当前位置:文档之家› 高等代数最重要的基本概念汇总

高等代数最重要的基本概念汇总

高等代数最重要的基本概念汇总
高等代数最重要的基本概念汇总

高等代数最重要的基本

概念汇总

文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第一章 基本概

数环和数域

定义1 设S 是复数集C 的一个非空子集,如果对于S 中任意两个数a 、b 来说,

a+b,a-b,ab 都在S 内,那么称S 是一个数环。

定义2

设F 是一个数环。如果

(i )F 是一个不等于零的数;

(ii )如果a 、b ∈F,,并且b 0≠,a F b

∈,那么就称F 是一个数域。 定理 任何数域都包含有理数域,有理数域是最小的数域。

第二章 多项式

一元多项式的定义和运算

定义1 数环R 上的一个文字的多项式或一元多项式指的是形式表达式 ()1 2012n n a a x a x a x ++++,

是非负整数而012,,,

n a a a a 都是R 中的数。

项式()1中,0a 叫作零次项或常数项,i i a x 叫作一次项,一般,i a 叫作i 次项的系数。

定义2 若是数环R 上两个一元多项式()f x 和()g x 有完全相同的项,或者只差一

些系数为零的项,那么就说()f x 和()g x 就说是相等

定义3 n n a x 叫作多项式2012n n a a x a x a x +++

+,0n a ≠的最高次项,非负整数n 叫

作多项式2012n n a a x a x a x +++

+,0n a ≠的次数。

定理2.1.1 设()f x 和()g x 是数环R 上两个多项式,并且()0f x ≠,()0g x ≠,那么

()i 当()()0f x g x +≠时,

()ii ()()()()()()()000f x g x f x g x ?=?+?。 多项式的加法和乘法满足以下运算规则:

1) 加法交换律:

()()()()f x g x g x f x +=+; 2) 加法结合律:

()()()()()()()()f x g x h x f x g x h x ++=++; 3)乘法交换律:

()()()()f x g x g x f x =; 4) 乘法结合律:

()()()()()()()()f x g x h x f x g x h x =; 5) 乘法对加法的分配律:

()()()()()()()()f x g x h x f x g x f x h x +=+。

推论2.1.1 ()()0f x g x = 当且仅当()f x 和()g x 中至少有一个是零多项式 推论2.1.2 若()()()()f x g x f x h x =,且()0f x ≠,那么()()g x h x =

多项式的整除性

设F 是一个数域。[]f x 是F 上一元多项式环

定义 令()f x 和()g x 是数域F 上多项式环[]f x 的两个多项式。如果存在[]f x 的多

项式()h x ,使()()()g x f x h x =,我们说,()f x 整除(能除尽)()g x 。 多项式整除的一些基本性质:

1) 如果()()f x g x |,()()g x h x |,那么()()f x h x | 2) 如果()()h x f x |,()()h x g x |,那么()()()()h x f x g x |±

3) 如果()()h x f x |,那么对于[]f x 中的任意多项式()g x 来说,()()()h x f x g x | 4) 果()(),1,2,3,,,i h x f x i t |=那么对于[]f x 中任意()1,2,3,,,i g x i t ,=

5) 次多项式,也就是F 中不等于零的数,整除任意多项式。

6) 每一个多项式()f x 都能被()cf x 整除,这里c 是F 中任意一个不等于零的数。 7) 如果()()f x g x |,()()g x f x |,那么()()f x cg x =,这里c 是F 中的一个不等于

零的数

设()f x ,()g x 是两个任意的多项式,并且()0g x ≠。那么()f x 可以写成以下形式

()()()()f x g x q x r x =+,这里()0r x =,或者()r x 的次数小于()g x 的次数。

定理2.2.1 设()f x 和()g x 是[]f x 的任意两个多项式,并且()0g x ≠。那么在[]

f x 中可以找到多项式()q x 和()r x ,使 (3)

()()()()

f x

g x q x r x =+

这里或者()0r x =,或者()r x 的次数小于()g x 的次数,满足以上条件的多项式

()()q x r x 和只有一对。

设数域F 含有数域F 而()f x 和()g x 是[]f x 的两个多项式,如果在[]f x 里()g x 不能整除()f x ,那么在[]F x 里()g x 也不能整除()f x 。

1) 定义1 假定()h x 是()f x 和()g x 的任一公因式,那么由

2) ()()()()()()()()()()()

32112111,

,

k k k k k k k k k k r x r x q x r x r x r x q x r x r x r x q x -------+=+=+=

3) 中的第一个等式,()h x 也一定能整除()1r x 。同理,由第二个等式,()h x 也一定

能整除()2r x 。如此逐步推下去,最后得出()h x 能整除()k r x ,这样,()k r x 的确是()f x 和()g x 的一个最大公因式,这种求最大公因式的方法叫做展转相除法。

4) 定义2 设以()g x x a =-除()1110n n n n f x a x a x a x a --=++

++时,所得的商

()121210n n n n q x b x b x b x b ----=++

++及余式()0r x c =,比较

()()()()

f x

g x q x r x =+两

端同次幂的系数得1n n b a -=,211n n n b a ab ---=+,…011b a ab =+,000c a ab =+,这种计算可以排成以下格式

()

12011

2

1

12

3

00

))))n n n

n n n n n n a a a a a a ab ab ab ab b a b b b c -------++++=∣

5) 用这种方法求商和余式(的系数)称为综合除法。 6) 多项式的最大公因式

7) 设F 是一个数域。[]f x 是F 上一元多项式环

8) 定义1 令设()f x 和()g x 是[]f x 的任意两个多项式,若是[]f x 的一个多项式

()h x 同时整除()f x 和()g x ,那么()h x 叫作()f x 与()g x 的一个公因式。

9) 定义2 设()d x 是多项式()f x 与()g x 的一个公因式。若是()d x 能被()f x 与

()g x 的每一个公因式整除,那么()d x 叫作()f x 与()g x 的一个最大公因式。

10) 定理2.3.1 []f x 的任意两个多项式()f x 与()g x 一定有最大公因式。除一

个零次因式外,()f x 与()g x 的最大公因式是唯一确定的,这就说,若()d x 是

()f x 与()g x 的一个最大公因式,那么数域F 的任何一个不为零的数c 与()

d x 的乘积c ()d x 也是()f x 与()g x 的一个最大公因式;而且当()f x 与()g x 不完全为零时,只有这样的乘积才是()f x 与()g x 的最大公因式。

11) 从数域F 过度渡到数域F 时,()f x 与()g x 的最大公因式本质上没有改变。 12) 定理 若()d x 是[]f x 的多项式()f x 与()g x 的最大公因式,那么在[]f x 里可

以求得多项式()()u x x 和v ,使以下等式成立:

