当前位置:文档之家› 不定积分求解方法及技巧

不定积分求解方法及技巧

不定积分求解方法及技巧
不定积分求解方法及技巧

摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。

一.不定积分的概念与性质

定义1如果F(x)是区间I上的可导函数,并且对任意的x∈I,有F’(x)=f(x)dx 则称F(x)是f(x)在区间I上的一个原函数。

定理1(原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原函数,即存在可导函数F(x),使得F(x)=f(x)(x∈I)

简单的说就是,连续函数一定有原函数

定理2设F(x)是f(x)在区间I上的一个原函数,则

(1)F(x)+C也是f(x)在区间I上的原函数,其中C是任意函数;

(2)f(x)在I上的任意两个原函数之间只相差一个常数。

定义2设F(x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数F(x)+C称为f(x)在区间I上的不定积分,记为?f(x)d(x),即?f(x)d(x)=F(x)+C

其中记号?称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分变量,C称为积分常数。

性质1设函数f(x)和g(x)存在原函数,则?[f(x)±g(x)]dx=?f(x)dx±?g(x)dx.

性质2设函数f(x)存在原函数,k为非零常数,则?kf(x)dx=k?f(x)dx.

二.换元积分法的定理

如果不定积分?g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[?(x)] ?’(x).做变量代换u=?(x),并注意到?‘(x)dx=d?(x),则可将变量x的积分转化成变量u的积分,于是有?g(x)dx=?f[?(x)] ?’(x)dx=?f(u)du.

如果?f(u)du可以积出,则不定积分?g(x)dx的计算问题就解决了,这就是第一类换元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。

定理1 设F(u)是f(u)的一个原函数,u=?(x)可导,则有换元公式

?f[?(x)] ?’(x)dx=?f(u)du=F(u)+C=F[?(x)]+C.

第一类换元法是通过变量代换u=?(x),将积分

?

f[?(x) ?’(x)dx 化为

?

f(u)du.但

有些积分需要用到形如x=?(t)的变量代换,将积分?

f(x)dx 化为

?

f[?(t)] ?’(t).

在求出后一积分之后,再以x=?(t)的反函数t=?1

-(X)带回去,这就是第二类换元法。

?

f(x)dx={

?

f[?(t)] ?’(t)dt})(1X t -=?.

为了保证上式成立,除被积函数应存在原函数之外,还应有原函数t=?1

-(x )存在的条

件,给出下面的定理。

定理2 设x=?(t)是单调,可导的函数,并且?‘(t )≠0.又设f[?(t)] ?’(t)具

有原函数F (t ),则?f(x)dx=?f[?(t)] ?’(t)dt=F(t)+C=F[?

1

-(x)]+C

其中?

1

-(x )是x=?(t )的反函数。

三.常用积分公式 1 基本积分公式

(1)

?kdx=kx+C(k 是常数); (2)

?

x u

dx=1

u x 1

u +++C(u ≠-1);

(3)

?

x dx =ln x +C ; (4)?2

x 1dx +=arctanx+C; (5)

?2

x

1dx -=arcsinx+C; (6)

?cosxdx=sinx+C;

(7) ?sinxdx=-cosx+C ; (8)

?x

2

cos dx =?sec 2

xdx=tanx+C; (9)

?x

dx 2

sin =?csc 2

xdx=-cotx+C; (10) ?secxtanxdx=secx+C; (11) ?cscxcotxdx=-cscx+C; (12) ?e x dx= e x

+C; (13) ?a x

dx= e x

+C; (14) ?shxdx=chx+C; (15) ?chxdx=shx+C. (16) ?tanxdx=-ln cosx +C; (17)

?

cotxdx=ln sinx +C; (18)

?

secxdx=ln tanx secx ++C;

(19)cscxdx=ln x cot cscx -+C; (20)

?

2

2x a dx +=a

x x ln a 1+-a +C; (21)

?22x a dx -=arcsin

a

x

+C; (22) ?2

2x a dx +=ln(x+22a x ++C;

(23)

?

2

2a x dx -=ln 22a x x -+

+C.

2.凑微分基本类型

四.解不定积分的基本方法

四.求不定积分的方法及技巧小汇总~

1.利用基本公式。(这就不多说了~)

2.第一类换元法。(凑微分)

设f(μ)具有原函数F(μ)。则

C x F x d x f dx x x f +==???)]([)()]([)(')]([?????

其中)(x ?可微。

用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:?

+-+dx x x x

x )

1(ln )1ln(

【解】)

1(1111)'ln )1(ln(+-=-+=

-+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2

)ln )1(ln(2

1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:?

