当前位置:文档之家› 传感器的基本概念

传感器的基本概念

传感器的基本概念
传感器的基本概念

第一章传感器的基本概念

1.1 综述你所理解的传感器概念

1.2 何谓结构型传感器?何谓物性型传感器?试述两者的应用特点。

1.3 一个可供实用的传感器有哪几部分构成?各部分的功用是什么?试用框图标示出你所理解的传感器系统。

1.4 衡量传感器静态特性的主要指标有哪些?说明它们的含义。

1.5什么是传感器的静态特性和动态特性?差别何在?

1.6 怎么评价传感器的综合静态性能和动态性能?

1.7 为什么要对传感器进行标定和校准?举例说明传感器静态标定和动态标定的方法。

1.8有一只压力传感器的校准资料如下表。根据这些数据求最小二乘法和端点法线性度的拟合直线方程,并求其线性度。

1.9 设一力传感器可作为二阶系统来处理。已知传感器的固有频率为800khz,阻尼比 =0.4,问在使用该传感器测定400Hz正弦变化的外力时会产生多大的振幅相对误差和相位误差?

1.10 有一个二阶系统如图1-12所示,求其输入为F=A·u(t)的阶跃响应,并画出响应曲线图(假定特征方程的根r1,r2为2个不等实数根)。

1.11 某测振传感器可作为二阶系统来处理,其幅频特性见图1-10。已知传感器的固有频率为800Hz,阻尼比0.4,问:用该传感器测定正弦振动时,若要求幅值误差小于2%,求允许使用的频率范围及相应的最大相位误差;欲用来测量复合周期振动,应对传感器的哪个参数进行调整?怎么调整?[提示:按系统不失真条件考虑。]

1.12 结合传感器技术在未来社会中的地位、作用及其发展方向,综述你的见解。

高等数学基本知识

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

(整理)高等数学基本公式概念和方法

高等数学基本公式、概念和方法 一.函数 1.函数定义域由以下几点确定 (1)0)(;) (1 ≠= x f x f y (2)0)(;)(2≥=x f x f y n (其中n 为正整数) (3)0)(:)(log >=x f x f y a 。 (4)1 )(1);(arccos 1)(1);(arcsin ≤≤-=≤≤-=x f x f y x f x f y (5)函数代数和的定义域,取其定义域的交集. (6)对具有实际意义的函数,定义域由问题特点而定. 2.判断函数的奇偶性,依据以下两点确定,否则函数为非奇非偶的. (1) 若)(),()(x f x f x f =-是偶函数,若)(),()(x f x f x f -=-是奇函数. (2) 若)(x f y =的图象关于y 轴对称,则函数是偶函数.如x y x y cos ..2 ==等。 若)(x f y =的图象关于坐标原点对称,则函数是奇函数.如x y x y x y sin (3) === 3. 将函数分解成几个简单函数的合成. 由六类基本初等函数的形式,对要分解的函数,由外层到内层,分别设出关系.函数与常数的四则运算,不必另设一层关系. 二.极限与连续 1.主要概念和计算方法: (1).A x f x f A x f x x x x x x ==?=+-→→→)(lim )(lim )(lim 0 (2).若0)(lim 0 =→x f x x (极限过程不限),则当0x x →时)(x f 为无穷小量。 (3).若)()(lim 00 x f x f x x =→,则函数在0x 处是连续的。 即(1)函数值存在、(2)极限存在、(3)极限值和函数值相等。 若上述三条至少一条不满足,则0x 是函数的间段点。 (4).间断点的分类:设0x 是函数的间断点 若左、右极限均存在,则0x 称为第一类间断点。 若左、右极限至少有一个是无穷大,则0x 称为第二类间断点。 (5).重要公式:条件0)(lim =x ?(极限过程不限)

高等数学基本知识点大全

高等数学基本知识点

一、函数与极限 1、集合的概念 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 ⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 2、函数 ⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 ⑵、函数相等 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 ⑶、域函数的表示方法 a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2 b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。 c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为: 3、函数的简单性态 ⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. ⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