13) (2)()()()()()f x u x g x x d x +v =()(),f x x g x x ==+1,那么以下等式

成立:()()()22221x x x x x x ++=+-+1-1但2221x x +-显然不是()f x 与()g x 的最大公因。

14) 定义3 如果[]f x 的两个多项式除零次多项式外不在有其他的公因式,我们

就说,这两个多项式互素。

15) 定理 []f x 的两个多项式()f x 与()g x 互素的充要条件是:在[]f x 中可以求

得多项式()()u x x 和v ,使

16) (4) ()()()()1f x u x g x x +v =

17) 从这个定理我们可以推出关于互素多项式的以下重要事实:

18) 若多项式()f x 与()g x 都与多项式()h x 互素,那么乘积()()f x g x 也与()h x 互

素。

19) 若多项式()h x 整除多项式()f x 与()g x 的乘积,而()h x 与()f x 互素,那么

()h x 一定整除()g x 。

20) 若多项式()g x 与()h x 都整除多项式()f x ,而()g x 与()h x 互素,那么乘积

()()g x h x 也整除()f x

最大公因式的定义可以推广到()2n n >个多项式的情形:

若是多项式()h x 整除多多项式()()()12,,,n f x f x f x 中的每一个,那么()h x 叫作这n 个多项式的一个公因式。若是()()()12,,,n f x f x f x 的公因式()d x 能被这n 个多项式的每一个公因式整除,那么()d x 叫作()()()12,,,n f x f x f x 的一个最大公因式。 若()0d x 是多项式()()()121,,,n f x f x f x -的一个最大公因式,那么()0d x 是多项式

()n f x 的最大公因式也是多项式()()()121,,

,n f x f x f x -的最大公因式。

若多项式()()()12,,,n f x f x f x 除零次多项式外,没有其他的公因式,就是说这一组多项式互素。

2.4 多项式的分解

定义1 []f x 的任何一个多项式()f x ,那么F 的任何不为零的元素c 都是()f x 的

因式,另一方面,c 与()f x 的乘积c ()f x 也总是()f x 的因式。我们把()f x 这样的因式叫作它的平凡因式,

定义2 令()f x 是[]f x 的一个次数大于零的多项式。若是()f x 在[]f x 只有平凡因

式,()f x 说是在数域F 上(或在[]f x 中)不可约。若()f x 除平凡因式外,在[]f x 中还有其他因式,()f x 就说是在 F 上(或在[]f x 中)可

约。

如果[]f x 的一个n (n>0)次多项式能够分解成[]f x 中两个次数小于n 的多项式

()()g x h x 与的乘积:

(1) ()()()f x g x h x =, 那么()f x 在F 上可约。

若是()f x 在[]f x 中的任一个形如(1)的分解式总含有一个零次因式,那么

()f x 在F 上不可约。

不可约多项式的一些重要性质:

1) 如果多项式()p x 不可约,那么F 中任一不为零的元素c 与()p x 的乘积c ()p x 也

不可约。

2) 设()p x 是一个不可约多项式而()f x 是一个任意多项式,那么或者()p x 与()

f x 互素,或者()p x 整除()f x 。

3) 如果多项式()f x 与()g x 的乘积能被不可约多项式()p x 整除,那么至少有一个

因式被 整除。

4) 如果多项式()()()()12,,

,2s f x f x f x s ≥的乘积能被不可约多项式()p x 整除,那

么至少有一个因式被()p x 整除。

定理2.4.1 []f x 的每一个n(n>0)次多项式()f x 都可以分解成[]f x 的不可约多项

式的乘积。

定理2.4.2 令()f x 是[]f x 的一个次数大于零的多项式,并且

此处i c 与()()1,2,,,1,2,,j q x i r j s ==都是[]f x 的不可约多项式,那

么r s =,并且适当调换()j q x 的次序后可使

()()(),1,2,

,,j i i q x c x p x i r ==此处()i c x 是F 上的不为零的元素。换句

话说,如果不计零次因式的差异,多项式()f x 分解成不可约因式乘积的分解式是唯一的。

形如

()()()

()1

2

12k k kt

t f x ap x p x p x =的多项式叫作多项()f x 的典型分解式,每一个

典型分解式都是唯一确定的。

重因式

定义 []f x 的多项式

的导数或一阶导数指的是[]f x 的多项式()1122n n f x a a x na x -'=++

+

一阶导数()f x '的导数叫作()f x 的二阶导数,记作()f x '',()f x ''的导数叫作

()f x 的三阶导数,记作()f x ''',等等。()f x 的k 阶导数也记作()()k

f x 。

关于和与积的导数公式仍然成立:

(1) ()()()()f x g x f x g x ''+=+???? (2) ()()()()()()f x g x f x g x g x f x '''=+????

(3) ()()()1

k

k f x kf x f x -'

'?

?=??

定理2.5.1 设()p x 是多项式()f x 的一个()1k k ≥重因式。那么()p x 是()f x 的导数的一个k-1重因式。

定理2.5.2 多项式()f x 没有重因式的充要条件是()f x 与它的导数()f x '互素。

多项式函数 多项式的根

设给定了1∈R 的一个多项式

和一个数c ∈R,那么在()f x 的表示式里,把x 用c 来代替,就得到R 的一个数 这个数叫作当x c =时,()f x 的值,并且用()f c 来表示。对于R 上的每一个数c ,

就有

R 中唯一确定的数()f c 与它对应。就得到R 与R 的一个影射。这个影射是由多项式

()f x

所确定的,叫作R 上的一个多项式函数。

定理2.6.1 设()[],f x R x c R ∈∈,用x c -除()f x 所得的余式等于当x c =时()f x 的

值()f c

定义 令()f x 是[]R x 的一个多项式而c 是R 中的一个数,若是当x c =时()f x 的值

()0f c =,那么c 叫作()f x 在数环R 中的一个根。

定理2.6.2 数c 是()f x 的根的充要条件是()f x 能被x c -整除。

定理2.6.3 设x c -是[]R x 中一个0n ≥次多项式。那么()f x 在R 中至多有n 个不

同的根。

定理2.6.4 设()()f x g x 与是[]R x 的两个多项式,它们的次数都不大于n 。若是以

R 中n+1个或更多不同的数来代替x 时,每次所得()()f x g x 与的值都相等,那么()()f x g x =。

定理2.6.5 []R x 的两个多项式()()f x g x 与相等,当且仅当她们所定义的R 上多项

式函数相等。

这个公式叫作拉格朗日(Lagrange)插值公式。

复数和实数域上多项式

定理2.7.1 (代数基本定理) 任何()0n n >次多项式在复数域中至少有一个根。

定理2.7.2 任何()0

n n>次多项式在复数域中有n个根(按重根重数计算)。

复数域C上任一()0

C x里分解为一次因式的乘积。负数域上

n n>次多项式可以在[]

任一

次大于1的多项式都是可约的。

定理2.7.6 若实数多项式()

f x有一个非实的复数根α,那么的共轭数α也是

()

与有同一重数。换句话说,实系数多项式的非实的

f x的根,并且αα

非实的复数根两两成对。

定理2.7.4 实数域上不可约多项式,除一次多项式外,只含非实共轭复数根的二次多项式。

定理2.7.5 每一个次数大于0的实系数多项式都可以分解为实系数的一次和二次不可约因式的乘积。

有理数域上多项式

令()

n>次多项式。如果存在()()()

f x是整数环Z上的一个()0

g x h x Z x

∈??

