当前位置:文档之家› 物理学版(刘克哲张承琚)课后习题标准答案

物理学版(刘克哲张承琚)课后习题标准答案

物理学版(刘克哲张承琚)课后习题标准答案
物理学版(刘克哲张承琚)课后习题标准答案

[物理学9章习题解答]

9-3两个相同的小球质量都是m ,并带有等量同号电荷q,各用长为l的丝线悬挂于同一点。由于电荷的斥力作用,使小球处于图9-9所示的位置。如果θ角很小,试证明两个小球的间距x可近似地表示为

.

解小球在三个力的共同作用下达到平衡,这三个力分别是重力m g、绳子的张力t和库

仑力f。于是可以列出下面的方程式

,(1)

图9-9

,(2)

(3)

因为θ角很小,所以

,

.

利用这个近似关系可以得到

,(4)

. (5)

将式(5)代入式(4),得

,

由上式可以解得

.

得证。

9-4在上题中,如果l = 120 cm,m = 0.010 kg,x = 5.0 cm,问每个小球所带的电量q为多大?

解在上题的结果中,将q解出,再将已知数据代入,可得

.

9-5氢原子由一个质子和一个电子组成。根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 5.29?10-11m。质子的质量m = 1.67?10-27kg,电子的质量m = 9.11?10-31kg,它们的电量为±e =1.60?10-19c。

(1)求电子所受的库仑力;

(2)电子所受库仑力是质子对它的万有引力的多少倍?

(3)求电子绕核运动的速率。

(1)电子与质子之间的库仑力为

.

(2)电子与质子之间的万有引力为

.

所以

.

(3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以

,

从上式解出电子绕核运动的速率,为

.

9-6 边长为a的立方体,每一个顶角上放一个电荷q。

(1)证明任一顶角上的电荷所受合力的大小为

.

(2) f的方向如何?

解立方体每个顶角上放一个电荷q ,由于对称性,每个电荷的受力情图9-10

况均相同。对于任一顶角上的电荷,例如b 角上的q

b ,它所受到的力、和大小也是相等的,即

.

首先让我们来计算的大小。

由图9-10可见,、和对的作用力不产生x 方向的分量;

对的作用力f1的大小为

,

f1的方向与x轴的夹角为45?。

对的作用力f2的大小为

,

f2的方向与x轴的夹角为0?。

对的作用力f3的大小为

,

f3的方向与x轴的夹角为45?。

对的作用力f4的大小为

,

f4的方向与x轴的夹角为α,。

于是

.

所受合力的大小为

.

(2) f的方向:f与x轴、y轴和z轴的夹角分别为α、β和γ,并且

,

.

9-7计算一个直径为1.56 cm的铜球所包含的正电荷电量。

解根据铜的密度可以算的铜球的质量

.

铜球的摩尔数为

.

该铜球所包含的原子个数为

.

每个铜原子中包含了29个质子,而每个质子的电量为1.602?10-19 c,所以铜球所带的正电荷为

.

9-8 一个带正电的小球用长丝线悬挂着。如果要测量与该电荷处于同一水平面内某点的电场强度e,我们就把一个带正电的试探电荷q0 引入该点,测定f/q0。问f/q0是小于、等于还是大于该点的电场强度e?

解这样测得的f / q

0是小于该点的电场强度e的。因为正试探电荷使带正电的小球向远离试探电荷的方向移动,q0受力f减小了。

9-9根据点电荷的电场强度公式

,

当所考查的点到该点电荷的距离r接近零时,则电场强度趋于无限大,这显然是没有意义的。对此应作何解释?

解当r→ 0时,带电体q就不能再视为点电荷了,只适用于场源为点电荷的场强公式不再适用。这时只能如实地将该电荷视为具有一定电荷体密度的带电体。

9-10离点电荷50 cm处的电场强度的大小为2.0 n?c-1 。求此点电荷的电量。

解由于

,

所以有

.

9-11有两个点电荷,电量分别为5.0?10-7c和2.8?10-8c,相距15 cm。求:

(1)一个电荷在另一个电荷处产生的电场强度;

(2)作用在每个电荷上的力。

解已知= 5.0?10-7c、= 2.8?10-8c,它们相距r = 15 cm ,如

图9-11所示。

图9-11

(1) 在点b产生的电场强度的大小为

,

方向沿从a到b的延长线方向。

在点a产生的电场强度的大小为

,

方向沿从b到a 的延长线方向。

(2) 对的作用力的大小为

,

方向沿从b到a的延长线方向。

对的作用力的大小为

.