+dx x x x 2

)ln (ln 1

【解】x x x ln 1)'ln (+=

C x x x x x dx dx x x x +-==++??ln 1

)ln (ln )1(ln 122

3.第二类换元法:

设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式

??=dt t t f dx f )(')]([x)(??

第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会用。主要有以下几种:

acht

x t a x t a x a x asht x t a x t a x a x t

a x t a x x a ===-===+==-;;:;;:;:csc sec )3(cot tan )2(cos sin )1(222222 也奏效。

,有时倒代换当被积函数含有::t

x c bx ax x t d

cx b

ax d cx b ax t

b ax b ax m n n

n

n 1

)6()5()4(2=++?=++++=++

4.分部积分法.

公式:??-=νμμννμd d

分部积分法采用迂回的技巧,规避难点,挑容易积分的部分先做,最终完成不定积分。具体选取νμ、时,通常基于以下两点考虑:

(1)降低多项式部分的系数 (2)简化被积函数的类型 举两个例子吧~! 例3:dx x

x x ?

-?2

31arccos

【解】观察被积函数,选取变换x t arccos =,则

=-=-=-???

tdt t dt t t t

t dx x x x 332

3cos )sin (sin cos 1arccos

C x x x x x C t t t t t t d t t t t dt t t t t t t t td t d t t +-+---=+---=

-+-=---=-=-????arccos 1)2(3

1

3291cos 91

cos 32sin sin 31cos )1sin 31

(sin sin 31)sin sin 31

(sin sin 31)sin sin 31(sin )1(sin 22333233332

例4:?xdx 2arcsin 【解】

??--=dx

x x

x x x xdx 2

2

211arcsin 2sin arcsin

C

x x x x x dx x

x x x x x x xd x x +--+=----+=-+??2arcsin 12arcsin 121arcsin 12arcsin 1arcsin 2arcsin 22

222

上面的例3,降低了多项式系数;例4,简化了被积函数的类型。

有时,分部积分会产生循环,最终也可求得不定积分。 在??-=νμμννμd d 中,νμ、的选取有下面简单的规律:

选取的函数不能改变。

,会出现循环,注意,,,νμββνμνμνμ)3(sin ,cos )3()(arcsin ,arctan ,ln )2(cos ,sin ,)()1(x x e x P x x x ax ax e x P ax

m ax m ======

将以上规律化成一个图就是:

但是,当x x arcsin ln ==νμ,时,是无法求解的。

对于(3)情况,有两个通用公式:

C

bx b bx a b a e dx bx e I C bx b bx a b

a e dx bx e I ax ax

ax

ax

+++=?=+-+=?=??)sin cos (cos )cos sin (sin 2

222

21

5.几种特殊类型函数的积分。

(1)有理函数的积分 有理函数

)()(x Q x P 先化为多项式和真分式)()(*x Q x P 之和,再把)

()

(*x Q x P 分解为若干个部分分式之和。(对各部分分式的处理可能会比较复杂。出现?

+=n

n x a dx

I )(22时,记得用递推公式:121222)

1(23

2))(1(2----++-=

n n n I n a n a x n a x I )

例5:dx x x x x x ?+--+2

23246)

1(2

4 【解】=++-++=+--+223222346223246)1(24)1()1(24x x x x x x x x x x x x 2

2322)1(2

41++-+x x x x x

2

22

2422242223222)1(12)1(24)1(24)1ln(211x dx x x x xdx x x x dx x x x C

x dx x x =++=++=++++=+????μ

C x x C d d d ++-=+-+=+-=

+-+=++???)

1(1111))1(11()1()1()1(12222

2222

222μμμμμμμμμμμμμμ

故不定积分求得。

(2)三角函数有理式的积分

万能公式:?????

?????

?

+-=

+=2tan 12tan 1cos 2tan 12

tan 2sin 22

2x x

x x x x 化为有理函数可用变换2

tan )cos ,(sin )cos ,(sin x t dx x x Q x x P =?的积分,但由于计算较烦,应尽量避免。

对于只含有tanx (或cotx )的分式,必化成

x

x

x x sin cos cos sin 或

。再用待定系数 x

b x a x b x a B x b x a A sin cos )

sin'cos'()sin cos (++++来做。

(3)简单无理函数的积分

一般用第二类换元法中的那些变换形式。

像一些简单的,应灵活运用。如:同时出现x x +1和时,可令t x 2tan =;同时出现x x -1和时,可令t x 2sin =;同时出现x x arcsin 12和-时,可令x=sint ;同时出现x x arccos 12和-时,可令x=cost 等等。