高等代数最重要的基本概念汇总

第一章 基本概念 1.5 数环和数域 定义1 设S 是复数集C 的一个非空子集,如果对于S 中任意两个数a 、b 来说,a+b,a-b,ab 都在S 内,那么称S 是一个数环。 定义2 设F 是一个数环。如果 (i )F 是一个不等于零的数; (ii )如果a 、b ∈F,,并且b 0≠, a F b ∈,那么就称F 是一个数域。 定理 任何数域都包含有理数域,有理数域是最小的数域。 第二章 多项式 2.1 一元多项式的定义和运算 定义1 数环R 上的一个文字的多项式或一元多项式指的是形式表达式 ()1 2012n n a a x a x a x ++++L , 是非负整数而012,,,n a a a a L 都是R 中的数。 项式()1中,0a 叫作零次项或常数项,i i a x 叫作一次项,一般,i a 叫作i 次项的系数。 定义2 若是数环R 上两个一元多项式()f x 和()g x 有完全相同的项,或者只差一些系数 为零的项,那么就说()f x 和()g x 就说是相等 ()()f x g x = 定义3 n n a x 叫作多项式2012n n a a x a x a x ++++L ,0n a ≠的最高次项,非负整数n 叫作 多项式2012n n a a x a x a x ++++L ,0n a ≠的次数。 定理2.1.1 设()f x 和()g x 是数环R 上两个多项式,并且()0f x ≠,()0g x ≠,那么 ()i 当()()0f x g x +≠时, ()()()()()()()()0 max ,;f x g x f x g x ? +≤?? ()ii ()()()()()()()0 f x g x f x g x ? =?+?。 多项式的加法和乘法满足以下运算规则: 1) 加法交换律: ()()()()f x g x g x f x +=+;

高数重要知识点汇总

高等数学上册重要知识点 第一章 函数与极限 一. 函数的概念 1 两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x) 是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x )与g (x )是同阶无穷小。 (3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x ) 2 常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二 求极限的方法 1.两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=

高等数学常用概念及公式

高等数学常用概念及公式 ● 极限的概念 当x 无限增大(x →∞)或x 无限的趋近于x 0(x →x 0)时,函数f(x)无限的趋近于常数A ,则称函数f(x)当x →∞或x →x 0时,以常数A 为极限,记作: lim ∞ →x f(x)=A 或 lim 0 x x →f(x)=A ● 导数的概念 设函数y=f(x)在点x 0某邻域内有定义,对自变量的增量Δx =x- x 0,函数有增量Δy=f(x)-f(x 0),如果增量比 x y ??当Δx →0时有极限,则称函数f(x)在点x 0可导,并把该极限值叫函数y=f(x)在点x 0的导数,记为f ’(x 0),即 f ’(x0)=lim →?x x y ??=lim 0x x →0 0)()(x x x f x f -- 也可以记为y ’=|x=x0,dx dy |x=x0或dx x df ) (|x=x0 ● 函数的微分概念 设函数y=f (x )在某区间内有定义,x 及x+Δx 都在此区间内,如果函数的增量 Δy=f (x+Δx )-f(x)可表示成 Δy=A Δx+αΔx 其中A 是常数或只是x 的函数,而与Δx 无关,α当Δx →0时是无穷小量( 即αΔx 这一项是个比Δx 更高阶的无穷小),那么称函数y=f (x )在点x 可微,而A Δx 叫函数y=f (x )在点x 的微分。记作dy ,即: dy=A Δx=f ’(x)dx

● 不定积分的概念 原函数:设f(x)是定义在某个区间上的已知函数,如果存在一个函数F(x),对于该区间上每一点都满足 F ’(x)= f(x) 或 d F(x)= f(x)dx 则称函数F(x)是已知函数f(x)在该区间上的一个原函数。 不定积分:设F(x)是函数f(x)的任意一个原函数,则所有原函数F(x)+c (c 为任意常数)叫做函数f(x)的不定积分,记作 ?dx x f )( 求已知函数的原函数的方法,叫不定积分法,简称积分法。 其中“?”是不定积分的记号;f(x)称为被积函数;f(x)dx 称为被积表达式;x 称为积分变量;c 为任意实数,称为积分常数。 ● 定积分的概念 设函数f(x)在闭区间[a ,b]上连续,用分点 a=x 0