方向沿从a到b的延长线方向。

9-12 求由相距l的 q电荷所组成的电偶极子,在下面的两个特殊空间内产生的电场强度:

(1)轴的延长线上距轴心为r处,并且r >>l;

(2)轴的中垂面上距轴心为r处,并且r >>l。

图9-12

(1)在轴的延长线上任取一点p,如图9-12所示,该点距轴心的距离为r。p点的电场强度为

.

在r >> l的条件下,上式可以简化为

固体物理课后答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52体心立方3π/ 8 ≈0.68面心立方2π/ 6 ≈0.74六方密 排2π/ 6 ≈0.74金刚石3π/16 ≈0.34 解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r 金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有 1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。 证明:体心立方格子的基矢可以写为

面心立方格子的基矢可以写为 根据定义,体心立方晶格的倒格子基矢为 同理 与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。根据定义,面心立方的倒格子基矢为 同理 而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。 证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为 即为平面的法线

根据定义,倒格子基矢为 则倒格子原胞的体积为 1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足 其中a 为立方边长。 解:根据倒格子的特点,倒格子 与晶面族(h, k,l)的面间距有如下关系 因此只要先求出倒格,求出其大小即可。 因为倒格子基矢互相正交,因此其大小为 则带入前边的关系式,即得晶面族的面间距。 1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立方边长为a ,写出最近邻和次近邻的原子间距。 答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于 次近邻原子数为6,次近邻原子间距为a ;

大学物理教程 (上)课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 代入,有 2 1) y =- 或 1= (2)将1t s =和2t s =代入,有 11r i = , 241r i j =+ 213r r r i j =-=- 位移的大小 r = = (3) 2x dx v t dt = = 2(1)y dy v t dt = =- 22(1)v ti t j =+- 2 x x dv a dt = =, 2y y dv a dt = = 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+ ,式中的R 、ω均为常 量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+ (2)质点的速率为 v R ω = = 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t d t θω= = 质点在t 时刻的法向加速度n a 的大小为 2 2 16n a R R t ω == 角加速度β的大小为 2 4/d ra d s d t ωβ== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s = =+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 d v k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

物理学第三版刘克哲张承琚课后习题答案第第章

[第1章习题解答] 1-3 如题1-3图所示,汽车从A地出发,向北行驶60 km到达B地,然后向东行驶60 km到达c地,最后向东北行驶50km到达D地。求汽车行驶的总路程和总位移。 解汽车行驶的总路程为 S=AB十BC十CD=(60十60十50)km=170 km; 汽车的总位移的大小为 Δr=AB/Cos45°十CD=(84.9十50)km=135km, 位移的方向沿东北方向,与方向一致。 1-4 现有一矢量R是时阃t 在一般情况下是否相等? 为什么? 在一般情况下是不相等的。因为前者是对矢量R的绝对值(大小或长度)求导,表示矢量R的太小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时问的变化和矢量方向随时同的变化两部分的绝对值。如果矢量方向不变,只是大小变化,那么这两个表示式是相等的。 1-5 一质点沿直线L运动,其位置与时间的关系为r =6t2-2t3,r和t的单位分别是米和秒。求: (1)第二秒内的平均速度; (2)第三秒末和第四秒末的速度, (3)第三秒末和第四秒末的加速度。

解:取直线L 的正方向为x 轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x 轴的正方向,若为负值,表示该速度或加速度沿x 轴的反方向。 (1)第二秒内的平均速度 11121220.41 2) 26()1624(--?=?----=--= s m s m t t x x v ; (2)第三秒末的速度 因为2612t t dt dx v -== ,将t=3 s 代入,就求得第三秒末的速度为 v 3=18m ·s -1; 用同样的方法可以求得第口秒末的速度为 V 4=48m s -1; (3)第三秒末的加速度 因为t dt x d 1212a 22-==,将 t=3 s 代入,就求得第三秒末的加速度为 a 3= -24m ·s -2; 用同样的方法可“求得第四秒末的加速度为 a 4= -36m ·s -2 1-6 一质点作直线运动,速度和加速度的大小分别为dt d v s =和dt d v a =,试证明: (1)vdv=ads : (2)当a 为常量时,式v 2=v 02+2a(s-s 0)成立。 解 (1) ads ds dt dv dv dt ds vdv === ; (2)对上式积分,等号左边为: )(2 1)(212 02200 v v v d vdv v v v v -==??