,

??,它们的次数都小于n,使得()()()

=,(1)

f x

g x

h x

那么()()()

、、自然可以看成有理数域Q上的多项式。等式(1)表明,

f x

g x

h x

()

Q x中是可约的。

f x在[]

定义若是一个整系数多项式()

f x叫作一个原本多项式。

f x的系数互素,那么()

引理2.8.1 两个原本多项式的乘积仍然是一个原本多项式。

定理2.8.1 若是一个整系数()0

f x总

n>次多项式()

f x在有理数域上可约,那么()

可以分解成次数都小于n的两个整系数多项式的乘积。

定理2.8.2 (艾森斯坦(Eisenstein)判别法)设

是一个整系数多项式。若是能够找到一个素数p,使得

(i)最高次项系数

a不能被p整除;

n

(ii )其余各项都能被p 整除; (iii )常数项0a 不能被2p 整除, 那么多项式()f x 在有理数域上不可约。 有理数域上任意次的不可约多项式都存在。 定理2.8.3 设()101n n n f x a x a x a -=++

+是一个整系数多项式。若是有理数u

v

()f x 的一个根,这里u 和v 是互素的整数,那么

(i )v 整除()f x 的最高次项系数0a ,而u 整除()f x 的常数项n a ; (ii )()()u f x x q x v

??

=- ??

?,这里()q x 是一个整系数多项式。

多元多项式

在这一节里,R 总表示一个数环,且1R ∈ 令123,,,,n x x x x 是n 个文字,形如12

12k k kn n ax x x 的表示式。其中12,,,

n a R k k k ∈是

非负整数,叫作R 上12,,,n x x x 的一个单项式。数a 叫作这个单项式的系数,如果某一0i k =,那么ki i x 可以不写,约定

1

1

11

11

11

10

11

1

ki ki ki ki i i i i k kn

k kn i n n ax

x x x x ax

x x x -+-+-+-+=。因此,()m m n <个文字的单项式

总可以看成n 个文字的单项式。特别,当1230n k k k k ===

=时,我们有

00

012

n ax x x a R =∈。

形式表达式1112

12122212

11221212

,k k k n k k k n

ks ks ksn n n s n i a x x x a x x x a x x x a R +++∈,ij k 是非负

整数()1,2,3,,;1,2,,i s j n ==,叫作R 上n 个文字123,,,,n x x x x 的一个多项式,或简称R 上一个n 元多项式。

我们通常用符号()12,,,n f x x x ,()12,,,n g x x x 等来表示R 上n 个文字

123,,,

,n x x x x 的多项式。

定理2.9.1 数环R 上的两个n 元多项式()12,,,n f x x x 与()12,,,n g x x x 的乘积是首

项等于这两个多项式首项的乘积。特别,两个非零多项式的乘积也不等于零。

定理2.9.2 数环R 上两个不等于零的n 元多项式的乘积的次数等于这两个多项式

次数的和。

定理2.9.3 设()12,,,n f x x x 是数环R 上的一个n 元多项式,如果对于任意

()12,,n n c c c R ∈都有()12,,0n f c c c =,那么()12,,,0n f x x x =

推论2.9.1 设()12,,,n f x x x 与()12,,,n g x x x 是数环R 上n 元多项式,如果对于任

意()12,,n n c c c R ∈都有()()1212,,,,n n f c c c g c c c =,那么

()()1212,,,,,

.n n f x x x g c c c =换句话说,如果由()12,,

,n f x x x 与

()12,,

,n g x x x 确定的多项式函数f g 与相等,那么这两个多项式相等。

对称多项式

定义1 设()12,,,n f x x x 是数环R 上的一个n 元多项式,如果对于这n 个文字

123,,,

,n x x x x 的指标集{}1,2,

,n 施行任意一个置换后,()12,,,n f x x x 都

不改变,那么就称()12,,,n f x x x 是R 上一个n 元对称多项式。

定义2 (1)

112

112

223

12

,n n n n n n n

x x x x x x x x x x x x x σσ---=++

+=,这里k σ表示

123,,,,n x x x x 中k 个所作的一切可能乘积的和,这样的n 个多项式显然

都是n 元对称多项式。我们称这n 个多项式12,,,n σσσ为n 元对等对称多项式。

引理2.10.1 设()1212

1212

,,,n

n i i i n i i

i n

f x x x a x x

x =∑是数环R 上一个n 元对称多项式,以i σ代替i x ,1i n ≤≤,得到关于12,,,n σσσ的一个多项式

()12

121212

,,

,n

n i

i i n i i i n

f a σσσσσσ=∑。如果()12,,,0n f σσσ=,那么一切系数12

0n

i i i a =,即()12,,,0n f x x x =

定理2.10.1 数环R 上一n 元对称多项式()12,,,n f x x x 都可以表示成初等对称多

项式12,,,n σσσ的系数在R 中的多项式,并且这种表示法是唯一的。

推论2.10.1 设()f x 是数域F 上的一个一元n 次多项式,它的最高次项系数是

1。令12,,,n σσσ是()f x 是复数域内的全部根(按重根重数计算)。那么12,,,n σσσ的每一个系数取自F 的对称多项式都是()f x 的系数的多项式(它的系数在F 内)因而是F 的一个数。

第三章 行列式

排列

定义1 n 个数码1,2,…,n 的一个排列指的是由这n 个数码组成的一个有序组,

叫做数码的排列。

定义2 一般的在一个排列里,如果某一个较大的数码排在一个较小的数码前面,

就说这两个数码构成一个反序,在一个排列里出现的反序总数的总和叫做这个排列的反序数(逆序数)。

一个排列的逆序数可能是偶数也可能是奇数,有偶数个逆序数的排列叫作一个偶

排列;有奇数个逆序数的排列叫作一个奇排列。

定义3 如果把这个排列里任意两个数码i j 与交换一下,而其余的数码保持不动,

那么就得到一个新的排列,对于排列所施行的这样一个变换叫作一个对换,并且用符号(),i j 来表示。

定理3.2.1 设12

n i i i 和12

n j j j 是n 个数码的任意两个排列,那么 总可以通过一

系列对换由12n i i i 得出12

n j j j 。

定理3.2.2 每一个对换都改变排列的奇偶性。

定理3.2.3 2n ≥时,n 个数码的奇排列与偶排列的个数相等,各为

2

n !