数学基本概念

基本概念 第一章数和数的运算一概念(一)整数 1整数的意义:自然数和0都是整数。2自然数: 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除 整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a 能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。能被2整除的数叫做偶数。不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

高等代数习题

高等代数习题 第一章基本概念 §1.1 集合 1、设Z是一切整数的集合,X是一切不等于零的有理数的集合.Z是不是X的子集? 2、设a是集A的一个元素。记号{a}表示什么? {a} A是否正确? 3、设 写出和 . 4、写出含有四个元素的集合{ }的一切子集. 5、设A是含有n个元素的集合.A中含有k个元素的子集共有多少个? 6、下列论断那些是对的,那些是错的?错的举出反例,并且进行改正. (i) (ii) (iii) (iv) 7.证明下列等式: (i)

(ii) (iii) §1.2映射 1、设A是前100个正整数所成的集合.找一个A到自身的映射,但不是满射. 2、找一个全体实数集到全体正实数集的双射. 3、是不是全体实数集到自身的映射? 4.设f定义如下: f是不是R到R的映射?是不是单射?是不是满射? 5、令A={1,2,3}.写出A到自身的一切映射.在这些映射中那些是双射? 6、设a ,b是任意两个实数且a

9、设是映射,又令,证明 (i)如果是单射,那么也是单射; (ii)如果是满射,那么也是满射; (iii)如果都是双射,那么也是双射,并且 10.判断下列规则是不是所给的集合A的代数运算: 集合 A 规则 1 2 3 4 全体整数 全体整数 全体有理数 全体实数 b a b a+ → |) , ( §1.3数学归纳法 1、证明: 2、设是一个正整数.证明 ,是任意自然数. 3、证明二项式定理: 这里 , 是个元素中取个的组合数.

高等数学基础知识点归纳

第一讲函数,极限,连续性 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给 定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集,记作N+。 ⑶、全体整数组成的集合叫做整数集,记作Z。 ⑷、全体有理数组成的集合叫做有理数集,记作Q。 ⑸、全体实数组成的集合叫做实数集,记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就 说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。 ⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中 的元素完全一样,因此集合A 与集合B 相等,记作A=B。 ⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合 B 的真子集,记作A 。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。 ②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。 通常记作U。

高等数学同济第七版上册知识点总结归纳

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法

1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! )) 1()...(1(...! 2) 1(1)1(2n n x o x n n x x x +---+ +-+ +=+ααααααα )(1 2)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x

高等数学基本知识大全

高等数学

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

高等数学思想方法

高等数学思想方法 第一章函数与极限 主要的思想方法: (1)函数的思想 高等数学的核心内容是微积分,而函数是微积分的主要研究对象。我们在运用微积分解决实际问题时,首先就要从实际问题中抽象出变量与变量之间的函数关系,这是一个通过现象抽象出本质特征的思维过程,体现的是科学的抽象是数学的一个思维方法和主要特征。 (2)极限的思想 极限的思想方法是微积分的基础。极限是变量在无限变化过程中的变化趋势,是一个确定的数值。把一些实际问题的确定结果视为一系列的无限近似数值的变化趋势,即函数或者数列的极限,这是一种重要的数学思想方法。 第二章导数与微分 主要的思想方法: (1)微分的思想 微分表示自变量有微小变化时函数的近似变化,一般地,求导的过程就称为微分;导数则反映函数相对于自变量的瞬时变化率。从导数与微分的概念中可看出,在局部的“以直代曲”的微分思想得到了充分的体现,而这也是微积分的一个基本思想。 (2)数形结合的思想 书本中在引入导数与微分概念时,也讨论了它们的几何意义,这显然更好地帮助我们理解这两个概念。通过几何图形来直观地理解概念以及定理的证明等等内容是高等数学中常用的方法,这是抽象思维与现象思维有机结合的典型体现。 (3)极限的思想 不难发现导数概念的引入与定义深刻地体现了极限的思想。 (4)逻辑思维方法 在本章中,归纳法(从特殊到一般),分类(整合)法等逻辑思维方法都得到了充分的体现,理解与掌握此类思维方法有助于良好的理性思维的形成。 第三章中值定理与导数的应用 主要的思想方法: 导数本质上是一种刻画函数在某一点处变化率的数学模型,它实质上反映了函数在该点处的局部变化性态;而中值定理则是联系函数局部性质与整体性质的“桥梁”,利用中值定理我们就能够从函数的局部性质推断函数的整体性质,具体表现为在理论和实际问题中可利用中值定理把握函数在某区间内一点处的导数与函数在该区间整体性质的关系。