大学物理学第三版课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度与加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 2 22s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 就是随t 减少的, ∴ t s v v t l v d d ,d d 0-==-=船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=-=船 或 s v s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m,v =0,

求该质点在t =10s 时的速度与位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 34(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 m 7055102 1102s m 190102310432101 210=+?+?=?=?+?=-x v 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔 60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .

固体物理习题解答

《固体物理学》习题解答 ( 仅供参考) 参加编辑学生 柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章) 指导教师 黄新堂 华中师范大学物理科学与技术学院2003级

2006年6月 第一章 晶体结构 1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出 这两种结构的原胞与晶胞基矢,设晶格常数为a 。 解: 氯化钠与金刚石型结构都是复式格子。氯化钠的基元为一个Na +和一个Cl - 组成的正负离子对。金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。 由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为: 12 3()2()2()2a a a ? =+?? ?=+?? ?=+?? a j k a k i a i j 相应的晶胞基矢都为: ,,.a a a =?? =??=? a i b j c k 2. 六角密集结构可取四个原胞基矢 123,,a a a 与4a ,如图所示。试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的 晶面指数()h k l m 。 解: (1).对于13O A A '面,其在四个原胞基矢 上的截矩分别为:1,1,1 2 -,1。所以, 其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,1 2-,∞。 所以,其晶面指数为()1120。 (3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。所以,其晶面指数为()1100。 (4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。所以,其晶面指数为()0001。 3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的 比为: 简立方: 6 π ;六角密集:6;金刚石: 。 证明: 由于晶格常数为a ,所以: (1).构成简立方时,最大球半径为2 m a R = ,每个原胞中占有一个原子, 3 34326m a V a π π??∴== ??? 36 m V a π∴ = (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子, 3 3 422348m V a π??∴=?= ? ??? 32m V a ∴ = (3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子, 3 3 444346 m V a a π??∴=?= ? ???

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

物理学第三版(刘克哲 张承琚)课后习题答案第六章

[物理学6章习题解答] 6-1 有一个长方体形的水库,长200 m ,宽150 m , 水深10 m ,求水对水库底面和侧面的压力。 解 水对水库底面的压力为 侧面的压力应如下求得:在侧面上建立如图5-9所示的坐标系,在y 处取侧面窄条d y ,此侧面窄条所受的压力为 , 整个侧面所受的压力可以表示为 . 对于h = 10 m 、l = 200 m 的侧面: . 对于h = 10 m 、l = 150 m 的侧面: . 侧面的总压力为 . 6-3 在5.0?103 s 的时间内通过管子截面的二氧化碳气体(看作为理想流体)的质量为0.51 kg 。已知该气体的密度为7.5 kg ?m -3 ,管子的直径为2.0 cm ,求二氧化碳气体在管子里的平均流速。 解 单位时间内流过管子截面的二氧化碳气体的体积,即流量为 , 平均流速为 . 图5-9

6-4 当水从水笼头缓慢流出而自由下落时,水流随位置的下 降而变细,何故?如果水笼头管口的内直径为d ,水流出的速率 为v 0 ,求在水笼头出口以下h 处水流的直径。 解 当水从水笼头缓慢流出时,可以认为是定常流动,遵从 连续性方程,即流速与流管的截面积成反比,所以水流随位置的 下降而变细,如图5-10所示。 可以认为水从笼头流出后各处都是大气压,伯努利方程可以 写为 , 改写为 , (1) . 这表示水流随位置的下降,流速逐渐增大。整个水流可以认为是一个大流管,h 1处的流量应等于h 2处的流量,即 . (2) 由于 , 所以必定有 , 这表示水流随位置的下降而变细。 根据题意, , ,h 2处的流速为v 2,代入式(1),得 , 即 .(3) 将式(3)代入式(2),得 , 式中d 1 = d ,d 2就是在水笼头出口以下h 处水流的直径。上式可化为 . 图5-10