个。 n 阶行列式

我们用符号()12n j j j τ来表示排列12

n j j j 的逆序数。

定义1 用符号

表示的n 阶行列式指的是n !项的代数和,这些项是一切可能取自 的不同的行与不同的列上的n 个元素的 乘积。项12

12n j j n j a a a 的符号为

()

()

121n j j j τ-,也就是说,当12n j j j 是偶排列时,这一项的符号为正,当

12

n j j j 是奇排列时,这一项的符号为负。

定义2 n 阶行列式

如果把D 的行变为列,就得到一个新的行列式

D '叫作D 的转置行列式。

引理3.3.1 从n 阶行列式的第12,,

,n i i i 行和12,,,n j j j 列取出的元素作积

1122

n n i j i j i j a a a ,这里12,,

,n i i i 和12,,

,n j j j 都是1,2,…,n 这n 个数码

的排列,那么这一项在行列式中的符号是

()

()()12121,,s t

n n s i i i t j j j ττ+-==

命题3.3.1 行列式与它的转置行列式相等。

命题3.3.2 交换一个行列式的两行(或两列),行列式改变符号。

推论3.3.1 如果一个行列式有两行(列)完全相同,那么这个行列式等于零。 命题3.3.3 把一个行列式的某一行(列)的所有元素同乘以某一个数k ,等于以

数k 乘以这个行列式。

推论3.3.2 一个行列式中某一行(列)所有元素的公因子可以提到行列式的符号

外边。

推论3.3.3 如果一个行列式中有一行(列)的元素全是零,那么这个行列式等于

零。

推论3.3.4 如果一个行列式有两行(列)的对应元素成比例,那么这个行列式等

于零。

命题3.3.4 设行列式D 的第i 行的所有元素都可以表示成两项的和:

11

12

11122

1

2

n i i i i in in n n nn

a a a D

b

c b c b c a a a =+++ 那么D 等于两个行列式12D D 与的和,其中1D 的第i 行的元素是

12,,i i in b b b ,2D 的第i 行元素是12,,,i i in c c c ,而12D D 与的其他各行

都和D 的一样。

命题3.3.5 把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上,行列式不变。

子式和代数余子式行列式的依行列展开

定义1 在一个n 阶行列式D 中任意取定k 行和k 列。位于这些行列式的相交处的

元素所构成的k 阶行列式叫作行列式D 的一个k 阶子式。

定义2 ()1n n >阶行列式

的某一元素ij a 的余子式ij M 指的是在D 中划去ij a 所在的行和列后所余下的1n -阶子

式。

定义3 n 阶行列式D 的元素ij a 的余子式ij M 附以符号()1i j

+-后,叫作元素ij a 的代数

余子式。元素ij a 的代数余子式用符号ij A 来表示:()

1i j

ij i j A M ++=-。

定理3.4.1 若在一个n 阶行列式

中,第i 行(或第j 列)的元素除ij a 都是零,那么这个行列式等于ij a 与它的代数余

子式ij A 的乘积: ij i j D a A =

定理3.4.2 行列式D 等于它任意一行(列)的所有元素与它们对应代数余子式的

乘积的和。换句话说,行列式有依行或依列展开式:

()

11221,2,

,i i i i in in

D a A a A a A i n =++

+=()

11221,2,

,j j j j jn jn

D a A a A a A j n =++

+=

定理3.4.3 行列式

的某一行(或列)的元素与另一行(列)的对应元素的代数余子式的乘积

的和等于零。换句话说,

()11220i i i i in in a A a A a A i j ++

+=≠,

3.5 克拉默法则

设给定了一个含有n 个未知量n 个方程的线性方程组 利用()1的系数可以构成一个n 阶行列式

1112121

22

212

n n n n nn

a a a a a a D a a a =,

这个行列式叫作方程组()1的行列式。

定理3.5.1 (克拉默Cramer )法则)一个含有n 个未知量的n 个方程的线性方程

组()1当它的行列式0D ≠时,有且仅有一个解

1212,,,n

n D D D x x x D D

D

=

==

,此处的j D 是把行列式的第j 列的元素换以方程组的常数项12,,,n b b b 而得到的n 阶行列式。

第四章 线性方程组

消元法

定义我们对线性方程组施行这三个初等变换:

(i) 交换两个方程的位置;

(ii) 用一个不等于零的数乘以某个方程;

(iii) 用一个数乘以某个方程后加到另一个方程;

叫作线性方程组的初等变换。

定理4.1.1 初等变换把一个线性方程组变为与它同解的线性方程组。

定义1 由st个数

c排成的一个s行和t列的表

ij

叫作一个s行t列(或s t?)矩阵。

c叫作这个矩阵的元素。

ij

定义2 矩阵的行(或列)初等变换指的是对一个矩阵施行的下列变换:(i)交换矩阵的两行(或列);

(ii)用一个不等于零的数乘以矩阵的某一行(列),即用一个不等于零

的数乘以矩阵的某一行(列)的每一个元素;

(iii)用某一个数乘以矩阵的某一行(列)后加到另一行(列),即用某

一数乘以矩阵的某一行(列)的每一个元素后加到另一行(列)的对应元

素上。

定理4.1.2 设A是一个m行n列的矩阵:

通过行初等变换和第一种列初等变换能把A化为以下形式:

进而化为以下形式:

这里0,,,*

≥≤≤表示矩阵的元素,但不同的位置上*的表示的元素未

r r m r n

必相同。

矩阵的秩线性方程组可解的判别法

定义1 在一个s行t列的矩阵中,任意取k行k列()

≤≤。位于这些行列式

k s k t

,

的交点处的元素(不改变元素的相对位置)所构成的k阶行列式叫作这

个矩阵的一个k阶子式。

定义2 一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。若一个矩阵没有不等于领的子式,就认为这个矩阵的秩是;零。