学习完不定积分,觉得这部分内容对我们思维的灵活性要求很大,应该加大习题量,达到见多识广的效果,做完习题注意总结,以及类似题目的整理。熟记三角函数公式,不定积分基本公式,掌握各种求积分的方法。

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+

()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x s e c = ()22x a x f +=;设:t a x t a n = ()3分部积分法:??-=vdu uv udv 附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, , 积分后的函数仍是幂函数,而且幂次升高一次. 特别当 时,有 . 当 时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故 ( , )式右边的 是在分 母,不在分子,应记清. 当 时,有 . 是一个较特殊的函数,其导数与积分均不变.

应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

一道非常难的不定积分题目的解法

求∫arcsinx * arccosx dx的不定积分 解题思路:反复运用换元,将arcsinx 换成sinx的形式,将arccox 换成cosx的形式,最终简化题目的难度! 解题过程:第一步换元:将arccosx=t (xε[0,1],tε[0,π/2]),从而得出cost=x.将∫arcsinxarccosx dx换成∫t arcsin(cost) d(cost)。接下来怎么解呢? 先看看∫arcsinx dx=arcsinx *x- ∫xd(arcsinx) 从而简化题目的难度!那么你是否会产生一个想法,上面那条题目是否可以转化呢! 于是∫t* arcsin(cost)* d(cost)= ∫ td(arcsin(cost)cost+sint)= t(arcsin(cost)cost+sint)- ∫(arcsin(cost)cost+sint)dt 从而求∫ arcsin(cost)cost dt 第二步换元:将arcsin(cost)=p ,从而 sinp=cost,t=arccos(sinp).最终∫arcsin(cost)cost dt=∫psinp d(arccos(sinp))= ∫p sinp *(-1/√ 1-(sinp)^2)*cosp dp=∫p sinp*(-1/cosp)*cosp dp=-∫psinp dp=∫p dcosp=pcosp-∫cosp dp=pcosp-sinp+c 第三步:总结出答案,表示成x的形式。 ∫arcsin(cost)cost dt= arcsin(cost)(√ 1-cos^t)-cost+c

∫(arcsin(cost)cost+sint)dt= arcsin(cost)(√ 1-cos^t)-cost-cost+c= arcsin(cost)(√ 1-cos^t)-2cost+c ∫arcsinxarccosx dx=arcsinx(√1-x^2)-2x+c 这条题目很难,但是换元转化的思想很重要!!! 淮师 3/25/2010

常用求导积分公式及不定积分基本方法定稿版

常用求导积分公式及不定积分基本方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

一、基本求导公式 1. ()1x x μμμ-'= ()ln 1x x '= 2. (sin )cos x x '= (cos )sin x x '=- 3. 2(tan )sec x x '= 2(cot )csc x x '=- 4. (sec )tan sec x x x '= (csc )cot csc x x x '=- 5. ()ln x x a a a '=,()x x e e '= 6. () 2arctan 11x x '+= ()arcsin x '= () 2arccot 11x x '+=- ()arccos x '= 二、基本积分公式 1. 1d (111)x x x C μμμμ+=+ =-/ +?, 1ln ||+dx x C x =? 2. d ln x x a a x C a =+?,d x x e x e C =+? 3. sin d cos x x x C =-+?, cos d sin x x x C =+? 4. 2sec d tan x x x C =+? 2csc d cot x x x C =-+? 5. tan d ln |cos |x x x C =-+? cot d ln |sin |x x x C =+?

6. sec d ln |sec tan |x x x x C =++? csc d ln |csc cot |x x x x C =-+? 7. 2 1d arctan 1x x C x =++? arcsin x x C =+ 2211d arctan x x C a x a a =++? arcsin x x C a =+ 8. ln x x C =+ ( ln x x C =++ 9. 221 1d ln 2x a x C a x a x a -=+-+? 三、常用三角函数关系 1. 倍角公式 21cos 2sin 2x x -= 21cos 2cos 2x x += 2. 正余切与正余割 正割 1 sec cos x x = 22sec 1tan x x =+ 余割 1csc sin x x = 22 csc 1cot x x =+ 四、常用凑微分类型 1. 1 1 ()d d ()ln ()()()f x x f x f x C f x f x '==+??;

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

不定积分解题方法及技巧总结

不定积分解题方法及技巧总 结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2)ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 ) ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法:

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

不定积分的解题方法与技巧

不定积分的解题方法与技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一. 直接积分法(公式法) 利用不定积分的运算性质和基本积分公式直接求出不定积分 二. 第一类换元法 1.当遇到形如? ++c bx ax dx 2 的不定积分,可分为以下三种情况: (1)当0>?时,可将原式化为()()21x x x x --, 其中,21,x x 为c bx ax ++2的两个解,则原不定积分为: ()()()()()?? ? ?? ?------=--??? 221112211 x x x x d x x x x d x x x x x x dx ()C x x x x x x +---= 2 1 12ln 1 (2)当0=?时,可利用完全平方公式,化成() () ? --2 k x k x d 。然后根据基本积分 公式即可解决。 (3)当0

不定积分解法总结

不定积分解题方法总结 摘要:在微分学中,已知函数求它的导数或微分是需要解决的基本问题。而在实际应用中,很多情况需要使用微分法的逆运算——积分。不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。希望本文能起到抛砖引玉的作用,为读者在学习不定积分时提供思路。文中如有错误之处,望读者批评指正。 1 换元积分法 换元积分法分为第一换元法(凑微分法)、第二换元法两种基本方法。而在解题过程中我们更加关注的是如何换元,一种好的换元方法会让题目的解答变得简便。 1.当出现 22x a ±,22a x -形式时,一般使用t a x sin ?=,t a x sec ?=, t a x tan ?=三种代换形式。 C x a x x a dx C t t t t a x x a dx +++=+++==+? ??222 22 2 ln tan sec ln sec tan 2.当根号内出现单项式或多项式时一般用t 代去根号。 C x x x C t t t tdt t t tdt t x t dx x ++-=++-=--==???sin 2cos 2sin 2cos 2) cos cos (2sin 2sin 但当根号内出现高次幂时可能保留根号, c x dt t dt t t dt t t t dt t t t t x x x dx +- =--=--=--=??? ? ??-?-? = --? ????66 12 12 5 12 6 212 12arcsin 6 1 11 6 1 111 11 1 11 1 3.当被积函数只有形式简单的三角函数时考虑使用万能代换法。 使用万能代换2 tan x t =,

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法 This model paper was revised by LINDA on December 15, 2012.

一、基本求导公式 1. ()1x x μμμ-'= ()ln 1x x '= 2. (sin )cos x x '= (cos )sin x x '=- 3. 2(tan )sec x x '= 2(cot )csc x x '=- 4. (sec )tan sec x x x '= (csc )cot csc x x x '=- 5. ()ln x x a a a '=,()x x e e '= 6. () 2arctan 11x x '+= ()arcsin x '= () 2arccot 11x x '+=- ()arccos x '= 二、基本积分公式 1. 1d (111)x x x C μμμμ+=+ =-/ +?, 1ln ||+dx x C x =? 2. d ln x x a a x C a =+?,d x x e x e C =+? 3. sin d cos x x x C =-+?, cos d sin x x x C =+? 4. 2sec d tan x x x C =+? 2csc d cot x x x C =-+? 5. tan d ln |cos |x x x C =-+? cot d ln |sin |x x x C =+?

6. sec d ln |sec tan |x x x x C =++? csc d ln |csc cot |x x x x C =-+? 7. 2 1d arctan 1x x C x =++? arcsin x x C =+ 2211d arctan x x C a x a a =++? arcsin x x C a =+ 8. ln x x C =+ ( ln x x C =++ 9. 221 1d ln 2x a x C a x a x a -=+-+? 三、常用三角函数关系 1. 倍角公式 21cos 2sin 2x x -= 21cos 2cos 2x x += 2. 正余切与正余割 正割 1 sec cos x x = 22sec 1tan x x =+ 余割 1csc sin x x = 2 2csc 1cot x x =+ 四、常用凑微分类型 1. 1 1 ()d d ()ln ()()()f x x f x f x C f x f x '==+??;

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

不定积分求解方法毕业论文设计

不定积分求解方法毕业论文设计

学号 14121401576 Hunan Institute of Science and Technology 本科毕业论文 题目:关于不定积分解题思路的探讨 作者何宇届别2017 系别数学学院专业数学与应用数学 指导教师罗德仁职称讲师 完成时间2017年5月

关于不定积分解题思路的探讨 On the resolving idea of indefinite integral 专业:数学与应用数学 作者:何宇 指导老师:罗德仁 湖南理工学院数学学院 二○一七年五月岳阳