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

物理学第三版(刘克哲 张承琚)课后习题答案第十一章

[物理学11章习题解答] 11-1 如果导线中的电流强度为8.2 a ,问在15 s 内有多少电子通过导线的横截面? 解 设在t 秒内通过导线横截面的电子数为n ,则电流可以表示为 , 所以 . 11-2 在玻璃管内充有适量的某种气体,并在其两端封有两个电极,构成一个气体放电管。当两极之间所施加的电势差足够高时,管中的气体分子就被电离,电子和负离子向正极运动,正离子向负极运动,形成电流。在一个氢气放电管中,如果在3 s 内有2.8?1018 个电子和1.0?1018 个质子通过放电管的横截面,求管中电流的流向和这段时间内电流的平均值。 解 放电管中的电流是由电子和质子共同提供的,所以 . 电流的流向与质子运动的方向相同。 11-3 两段横截面不同的同种导体串联在一起,如图11-7所示,两端施加的电势差为u 。问: (1)通过两导体的电流是否相同? (2)两导体内的电流密度是否相同? (3)两导体内的电场强度是否相同? (4)如果两导体的长度相同,两导体的电阻之比等于什么? (5)如果两导体横截面积之比为1: 9,求以上四个问题中各量的比例关系,以及两导体有相同电阻时的长度之比。 解 (1)通过两导体的电流相同, 。 (2)两导体的电流密度不相同,因为 , 又因为 , 所以 . 这表示截面积较小的导体电流密度较大。 图11-7

(3)根据电导率的定义 , 在两种导体内的电场强度之比为 . 上面已经得到,故有 . 这表示截面积较小的导体中电场强度较大。 (4)根据公式 , 可以得到 , 这表示,两导体的电阻与它们的横截面积成反比。 (5)已知,容易得到其他各量的比例关系 , , , . 若,则两导体的长度之比为 . 11-4两个同心金属球壳的半径分别为a和b(>a),其间充满电导率为σ的材料。已知σ是随电场而变化的,且可以表示为σ = ke,其中k为常量。现在两球壳之间维持电压u,求两球壳间的电流。 解在两球壳之间作一半径为r的同心球面,若通过该球面的电流为i,则 . 又因为 , 所以

大学物理学(课后答案)第1章

第1章 质点运动学 习 题 一 选择题 1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同 (B)在某一过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小 解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。 1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt = =-,18dv a t dt ==-,故答案选D 。 1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ] (A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v 解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率s v t ?=?,而平均速度t ??r v = ,故v ≠v 。答案选D 。 1-4 质点作圆周运动时,下列表述中正确的是[ ]

(A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零 解析:质点作圆周运动时,2 n t v dv a a dt ρ =+=+ n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。 1-5 某物体的运动规律为 2dv kv t dt =-,式中,k 为大于零的常量。当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ] (A)2012v kt v =+ (B)2011 2kt v v =+ (C)2012v kt v =-+ (D)2011 2kt v v =-+ 解析:由于2dv kv t dt =-,所以 02 0()v t v dv kv t dt =-? ? ,得到20 11 2kt v v =+,故答案选B 。 二 填空题 1-6 已知质点位置矢量随时间变化的函数关系为2=4t +( 2t+3)r i j ,则从0t =到1t s =时的位移为 ,1t s =时的加速度为 。 解析:45342=-=+-=+1010r r r i j j i j ,228d d dt dt = ==111v r a i 1-7 一质点以初速0v 和抛射角0θ作斜抛运动,则到达最高处的速度大小为 ,切向加速度大小为 ,法向加速度大小为 ,合加速度大小为 。 解析:以初速0v 、抛射角0θ作斜抛的运动方程:

大学物理(吴柳主编)上册课后习题答案

大学物理(吴柳主编) 上册课后习题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

说明: 上册教材中,第5,6,7等章的习题有答案; 第1,2,4,8章的习题有部分答案; 第3,9,10,11章的习题没有答案。 为方便学生使用,现根据上学期各位老师辛苦所做的解答,对书上原有的答案进行了校对,没有错误的,本“补充答案”中不再给出;原书中答案有误的,和原书中没有给出答案的,这里一并给出。错误之处,欢迎指正! 第1章 1.4. 2.8×10 15 m 1.5.根据方程中各项的量纲要一致,可以判断:Fx= mv 2/2合理, F=mxv , Ft=mxa , Fv= mv 2/2, v 2+v 3=2ax 均不合理. 第2章 2.1 (1) j i )2615()2625(-+-m; )/]()2615()2625[(45 1151020)2615()2625(s m j i j i t r v -+-=++-+-=??= (2)52m; 1.16m/s 2.2 (1) 4.1 m/s; 4.001m/s; 4.0m/s (2) 4m/s; 2 m.s -2 2.3 3m; m 3 4π ; 140033-s .m π方向与位移方向相同; 1.0m/s 方向沿切线方向 2.5 2π (m); 0; 1(s) 2.6 24(m); -16(m) 2.8 2 22 t v R vR dt d +=θ 2.10 (1) 13 22 =+y x (2) t v x 4sin 43ππ-=;t v y 4 cos 4π π=;t a x 4cos 1632ππ-=;t a y 4sin 162ππ-= (3) 2 6= x ,22=y ;π86- =x v ,π82=y v ;,2326π-=x a 2 322π-=y a 2.12 (1) ?=7.382θ,4025.0=t (s),2.19=y (m) (2) ?=7.382θ,48.2=t (s),25.93=y (m)。 2.14 (1) 22119x y - = (2) j t i v 42-=;j a 4-= (3) 0=t 时,j r 19=; 3=t 时,j i r +=6。(4)当9=t s 时取“=”,最小距离为37(m )。