定理4.2.1 初等变换不改变矩镇的秩。

定理4.2.2 (线性方程组可解的判别法)线性方程组()1有解的充要条件是:它的系数矩阵和增广矩阵有相同的秩。

定理4.2.3 设线性方程组()1的系数矩阵和增广矩阵有相同的秩r,那么r等于方程组所含有未知量的个数n时,方程组有唯一解;当r n

<时,方程组有无穷多个解。

线性方程组的公解

定理4.3.1 设方程组()1有解,它的系数矩阵A和增广矩阵A共同秩是0

r≠。那么可以在()1的m个方程中选出r个方程,使得剩下的m r-个方程中的每

一个都是这r个方程的结果,因而解方程组()1可以归结为解这r个方程

所组成的线性方程组。

定义3 若是一个线性方程组的常数项等于零,那么这个方程组叫作一个齐次线性方程组。

定理4.3.2 一个齐次线性方程组有非零解的充要条件是:它的系数矩阵的秩r小于它的未知量的个数n。

推论4.3.1 含有n个未知量的n个方程的齐次线性方程组有非零解的充要条件是:方程组的系数行列式等于零。

高等数学基本知识

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

高等数学基本知识点大全

高等数学基本知识点

一、函数与极限 1、集合的概念 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 ⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 2、函数 ⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 ⑵、函数相等 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 ⑶、域函数的表示方法 a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2 b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。 c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为: 3、函数的简单性态 ⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. ⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1

高等代数最重要的基本概念汇总

第一章 基本概念 1.5 数环和数域 定义1 设S 是复数集C 的一个非空子集,如果对于S 中任意两个数a 、b 来说,a+b,a-b,ab 都在S 内,那么称S 是一个数环。 定义2 设F 是一个数环。如果 (i )F 是一个不等于零的数; (ii )如果a 、b ∈F,,并且b 0≠, a F b ∈,那么就称F 是一个数域。 定理 任何数域都包含有理数域,有理数域是最小的数域。 第二章 多项式 2.1 一元多项式的定义和运算 定义1 数环R 上的一个文字的多项式或一元多项式指的是形式表达式 ()1 2012n n a a x a x a x ++++L , 是非负整数而012,,,n a a a a L 都是R 中的数。 项式()1中,0a 叫作零次项或常数项,i i a x 叫作一次项,一般,i a 叫作i 次项的系数。 定义2 若是数环R 上两个一元多项式()f x 和()g x 有完全相同的项,或者只差一些系数 为零的项,那么就说()f x 和()g x 就说是相等 ()()f x g x = 定义3 n n a x 叫作多项式2012n n a a x a x a x ++++L ,0n a ≠的最高次项,非负整数n 叫作 多项式2012n n a a x a x a x ++++L ,0n a ≠的次数。 定理2.1.1 设()f x 和()g x 是数环R 上两个多项式,并且()0f x ≠,()0g x ≠,那么 ()i 当()()0f x g x +≠时, ()()()()()()()()0 max ,;f x g x f x g x ? +≤?? ()ii ()()()()()()()0 f x g x f x g x ? =?+?。 多项式的加法和乘法满足以下运算规则: 1) 加法交换律: ()()()()f x g x g x f x +=+;

高等代数发展史

初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。 高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。 高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。 集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也由很大的不同了。 高等代数发展简史 代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。 人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。 在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式——卡当公式。 在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)骗到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。 三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。 到了十九世纪初,挪威的一位青年数学家阿贝尔(1802~1829)证明了五次或五次以上的方程不可能有代数解。既这些方程的根不能用方程的系数通过加、减、乘、除、乘方、开方这些代数

数学基本概念

基本概念 第一章数和数的运算一概念(一)整数 1整数的意义:自然数和0都是整数。2自然数: 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除 整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a 能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。能被2整除的数叫做偶数。不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

(整理)高等数学基本公式概念和方法

高等数学基本公式、概念和方法 一.函数 1.函数定义域由以下几点确定 (1)0)(;) (1 ≠= x f x f y (2)0)(;)(2≥=x f x f y n (其中n 为正整数) (3)0)(:)(log >=x f x f y a 。 (4)1 )(1);(arccos 1)(1);(arcsin ≤≤-=≤≤-=x f x f y x f x f y (5)函数代数和的定义域,取其定义域的交集. (6)对具有实际意义的函数,定义域由问题特点而定. 2.判断函数的奇偶性,依据以下两点确定,否则函数为非奇非偶的. (1) 若)(),()(x f x f x f =-是偶函数,若)(),()(x f x f x f -=-是奇函数. (2) 若)(x f y =的图象关于y 轴对称,则函数是偶函数.如x y x y cos ..2 ==等。 若)(x f y =的图象关于坐标原点对称,则函数是奇函数.如x y x y x y sin (3) === 3. 将函数分解成几个简单函数的合成. 由六类基本初等函数的形式,对要分解的函数,由外层到内层,分别设出关系.函数与常数的四则运算,不必另设一层关系. 二.极限与连续 1.主要概念和计算方法: (1).A x f x f A x f x x x x x x ==?=+-→→→)(lim )(lim )(lim 0 (2).若0)(lim 0 =→x f x x (极限过程不限),则当0x x →时)(x f 为无穷小量。 (3).若)()(lim 00 x f x f x x =→,则函数在0x 处是连续的。 即(1)函数值存在、(2)极限存在、(3)极限值和函数值相等。 若上述三条至少一条不满足,则0x 是函数的间段点。 (4).间断点的分类:设0x 是函数的间断点 若左、右极限均存在,则0x 称为第一类间断点。 若左、右极限至少有一个是无穷大,则0x 称为第二类间断点。 (5).重要公式:条件0)(lim =x ?(极限过程不限)

高等代数习题

高等代数习题 第一章基本概念 §1.1 集合 1、设Z是一切整数的集合,X是一切不等于零的有理数的集合.Z是不是X的子集? 2、设a是集A的一个元素。记号{a}表示什么? {a} A是否正确? 3、设 写出和 . 4、写出含有四个元素的集合{ }的一切子集. 5、设A是含有n个元素的集合.A中含有k个元素的子集共有多少个? 6、下列论断那些是对的,那些是错的?错的举出反例,并且进行改正. (i) (ii) (iii) (iv) 7.证明下列等式: (i)

(ii) (iii) §1.2映射 1、设A是前100个正整数所成的集合.找一个A到自身的映射,但不是满射. 2、找一个全体实数集到全体正实数集的双射. 3、是不是全体实数集到自身的映射? 4.设f定义如下: f是不是R到R的映射?是不是单射?是不是满射? 5、令A={1,2,3}.写出A到自身的一切映射.在这些映射中那些是双射? 6、设a ,b是任意两个实数且a

9、设是映射,又令,证明 (i)如果是单射,那么也是单射; (ii)如果是满射,那么也是满射; (iii)如果都是双射,那么也是双射,并且 10.判断下列规则是不是所给的集合A的代数运算: 集合 A 规则 1 2 3 4 全体整数 全体整数 全体有理数 全体实数 b a b a+ → |) , ( §1.3数学归纳法 1、证明: 2、设是一个正整数.证明 ,是任意自然数. 3、证明二项式定理: 这里 , 是个元素中取个的组合数.