高等数学知识点归纳知识讲解

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=? >?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0 lim ln 0n x x x + →=, 0, x x e x →-∞ ?→?+∞→+∞ ?

最新高等数学知识点(重点)

高等数学知识点总结 空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量);(填空选择题中考察) ③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要) ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考) ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考) 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 302),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y mt x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??===??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式:   时, ,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

高等数学基本概念整理

命题人或命题小组负责人签名: 系(部)主任签名: 分院领导签名: ………………………………………………………………密封线…………………………………………………………… §1.1 函数 一、有关四种性质(奇偶性、单调性、周期性、有界性) 1. 0 () (0)()2() ()a a a f x a f x dx f x dx f x ->?? =???? ?当为奇函数当为偶函数 口诀(1):奇偶函数常遇到;对称性质不可忘。 2. 在(a,b )内,若()0f x '>,则()f x 单调增加 若()0f x '<,则()f x 单调减少 口诀(2):单调增加与减少;先算导数正与负 例1 求1 521[()ln(1)].x x I x x e e x x dx --= +-++? 解 1()x x f x e e -=-是奇函数,∵2 112()(),()ln(1)x x f x e e f x f x x x --=-=-=++是奇函数, ∵ 222 22 (1)()ln(1)ln 1 x x f x x x x x +--=-+ -=++ 22ln1ln(1)()x x f x =-++=- 因此2 ()ln(1)x x x e e x x --++是奇函数。 于是1 1 6 61 2027 I x dx x dx -= +== ? ?。 例2 设()()F x f x '=,则下列结论正确的是 (A)若()f x 为奇函数,则()F x 为偶函数。 (B)若()f x 为偶函数,则()F x 为奇函数。 (C)若()f x 为周期函数,则()F x 为周期函数。 (D)若()f x 为单调函数,则()F x 为单调函数。 解 (B)不成立,反例32 (),()13 x f x x F x ==+ (C)不成立,反例()cos 1,()sin f x x F x x x =+=+ (D)不成立,反例2 ()2,()(,)f x x F x x ==-∞+∞在内 (A)成立。 证明 0 ()(0)(),x F x F f t d t f =+ ? 为奇函数, 00 ()(0)()(0)()() (0)()() x x x F x F f t dt F f u d u F f u du F x --=+=+--=+=? ?? 所以,()F x 为偶函数。 例3 设()f x ,()g x 是恒大于零的可导函数,且()()()()0f x g x f x g x ''-<,则当a x b <<时,下列结论成立的是 (A)()()()()f x g b f b g x > (B)()()()()f x g a f a g x > (C)()()()()f x g x f b g b > (D)()()()()f x g x f a g a > 解 ∵2()1[()()()()]0()()f x f x g x f x g x g x g x '??''=-,故(A)成立。 二、有关复合函数 1. 已知()f x ,()g x 求[()]f g x 2. 已知[()]f g x 和()g x ,求()f x 例1、已知12() ()() f x x a f x f x x a ≤?=?>?和12 () ()() g x x b g x g x x b ≤?=?>? 求[()]f g x 解:11112221122 2[()] ()[()] ()[()][()] ()[()] () f g x x b g x a f g x x b g x a f g x f g x x b g x a f g x x b g x a ≤≤?? >≤?=? ≤>??>>?当,当,当,当,