物理学第三版 刘克哲12章习题解答

[物理学12章习题解答] 12-7 在磁感应强度大小为b = 0.50 t 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图12-11所示。如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。若棒的运动速率v = 4.0 m ?s -1 ,试求: (1)导体棒内的非静电性电场k ; (2)导体棒内的静电场e ; (3)导体棒内的动生电动势ε的大小和方向; (4)导体棒两端的电势差。 解 (1)根据动生电动势的表达式 , 由于( )的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。于是可得 . 另外,动生电动势可以用非静电性电场表示为 . 以上两式联立可解得导体棒内的非静电性电场,为 , 方向沿棒由下向上。 (2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即 , 所以,e 的方向沿棒由上向下,大小为 . (3)上面已经得到 , 方向沿棒由下向上。 (4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即 , 棒的上端为正,下端为负。 图12-11

12-8 如图12-12所表示,处于匀强磁场中的导体回路 abcd ,其边ab 可以滑动。若磁感应强度的大小为b = 0.5 t ,电 阻为r = 0.2 ω,ab 边长为 l = 0.5 m ,ab 边向右平移的速率为v = 4 m ?s -1 ,求: (1)作用于ab 边上的外力; (2)外力所消耗的功率; (3)感应电流消耗在电阻r 上的功率。 解 (1)当将ab 向右拉动时,ab 中会有电流通过,流向为从b 到a 。ab 中一旦出现电流,就将受到安培力f 的作用,安培力的方向为由右向左。所以,要使ab 向右移动,必须对ab 施加由左向右的力的作用,这就是外力f 外 。 在被拉动时,ab 中产生的动生电动势为 , 电流为 . ab 所受安培力的大小为 , 安培力的方向为由右向左。外力的大小为 , 外力的方向为由左向右。 (2)外力所消耗的功率为 . (3)感应电流消耗在电阻r 上的功率为 . 可见,外力对电路消耗的能量全部以热能的方式释放出来。 12-9 有一半径为r 的金属圆环,电阻为r ,置于磁感应强度为b 的匀强磁场中。初始时刻环面与b 垂直,后将圆环以匀角速度ω绕通过环心并处于环面内的轴线旋转 π/ 2。求: (1)在旋转过程中环内通过的电量; (2)环中的电流; (3)外力所作的功。 图12-12

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

大学物理课后习题答案(上)

《大学物理》练习题 No .1 电场强度 班级 ___________ 学号 ___________ ___________ 成绩 ________ 说明:字母为黑体者表示矢量 一、 选择题 1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q 0的大小成反比; (B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变; (C) 试探电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试探电荷q 0,则F = 0,从而E = 0. 2.如图1.1所示,在坐标(a , 0)处放置一点电荷+q ,在坐标(a ,0)处放置另一点电荷q , P 点是x 轴上的一点,坐标为(x , 0).当x >>a 时,该点场强 的大小为: [ D ](A) x q 04πε. (B) 2 04x q πε. (C) 3 02x qa πε (D) 30x qa πε. 3.图1.2所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为 ( x < 0)和 ( x > 0),则xOy 平面上(0, a )点处的场强为: [ A ] (A ) i a 02πελ . (B) 0. (C) i a 04πελ . (D) )(40j +i a πελ . 4. 真空中一“无限大”均匀带负电荷的平面如图1.3所示,其电场的场强 分布图线应是(设场强方向向右为正、向左为负) ? [ D ] 5.在没有其它电荷存在的情况下,一个点电荷q 1受另一点电荷 q 2 的作用力为f 12 ,当放入第三个电荷Q 后,以下说法正确的是 [ C ] (A) f 12的大小不变,但方向改变, q 1所受的总电场力不变; (B) f 12的大小改变了,但方向没变, q 1受的总电场力不变; (C) f 12的大小和方向都不会改变, 但q 1受的总电场力发生了变化; -q -a +q a P (x,0) x x y O 图1.1 +λ -λ ? (0, a ) x y O 图1.2 σ -x O E x 02εσ O 02εσ-E x O 0 2εσ-E x 02εσO 02εσ -O E x 02εσ(D)图1.3