高等代数最重要的基本概念汇总

第一章 基本概念 数环和数域 定义1 设S 是复数集C 的一个非空子集,如果对于S 中任意两个数a 、b 来说,a+b,a-b,ab 都在S 内,那么称S 是一个数环。 定义2 设F 是一个数环。如果 (i )F 是一个不等于零的数; (ii )如果a 、b ∈F,,并且b 0≠, a F b ∈,那么就称F 是一个数域。 定理 任何数域都包含有理数域,有理数域是最小的数域。 第二章 多项式 一元多项式的定义和运算 定义1 数环R 上的一个文字的多项式或一元多项式指的是形式表达式 ()1 2 012n n a a x a x a x +++ +, 是非负整数而012,,,n a a a a 都是R 中的数。 项式()1中,0a 叫作零次项或常数项,i i a x 叫作一次项,一般,i a 叫作i 次项的系数。 定义2 若是数环R 上两个一元多项式()f x 和()g x 有完全相同的项,或者只差一些系数 为零的项,那么就说()f x 和()g x 就说是相等 ()()f x g x = 定义3 n n a x 叫作多项式2 012n n a a x a x a x +++ +,0n a ≠的最高次项,非负整数n 叫作 多项式2 012n n a a x a x a x +++ +,0n a ≠的次数。 定理2.1.1 设()f x 和()g x 是数环R 上两个多项式,并且()0f x ≠,()0g x ≠,那么 ()i 当()()0f x g x +≠时, ()()()()()()()()0 max ,;f x g x f x g x ? +≤?? ()ii ()()()()()()()0 f x g x f x g x ? =?+?。

高等数学基本知识大全

高等数学

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

高等数学思想方法

高等数学思想方法 第一章函数与极限 主要的思想方法: (1)函数的思想 高等数学的核心内容是微积分,而函数是微积分的主要研究对象。我们在运用微积分解决实际问题时,首先就要从实际问题中抽象出变量与变量之间的函数关系,这是一个通过现象抽象出本质特征的思维过程,体现的是科学的抽象是数学的一个思维方法和主要特征。 (2)极限的思想 极限的思想方法是微积分的基础。极限是变量在无限变化过程中的变化趋势,是一个确定的数值。把一些实际问题的确定结果视为一系列的无限近似数值的变化趋势,即函数或者数列的极限,这是一种重要的数学思想方法。 第二章导数与微分 主要的思想方法: (1)微分的思想 微分表示自变量有微小变化时函数的近似变化,一般地,求导的过程就称为微分;导数则反映函数相对于自变量的瞬时变化率。从导数与微分的概念中可看出,在局部的“以直代曲”的微分思想得到了充分的体现,而这也是微积分的一个基本思想。 (2)数形结合的思想 书本中在引入导数与微分概念时,也讨论了它们的几何意义,这显然更好地帮助我们理解这两个概念。通过几何图形来直观地理解概念以及定理的证明等等内容是高等数学中常用的方法,这是抽象思维与现象思维有机结合的典型体现。 (3)极限的思想 不难发现导数概念的引入与定义深刻地体现了极限的思想。 (4)逻辑思维方法 在本章中,归纳法(从特殊到一般),分类(整合)法等逻辑思维方法都得到了充分的体现,理解与掌握此类思维方法有助于良好的理性思维的形成。 第三章中值定理与导数的应用 主要的思想方法: 导数本质上是一种刻画函数在某一点处变化率的数学模型,它实质上反映了函数在该点处的局部变化性态;而中值定理则是联系函数局部性质与整体性质的“桥梁”,利用中值定理我们就能够从函数的局部性质推断函数的整体性质,具体表现为在理论和实际问题中可利用中值定理把握函数在某区间内一点处的导数与函数在该区间整体性质的关系。

最新高等数学知识点(重点)

高等数学知识点总结 空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量);(填空选择题中考察) ③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要) ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考) ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考) 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 302),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y mt x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??===??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式:   时, ,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

最优化

1、系统分析法: 1〉系统:由相互联系的若干部分构成的具有一定功能的整体。 系统的基本特征:①系统由若干部分组成,每一部分具有其特定的功能; ②系统中的各个要素之间相互制约、联系和作用; ③系统是具有一定功能的整体,系统的总功能不等于各个部分功能的简单迭加,系统的整体功能>各部分的功能之和;④系统存在于一定的环境(environment)之中,系统与环境之间存在相互作用,系统与环境的划分是相对的,对于一个系统来说是环境,而对于另一个系统而言可能是其中的一部分。 系统分析法包括以下内容: ① 确定所研究系统的范围及其所处的环境 ② 确定系统的组成部分、结构、功能、目的、各部分的功能和内部规律③ 明确系统各个部分之间的联系,及整个系统与环境之间的联系。④ 在上述分析的基础上,确定问题的决策变量及评价方案优劣的指标(即目标函数)。决策变量就是决定方案优劣的变量。 2〉数学模型:用字母、数字、各种符号、图象、逻辑框图描述实际系统的特征和内在联系的模型称为数学模型。 数学模型由四个要素组成: ①常数(constant):在所研究的问题中保持相对固定或变化不大的量。 ②参数(parameter):由具体系统的内、外部条件确定的量。③变量(variable):指在模型中待确定的量,在最优化中叫决策变量。④ 函数关系(functional relationship):描述模型中常数、参数和变量之间相互关系的方程式或不等式。在最优化问题的数学模型中,最优准则(目标函数)和约束条件都是用函数关系描述的。 2、最优化问题的分类 1〉按最优化问题的最优解是一组数还是函数分为静态和动态最优化问题。 静态最优化问题:最优解为空间一个点。 动态最优化问题:最优解为一曲线或函数(约束条件包含微分方程)。动态最优化问题求解时,常把问题分解成若干个相互关联的连续阶段或若干个子系统处理。 2〉按最优准则的数目分为单目标和多目标最优化问题。 3〉根据问题本身提供信息的准确程度分为确定性和非确定性最优化(随机性)问题。 4〉从工程应用的角度又可分为最优设计和最优运行问题。 5〉根据有无约束可分为有约束和无约束最优化问题。 6〉按照决策变量是连续的还是离散的,最优化问题可分为连续型和离散型最优化问题。 7〉按照约束条件和目标函数是线性的还是非线性的分为线性最优化问题和非线性最优化问题。 8〉按决策过程的结构分为单阶段和多阶段决策问题: 9〉网络优化问题: 3、油气储运中的最优化问题类型 ①成品油最优调和方案的制定(线性规划) ②商品油库的最优进货计划的制定 ③商品油库最优规划与最优布局问题 ④长输管道的最优设计 ⑤长输管道的优化运行 ⑥输油管道最佳月输油计划确定 ⑦矿场油气集输系统的最优化问题 ⑧全国油气产品的合理分配与运输 4、线性规划 线性规划问题是一类特殊的数学规划问题,其目标函数是决策变量的线性函数,约束条件是关于决策变量的线性等式或不等式。线性规划问题的一般形式为: ∑==n j j j x c S 1 max (min) 简写为: ?????=≥=≥∑=n j x m i b x a t s j i j ij ~1 0~1 ..n 1 j 标准形式: ∑==n j j j x c S 1 max