高等代数最重要的基本概念汇总

第一章 基本概念 数环和数域 定义1 设S 是复数集C 的一个非空子集,如果对于S 中任意两个数a 、b 来说,a+b,a-b,ab 都在S 内,那么称S 是一个数环。 定义2 设F 是一个数环。如果 (i )F 是一个不等于零的数; (ii )如果a 、b ∈F,,并且b 0≠, a F b ∈,那么就称F 是一个数域。 定理 任何数域都包含有理数域,有理数域是最小的数域。 第二章 多项式 一元多项式的定义和运算 定义1 数环R 上的一个文字的多项式或一元多项式指的是形式表达式 ()1 2 012n n a a x a x a x +++ +, 是非负整数而012,,,n a a a a 都是R 中的数。 项式()1中,0a 叫作零次项或常数项,i i a x 叫作一次项,一般,i a 叫作i 次项的系数。 定义2 若是数环R 上两个一元多项式()f x 和()g x 有完全相同的项,或者只差一些系数 为零的项,那么就说()f x 和()g x 就说是相等 ()()f x g x = 定义3 n n a x 叫作多项式2 012n n a a x a x a x +++ +,0n a ≠的最高次项,非负整数n 叫作 多项式2 012n n a a x a x a x +++ +,0n a ≠的次数。 定理2.1.1 设()f x 和()g x 是数环R 上两个多项式,并且()0f x ≠,()0g x ≠,那么 ()i 当()()0f x g x +≠时, ()()()()()()()()0 max ,;f x g x f x g x ? +≤?? ()ii ()()()()()()()0 f x g x f x g x ? =?+?。

814《高等代数》考研大纲

《高等代数》考研大纲 一、基本要求 要求考生全面系统地理解高等代数的基本概念和基本理论,熟练掌握高等代数的基本思想和基本方法。要求考生具有较强的抽象思维能力、逻辑推理能力、数学运算能力以及综合运用所学知识分析问题和解决问题的能力。 二、考试范围 (一)多项式 .多项式的带余除法及整除性、最大公因式、互素多项式; .不可约多项式、因式分解唯一性定理、重因式、复系数与实系数多项式的因式分解、有理系数多项式不可约的判定; .多项式函数与多项式的根、代数基本定理、有理系数多项式的有理根的求法、根与系数的关系。 (二)行列式 .行列式的定义及性质,行列式的子式、余子式及代数余子式; .行列式按一行、列的展开定理、法则、定理和行列式乘法定理、行列式; .运用行列式的性质及展开定理等计算行列式。 (三)线性方程组 .消元法与初等变换; .向量组的线性相关性、向量组的秩与极大线性无关组、矩阵的秩; .线性方程组有解的判别定理与解的结构。 (四)矩阵 .矩阵的基本运算、矩阵的分块及常用分块方法; .矩阵的初等变换、初等矩阵、矩阵的等价、矩阵的迹、方阵的多项式;; .逆矩阵、矩阵可逆的条件及与矩阵的秩和初等矩阵之间的关系,伴随矩阵及其性质;.运用初等变换法求矩阵的秩及逆矩阵。 (五)二次型理论 .二次型及其矩阵表示、矩阵的合同、二次型的标准形与规范形、惯性定理; .实二次型在合同变换下的规范形以及在正交变换下的特征值标准型的求法; .实二次型或实对称矩阵的正定、半正定、负定、半负定的定义、判别法及其应用。 (六)线性空间 .线性空间、子空间的定义与性质,向量组的线性相关性,线性(子)空间的基、维数、向量关于基的坐标,基变换与坐标变换,线性空间的同构; .子空间的基扩张定理,生成子空间,子空间的和与直和、维数公式; .一些常见的子空间,如线性方程组的解空间、矩阵空间、多项式空间、函数空间。(七)线性变换 .线性变换的定义、性质与运算,线性变换的矩阵表示,矩阵的相似、同一个线性变换关于不同基的矩阵之间的关系; .矩阵的特征多项式与最小多项式及其性质、线性变换及其矩阵的特征值和特征向量的概念和计算、特征子空间、实对称矩阵的特征值与特征向量的性质; .线性变换的不变子空间、核、值域的概念、关系及计算; .定理、矩阵可相似对角化的条件与方法、线性变换矩阵的化简、标准形。