摘要 不定积分是求定积分的基础, 在一元微积分学中占有重要地位. 学好不定积分, 对于导数和微分学中其他相关知识的巩固很有帮助. 求解不定积分常用的方法主要有: 基本公式法, 换元积分法, 分部积分法, 有理函数的积分法. 如何快速找到解题的突破口, 灵活使用各类方法是关键. 我们从被积函数的特点出发, 从易到难, 对不定积分进行多角度的观察和分析, 比较各类积分法, 发现和总结规律, 提高不定积分解题能力. 关键词: 不定积分; 基本公式法; 换元积分法; 分部积分法; 有理函数的积分法

Abstract Indefinite integral is the foundation of definite integral, i t occupies an important position in unitary differential calculus. Grasp the solving methods of indefinite integral is helping to derivative and other relevant knowledge. S everal methods of solving i ndefinite integral are f requently used, such as basic formula method, change the variable, integration by parts, primitives of rational functions. What matters is how to quickly find the ideas of subject and flexibly use various method. We observed and analysised the indefinite integral multi-angle, on the characteristics of integrand, from simple to difficult, compare various methods, sum up the laws, improve solving ability of the indefinite integral problem . Keywords:indefinite integral; basic formula method; change the variable; integration by parts;integration by parts primitives of rational functions

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

不定积分求解方法及技巧

不定积分求解方法及技巧小汇总 摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。 一.不定积分的概念与性质 定义1如果F(x)是区间I上的可导函数,并且对任意的x∈I,有F’(x)=f(x)dx则称F(x)是f(x)在区间I上的一个原函数。 定理1(原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原函数,即存在可导函数F(x),使得F(x)=f(x)(x∈I) 简单的说就是,连续函数一定有原函数 定理2设F(x)是f(x)在区间I上的一个原函数,则 (1)F(x)+C也是f(x)在区间I上的原函数,其中C是任意函数;(2)f(x)在I上的任意两个原函数之间只相差一个常数。 定义2设F(x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数F(x)+C称为f(x)在区间I上的不定积分,记为?f(x)d(x),即?f(x)d(x)=F(x)+C 其中记号?称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分变量,C称为积分常数。 性质1设函数f(x)和g(x)存在原函数,则?[f(x)±g(x)]dx=?f(x)dx±?g(x)dx. 性质2设函数f(x)存在原函数,k为非零常数,则?kf(x)dx=k?

f(x)dx. 二.换元积分法的定理 如果不定积分?g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[?(x)] ?’(x). 做变量代换u=?(x),并注意到?‘(x)dx=d?(x),则可将变量x的积分转化成变量u的积分,于是有?g(x)dx=?f[?(x)] ?’(x)dx=?f(u)du. 如果?f(u)du可以积出,则不定积分?g(x)dx的计算问题就解决了,这就是第一类换元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。 定理1 设F(u)是f(u)的一个原函数,u=?(x)可导,则有换元公式?f[?(x)] ?’(x)dx=?f(u)du=F(u)+C=F[?(x)]+C. 第一类换元法是通过变量代换u=?(x),将积分?f[?(x) ?’(x)dx化为?f(u)du.但有些积分需要用到形如x=?(t)的变量代换,将积分?f(x)dx化为?f[?(t)] ?’(t).在求出后一积分之后,再以x=?(t)的反函数t=?1-(X)带回去,这就是第二类换元法。即 . ?f(x)dx={?f[?(t)] ?’(t)dt})(1X =? t- 为了保证上式成立,除被积函数应存在原函数之外,还应有原函数t=?1-(x)存在的条件,给出下面的定理。 定理2 设x=?(t)是单调,可导的函数,并且?‘(t)≠0.又设f[?(t)] ?’(t)具有原函数F(t),则?f(x)dx=?f[?(t)] ?’(t)dt=F(t)+C=F[?1-(x)]+C

常见不定积分的求解方法

常见不定积分的求解方法的讨论 马征 指导老师:封新学 摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。 关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。 The discussion of common indefinite integral method of calculating Ma Zheng Abstract there are four solutions of indefinite integration in this discourse: direct integration; exchangeable integration; parcel integration. It discussed the feasibility which these ways in the solution of integration, and it is helpful to solve indefinite integration quickly. Key words Indefinite integration,exchangeable integration, parcel integration.

0引言 不定积分是《高等数学》中的一个重要内容,它是定积分、广义 积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础, 要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是 常见不定积分的解法。不定积分的解法不像微分运算时有一定的法 则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运 算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出 来”的,就是说这些函数的原函数不能用初等函数来表示,例如 ?-x k dx 22sin 1(其中10<

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

相关主题
文本预览
相关文档 最新文档