高等数学基础知识点归纳

第一讲函数,极限,连续性 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给 定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集,记作N+。 ⑶、全体整数组成的集合叫做整数集,记作Z。 ⑷、全体有理数组成的集合叫做有理数集,记作Q。 ⑸、全体实数组成的集合叫做实数集,记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就 说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。 ⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中 的元素完全一样,因此集合A 与集合B 相等,记作A=B。 ⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合 B 的真子集,记作A 。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。 ②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。 通常记作U。

(完整版)高等代数知识点归纳,推荐文档

1122,, 0,.i j i j in jn A i j a A a A a A i j ?=?++=?≠?? L = =()mn A O A A O A B O B O B B O A A A B B O B O * = =* *=-1 (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 范德蒙德行列式: ()12222 1211 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 分块对角阵相乘:11 112222,A B A B A B ???? == ? ???? ??11112222A B AB A B ??= ???,1122n n n A A A ?? = ??? 分块矩阵的转置矩阵:T T T T T A B A C C D B D ?? ??= ? ????? () 1121112 222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ??? L L M M M L ,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A -=, 1 1A A --=. 分块对角阵的伴随矩阵:* * *A BA B AB ?? ??= ? ???? ?

814《高等代数》考研大纲

《高等代数》考研大纲 一、基本要求 要求考生全面系统地理解高等代数的基本概念和基本理论,熟练掌握高等代数的基本思想和基本方法。要求考生具有较强的抽象思维能力、逻辑推理能力、数学运算能力以及综合运用所学知识分析问题和解决问题的能力。 二、考试范围 (一)多项式 .多项式的带余除法及整除性、最大公因式、互素多项式; .不可约多项式、因式分解唯一性定理、重因式、复系数与实系数多项式的因式分解、有理系数多项式不可约的判定; .多项式函数与多项式的根、代数基本定理、有理系数多项式的有理根的求法、根与系数的关系。 (二)行列式 .行列式的定义及性质,行列式的子式、余子式及代数余子式; .行列式按一行、列的展开定理、法则、定理和行列式乘法定理、行列式; .运用行列式的性质及展开定理等计算行列式。 (三)线性方程组 .消元法与初等变换; .向量组的线性相关性、向量组的秩与极大线性无关组、矩阵的秩; .线性方程组有解的判别定理与解的结构。 (四)矩阵 .矩阵的基本运算、矩阵的分块及常用分块方法; .矩阵的初等变换、初等矩阵、矩阵的等价、矩阵的迹、方阵的多项式;; .逆矩阵、矩阵可逆的条件及与矩阵的秩和初等矩阵之间的关系,伴随矩阵及其性质;.运用初等变换法求矩阵的秩及逆矩阵。 (五)二次型理论 .二次型及其矩阵表示、矩阵的合同、二次型的标准形与规范形、惯性定理; .实二次型在合同变换下的规范形以及在正交变换下的特征值标准型的求法; .实二次型或实对称矩阵的正定、半正定、负定、半负定的定义、判别法及其应用。 (六)线性空间 .线性空间、子空间的定义与性质,向量组的线性相关性,线性(子)空间的基、维数、向量关于基的坐标,基变换与坐标变换,线性空间的同构; .子空间的基扩张定理,生成子空间,子空间的和与直和、维数公式; .一些常见的子空间,如线性方程组的解空间、矩阵空间、多项式空间、函数空间。(七)线性变换 .线性变换的定义、性质与运算,线性变换的矩阵表示,矩阵的相似、同一个线性变换关于不同基的矩阵之间的关系; .矩阵的特征多项式与最小多项式及其性质、线性变换及其矩阵的特征值和特征向量的概念和计算、特征子空间、实对称矩阵的特征值与特征向量的性质; .线性变换的不变子空间、核、值域的概念、关系及计算; .定理、矩阵可相似对角化的条件与方法、线性变换矩阵的化简、标准形。

第1章 最优化方法的一般概念

第1章最优化方法的一般概念 最优化问题就是依据各种不同的研究对象以及人们预期要达到的目的,寻找一个最优控制规律或设计出一个最优控制方案或最优1 控制系统。 针对最优化问题,如何选取满足要求的方案和具体措施,使所得结果最佳的方法称为最优化方法。

1.1 目标函数、约束条件和求解方法 根据所提出的最优化问题,建立最优化问题的数学模型,确定变量,给出约束条件和目标函数最优化方法解决实际工程问题的步骤: 2 (或性能指标); 对所建立的模型进行具体分析和研究,选择合适的最优化求解方法; 根据最优化方法的算法,列出程序框图并编写程序,用计算机求出最优解,并对算法的收敛性、通用性、简便性、计算效率及误差等做出评价。

目标函数、约束条件和求解方法是最优化问题的三个基本要素。 1.目标函数:就是用数学方法描述处理问题所能够达到结果的函数。该函数的自变量是表示可供选择的方案及具体措施的一些参数或函数,最佳结果就表现为目标函数取极值。 3 2.约束条件:在处理实际问题时,通常会受到经济效率、物理条件、政策界限等许多方面的限制,这些限制的数学描述称为最优化问题的约束条件。3.求解方法:是获得最佳结果的必要手段。该方法使目标函数取得极值,所得结果称为最优解。

4

解:①目标函数: 122max (cos )sin S x x x ②约束条件: a x x 21212(0,0)x x (非线性)(线性)说明:5 这是一个非线性带等式约束的静态最优化问题。这类问题有时可以方便地将等式约束条件带入到目标函数中,从而将有约束条件的最优化问题转换为无约束条件的最优化问题,以便求解。例如:将例1-1转换为无约束条件的最优化问题,目标函数变为: sin )cos 2(max 222x x x a S

高等数学常用概念及公式

高等数学常用概念及公式 ● 极限的概念 当x 无限增大(x →∞)或x 无限的趋近于x 0(x →x 0)时,函数f(x)无限的趋近于常数A ,则称函数f(x)当x →∞或x →x 0时,以常数A 为极限,记作: lim ∞ →x f(x)=A 或 lim 0 x x →f(x)=A ● 导数的概念 设函数y=f(x)在点x 0某邻域内有定义,对自变量的增量Δx =x- x 0,函数有增量Δy=f(x)-f(x 0),如果增量比 x y ??当Δx →0时有极限,则称函数f(x)在点x 0可导,并把该极限值叫函数y=f(x)在点x 0的导数,记为f ’(x 0),即 f ’(x0)=lim →?x x y ??=lim 0x x →0 0)()(x x x f x f -- 也可以记为y ’=|x=x0,dx dy |x=x0或dx x df ) (|x=x0 ● 函数的微分概念 设函数y=f (x )在某区间内有定义,x 及x+Δx 都在此区间内,如果函数的增量 Δy=f (x+Δx )-f(x)可表示成 Δy=A Δx+αΔx 其中A 是常数或只是x 的函数,而与Δx 无关,α当Δx →0时是无穷小量( 即αΔx 这一项是个比Δx 更高阶的无穷小),那么称函数y=f (x )在点x 可微,而A Δx 叫函数y=f (x )在点x 的微分。记作dy ,即: dy=A Δx=f ’(x)dx