最新高等数学场论基本概念

数学物理基础 梯度、散度和旋度 梯度、散度和旋度是矢量分析里的重要概念。之所以是“分析”,因为三者是三种偏导数计算形式。这里假设读者已经了解了三者的定义。它们的符号分别记作如下: 从符号中可以获得这样的信息: ①求梯度是针对一个标量函数,求梯度的结果是得到一个矢量函数。这里φ称为势函数; ②求散度则是针对一个矢量函数,得到的结果是一个标量函数,跟求梯度是反一下 的; ③求旋度是针对一个矢量函数,得到的还是一个矢量函数。 这三种关系可以从定义式很直观地看出,因此可以求“梯度的散度”、“散度的梯度”、“梯度的旋度”、“旋度的散度”和“旋度的旋度”,只有旋度可以连续作用两次,而一维波动方程具有如下的形式 (1) 其中a为一实数,于是可以设想,对于一个矢量函数来说,要求得它的波动方程,只有求它的“旋度的旋度”才能得到。下面先给出梯度、散度和旋度的计算式: (2) ( 3)

(4)旋度公式略显复杂。这里结合麦克斯韦电磁场理论,来讨论前面几个“X度的X度”。 I.梯度的散度: 根据麦克斯韦方程有: 而 (5)则电势的梯度的散度为 这是一个三维空间上的标量函数,常记作 (6)称为泊松方程,而算符▽2称为拉普拉斯算符。事实上因为定义 所以有 当然,这只是一种记忆方式。 当空间内无电荷分布时,即ρ=0,则称为拉普拉斯方程

当我们仅需要考虑一维情况时,比如电荷均匀分布的无限大平行板电容器之间(不包含极板)的电场,我们知道该电场只有一个指向,场强处处相等,于是该电场满足一维拉普拉斯方程,即 这就是说如果那边平行板电容器的负极板接地,则板间一点处的电压与该点距负极板的距离呈线性关系。 II.散度的梯度: 散度的梯度,从上面的公式中可以看到结果会比较复杂,但是它的物理意义却是很明确的,因为从麦克斯韦方程可以看出空间某点处电场的散度是该点处的电荷密度,那么再求梯度就是空间中电荷密度的梯度。这就好比说清水中滴入一滴红墨水,起初水面红色浓度最高,杯底浓度最低,这样水面与杯底形成一个浓度梯度,红墨水由水面向杯底扩散,最后均匀。在半导体中,载流子分布的不均匀会导致扩散电流。 散度的梯度这个概念其实不常用,因为计算复杂,但在后面讲用它来推导一个矢量恒等式。 III.梯度的旋度: 对于梯度的旋度,直接把(2)式代入(4)式中,有 由于势函数在空间一点的领域内往往是有二阶连续混合偏导数的,因此上式的结果为0.所以说梯度的旋度为零,它的物理意义也是很明确的。 比如一个人从海平面爬到一座山上,无论它是从山的陡坡爬上去还是从缓坡爬上去,亦或者坐直升机上去,重力对他所做的功总是相等的,即力场的做工只与位移有关,而与路径无关,这样的场称为保守场,而保守场是无旋场。再比如绘有等高线的地图,如果某点只有一个一根等高线穿过,那么该点有一个确定的相对高度。如果该点有两条或以上的等高线穿过,则这个点处在悬崖边上,这个点处是不可微,也就没有求梯度的意义。 IV.旋度的散度: 求旋度的散度也是将(4)式代入(3)式即可。若令 (7) 则

相关主题
文本预览
相关文档 最新文档