可依照以下计算公式:双氧水与硫酸亚铁的质量比为1:2,加亚铁前保证处理反应器中的pH值在3.5~4.0,加入1400ppm的亚铁,再加入700ppm

的双氧水,反应40min左右。通常按质量浓度双氧水:COD=1:1,摩尔浓度Fe2+:H2O2=1:3换算即可,具体根据污染物浓度进行正交实验来确定。 以水中COD含量计算其投加量则H2O2:COD的质量浓度为1:1,可先计算出所需双氧水投加量,再按硫酸亚铁跟双氧水的体积比一般为:3:1。也就是说Fe2+:H2O2=1:3的摩尔浓度进行投加。具体的投加量并不是固定的,在实际应用中,可根据水中污染物进行调节,如水中还原性物质比较多,可相应投加多一点的双氧水,相反的氧化性物质比较多时则Fe2+的投加比例须增大。 芬顿药剂投加量除了与水中污染物含量有关(有机物一般体现为还原性),还与药剂含量及水质因素有关,因此芬顿药剂的投加比例及浓度需要根据实际情况进行调整(硫酸亚铁芬顿试剂投加过量对废水的影响)。

相关主题
文本预览
相关文档 最新文档