● 不定积分的概念 原函数:设f(x)是定义在某个区间上的已知函数,如果存在一个函数F(x),对于该区间上每一点都满足 F ’(x)= f(x) 或 d F(x)= f(x)dx 则称函数F(x)是已知函数f(x)在该区间上的一个原函数。 不定积分:设F(x)是函数f(x)的任意一个原函数,则所有原函数F(x)+c (c 为任意常数)叫做函数f(x)的不定积分,记作 ?dx x f )( 求已知函数的原函数的方法,叫不定积分法,简称积分法。 其中“?”是不定积分的记号;f(x)称为被积函数;f(x)dx 称为被积表达式;x 称为积分变量;c 为任意实数,称为积分常数。 ● 定积分的概念 设函数f(x)在闭区间[a ,b]上连续,用分点 a=x 0

最优化理论与方法1(2014-简版)

《最优化理论与方法》讲义 (上) 第一章绪论 1.1 学科简介 最优化这一数学分支,为这些问题的解决提供了理论基础和求解方法。最优化就是在一切可能的方案中选择一个最好的方案以达到最优目标的学科。 1.1.1 优化的含义 优化是从处理各种事物的一切可能的方案中,寻求最优的方案。 (1)来源:优化一语来自英文Optimization,其本意是寻优的过程; (2)优化过程:是寻找约束空间下给定函数取极大值(以max 表示)或极小(以min表示)的过程。 1.2 发展概况 第一阶段—人类智能优化 第二阶段—数学规划方法优化 第三阶段—工程优化 第四阶段—现代优化方法 1.3研究意义 研究意义:最优化在本质上是一门交叉学科,它对许多学科产生了重大影响,并已成为不同领域中很多工作都不可或缺的工具。 应用范围:信息工程及设计、经济规划、生产管理、交通运输、

国防工业以及科学研究等诸多领域。 总之,它是一门应用性相当广泛的学科,讨论决策的问题具有最佳选择之特性。它寻找最佳的计算方法,研究这些计算方法的理论性质及其实际计算表现。 1.4 示例 例1 资源分配问题 某工厂生产A 和B 两种产品,A 产品单位价格为A P 万元,B 产品单位价格为B P 万元。每生产一个单位A 产品需消耗煤C a 吨,电E a 度,人工L a 个人日;每生产一个单位B 产品需消耗煤C b 吨,电E b 度,人工L b 个人日。现有可利用生产资源煤C 吨,电E 度,劳动力L 个人日,欲找出其最优分配方案,使产值最大。分析:(1)产值的表达式;(2)优化变量确定:A 产品A x ,B 产品B x ;(3)优化约束条件: ①生产资源煤约束; ②生产资源电约束; ③生产资源劳动力约束。 例2 指派问题 设有四项任务1B 、2B 、3B 、4B 派四个人1A 、2A 、3A 、4A 去完成。每个人都可以承担四项任务中的任何一项,但所消耗的资金不同。设 i A 完成j B 所需资金为ij c 。如何分配任务,使总支出最少? 分析:设变量?????=任务完成不指派, 任务完成指派j j i ij B A B A x 0,1

高等数学基本概念整理

命题人或命题小组负责人签名: 系(部)主任签名: 分院领导签名: ………………………………………………………………密封线…………………………………………………………… §1.1 函数 一、有关四种性质(奇偶性、单调性、周期性、有界性) 1. 0 () (0)()2() ()a a a f x a f x dx f x dx f x ->?? =???? ?当为奇函数当为偶函数 口诀(1):奇偶函数常遇到;对称性质不可忘。 2. 在(a,b )内,若()0f x '>,则()f x 单调增加 若()0f x '<,则()f x 单调减少 口诀(2):单调增加与减少;先算导数正与负 例1 求1 521[()ln(1)].x x I x x e e x x dx --= +-++? 解 1()x x f x e e -=-是奇函数,∵2 112()(),()ln(1)x x f x e e f x f x x x --=-=-=++是奇函数, ∵ 222 22 (1)()ln(1)ln 1 x x f x x x x x +--=-+ -=++ 22ln1ln(1)()x x f x =-++=- 因此2 ()ln(1)x x x e e x x --++是奇函数。 于是1 1 6 61 2027 I x dx x dx -= +== ? ?。 例2 设()()F x f x '=,则下列结论正确的是 (A)若()f x 为奇函数,则()F x 为偶函数。 (B)若()f x 为偶函数,则()F x 为奇函数。 (C)若()f x 为周期函数,则()F x 为周期函数。 (D)若()f x 为单调函数,则()F x 为单调函数。 解 (B)不成立,反例32 (),()13 x f x x F x ==+ (C)不成立,反例()cos 1,()sin f x x F x x x =+=+ (D)不成立,反例2 ()2,()(,)f x x F x x ==-∞+∞在内 (A)成立。 证明 0 ()(0)(),x F x F f t d t f =+ ? 为奇函数, 00 ()(0)()(0)()() (0)()() x x x F x F f t dt F f u d u F f u du F x --=+=+--=+=? ?? 所以,()F x 为偶函数。 例3 设()f x ,()g x 是恒大于零的可导函数,且()()()()0f x g x f x g x ''-<,则当a x b <<时,下列结论成立的是 (A)()()()()f x g b f b g x > (B)()()()()f x g a f a g x > (C)()()()()f x g x f b g b > (D)()()()()f x g x f a g a > 解 ∵2()1[()()()()]0()()f x f x g x f x g x g x g x '??''=-,故(A)成立。 二、有关复合函数 1. 已知()f x ,()g x 求[()]f g x 2. 已知[()]f g x 和()g x ,求()f x 例1、已知12() ()() f x x a f x f x x a ≤?=?>?和12 () ()() g x x b g x g x x b ≤?=?>? 求[()]f g x 解:11112221122 2[()] ()[()] ()[()][()] ()[()] () f g x x b g x a f g x x b g x a f g x f g x x b g x a f g x x b g x a ≤≤?? >≤?=? ≤>??>>?当,当,当,当,

相关主题
文本预览
相关文档 最新文档