物理学第三版刘克哲张承琚课后习题答案第十章

[物理学10章习题解答] 10-3两个相同的小球质量都是m,并带有等量同号电荷q,各用长为l的丝线悬挂于同一点。由于电荷的斥力作用,使小球处于图10-9所示的位置。如果θ角很小,试证明两个小球的间距x可近似地表示为 . 解小球在三个力的共同作用下达到平衡,这三个力分别 是重力m g、绳子的张力t和库仑力f。于是可以列出下面的 方程式 ,(1) 图10-9 ,(2) (3) 因为θ角很小,所以 , . 利用这个近似关系可以得到 ,(4) . (5) 将式(5)代入式(4),得 , 由上式可以解得 . 得证。 10-4在上题中,如果l = 120 cm,m = 0.010 kg,x = 5.0 cm,问每个小球所带的电量q为多大? 解在上题的结果中,将q解出,再将已知数据代入,可得

. 10-5氢原子由一个质子和一个电子组成。根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 5.29?10-11m。质子的质量m = 1.67?10-27kg,电子的质量m = 9.11?10-31kg,它们的电量为±e =1.60?10-19c。 (1)求电子所受的库仑力; (2)电子所受库仑力是质子对它的万有引力的多少倍? (3)求电子绕核运动的速率。 解 (1)电子与质子之间的库仑力为 . (2)电子与质子之间的万有引力为 . 所以 . (3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以 , 从上式解出电子绕核运动的速率,为 . 10-6 边长为a的立方体,每一个顶角上放一个电荷q。 (1)证明任一顶角上的电荷所受合力的大小为 . (2) f的方向如何? 解立方体每个顶角上放一个电荷q,由于对称性,每个 电荷的受力情况均相同。对于任一顶角上的电荷,例如b 角图10-10 上的q b,它所受到的力、和大小也是相等的,即 .

(完整版)大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+-r r r 由d /d v r t =r r 则速度: 28v i tj =+r r r 由d /d a v t =r r 则加速度: 8a j =r r 则当t=1s 时,有 24,28,8r i j v i j a j =-=+=r r r r r r r r 当t=2s 时,有 48,216,8r i j v i j a j =+=+=r r r r r r r r 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t v ,d d v t v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201()(h -)2 r t v t i gt j =+v v v (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3)0d -gt d r v i j t =v v v 而落地所用时间 g h 2t = 所以 0d d r v i j t =v v d d v g j t =-v v 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案 1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的? [解答] 自由电子论只考虑电子的动能。在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。 2. 晶体膨胀时,费米能级如何变化? [解答] 费米能级 3/222 )3(2πn m E o F = , 其中n 单位体积内的价电子数目。晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。 3. 为什么温度升高,费米能反而降低? [解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。 4. 为什么价电子的浓度越大,价电子的平均动能就越大? [解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。 价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必 然结果。在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。由式 3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能 就越大。这一点从3 /2220)3(2πn m E F =和3/222)3(10353πn m E E o F ==式看得更清楚。电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度3 2l n 。所以价电子的浓度越大,价电子的平均动能就越大。 5. 两块同种金属,温度不同,接触后,温度未达到相等前,是否存在电势差?为什么? [解答] 两块同种金属,温度分别为1T 和2T ,且21T T >。在这种情况下,温度为1T 的金属高于费米能o F E 的电子数目,多于温度为2T 的金属高于费米能o F E 的电子数目。两块同种金属接触后,系统的能量要取最小值,温度为1T 的金属高于o F E 的部分电子将流向温度为2T 的金属。温度未达到相等前,这种流动一直持续,期间,温度为1T 的金属失去电子,带正电;温度为2T 的金属得到电子,带负电,两者出现电势差。

相关主题
文本预览
相关文档 最新文档