当前位置:文档之家› 生物传感器在环境监测中的应用

生物传感器在环境监测中的应用

生物传感器在环境监测中的应用
生物传感器在环境监测中的应用

生物传感器在环境监测中的应用*

摘要简要介绍了生物传感器的基本工作原理。综述了测定BOD、酚、农药残留和NO3-的水环境监测的生物传感器;测定SO2和NO X的大气环境监测的生物传感器;测定土壤重金属的生物传感器以及检测内分泌干扰物、持久性有机污染物和监测水体富营养化的其他环境监测方面的应用。并对生物传感器的未来发展方向做了展望。

关键词生物传感器环境监测污染物

Application of biosensor in environmental monitoring Xie Yu, Shang Xiaoxian, Yang Li. (College of Environment and Chemistry Engineering, Nanchang Institute of Aeronautical Technology,Nanchang Jiangxi 330063) Abstract:The basic working principle of biosensor briefly was introduced in this paper. The water environment monitoring biosensor determining BOD, phenol, pesticide residues and NO3-, the atmospheric environmental monitoring biosensor determining SO2 and NO X and biosensors determining heavy metals in soil were summaried. Moreover, the other environmental monitoring aspect applications of biosensors such as determining endocrine disruptors, persistent organic pollutants and monitoring eutrophication were also introduced. At last,the development of biosensors in the future was forecasted.

Keywords: Biosensor Environmental monitoring Pollutant

随着各国经济的迅速发展,环境污染问题逐渐凸现出来,并成为制约经济快速发展的因素。因此,保护环境并实现可持续发展逐渐成为当今的热门话题。在环境监测中有许多生化指标需要简便、快速、自动化的测定,生物传感器因其满足了上述要求而在近十几年中得到了迅速发展[1,2]。

国际理论和应用化学联合会(IUPAC)对生物传感器的定义为:1种由生物或者与生物相关的敏感元件和物理化学传感器(换能器)相结合构成的小型分析仪器。其中分子识别部分(敏感元件)用于识别被测目标,是可以引起某种物理变化或化学变化的主要功能元件,是生物传感器选择性测定的基础;信号转换部分(换能器)是将分子识别部分所引起的变化转换成电信号的功能部件[3]。

生物传感器的工作原理如下:

生物传感器的研究开端于20世纪60年代。1962年CLARK[4]报道了用葡萄糖氧化酶与氧电极组合检测葡萄糖的结果,可认为是最早提出了生物传感器(酶传感器)的原理。生物传感器按敏感元件的不同可分为酶传感器、微生物传感器、免疫传感器、DNA传感器等。按转换器转换对象的不同可分为pH转换器、O2转换器、CO2转换器、NH3转换器等[5];按测量信号的不同又可分为电化学传感器、光学传感器、测热型传感器、半导体传感器等[6]。

1 用于水环境监测的生物传感器

目前生活污水和工业废水的排放量不断增加,其中绝大部分污水经过生物法处理后排入水体,其各项指标的监测需要在实验室中进行。对于大多数污水处理厂来说,实现水质的在线检测仍是一个难题。生物传感器的应用,使得废水的生物处理过程的在线检测成为可能。

1.1 BOD生物传感器

普通的BOD传感器一般是将微生物夹膜固定在溶解氧探头上[7,8],溶解氧随缓冲溶液进入到生物膜层,部分的溶解氧被微生物消耗。剩余的溶解氧通过可透气的Teflon膜而被氧电极所检测到。当样品溶液通过检测系统时,可降解的有机物通过多孔渗透膜渗透到微生物层而被微生物氧化、吸收,从而引起膜周围溶解氧的减少,导致了氧电极的电流下降。将测定的电流与标准曲线进行对比,可测定BOD。用于制作BOD生物传感器的微生物主要有酵母、假单胞菌、芽孢杆菌、发光菌和嗜热菌等。

张悦等[9]研制的BOD测定仪采用聚乙烯醇凝胶包埋方式固定酵母,并将固定化酵母直接分散悬浮在溶液中,将BOD探头插入溶液中测量BOD,在0~200 mg/L内有较好的线性测量关系,且有较好的准确性。

1.2 测定酚的生物传感器

微生物传感器是快速准确测定废水中酚含量的方法[10],是以微生物电极、酶电极和植物电极为传感器测定的。反应机理见式(1)和式(2)。

苯酚+O2+2H++酪氨酸酶→邻苯二酚(1)

邻苯二酚+O2+酪氨酸酶→邻苯二醌(2)当酚类物质与O2一起扩散进入微生物膜时,由于微生物对酚的同化作用而耗氧,致使进入氧电极的O2速率下降,传感器输出电流减小,并在几分钟内达到稳态。在一定的浓度范围内,电流降低值△I与酚的浓度之间呈线性关系,由此来测定酚的浓度。由于此反应需要酪氨酸酶,穆冬燕等[11]用麦芽糊精修饰的酪氨酸酶碳糊电极构成电流型生物传感器来测定水中酚类污染物质。在外加电压为-100 mV(vs.SCE)、pH为5.40的磷酸盐缓冲溶液中,在苯酚摩尔浓度为2.0×10-7~1.0×10-5 mol/L内电极电压与苯酚摩尔浓度有良好的线性关系,其检测下限为1.0×10-7 mol/L。

1.3 测定农药残留的生物传感器

用于农药残留检测的电化学传感器分为电流模式和电位模式,其分子识别元件大都为乙酰胆碱酯酶(AChE)和丁酰胆碱酯酶(BChE)。AChE催化底物乙酰胆碱的水解反应为[12]:

乙酰胆碱+H2O→胆碱+乙酸(3)酶的活力受到有机磷(OPs)(如:马拉硫磷、对硫磷等)和氨基甲酸酯杀虫剂(如:西维因、涕灭威)的抑制。

电流型传感器测量的是O2、H2O等电活性物质浓度[13],有两种类型:第1种类型是基于反应(3)中生成的胆碱被胆碱氧化酶(ChOD)氧化,消耗氧而生成H2O2(反应4),从而通过测定溶液中的氧或H2O2来间接测量酶的抑制物;第2种类型是电位传感器,通过测量H+的浓度来反映抑制物的浓度(反应5)。

胆碱+2O2 + H2O→乙酸三甲铵内盐+ H2O2(4)

2胆碱→2胆碱+ 2 H++2e-(5)ALBAREDA SIRVENT等[14]以1种可以重复使用的电流型生物传感器来检测自来水和果汁中的农药,在标准溶液中对氧磷和呋喃丹的检测极限分别达到10-10和10-11 mol/L。

1.4 测定NO3-生物传感器

NO3-是测定水中污染物的重要指标之一,目前有多种利用不同的NO3-还原酶作为催化剂的生物传感器装置。MARTY等[15]发明了用假单细胞菌固定在小毛细管中,置于N2O小电化学传感器的前端来测定NO3-的小型微生物传感器,该传感器在小于400 μmol/L下呈线性响应。

2 用于大气环境监测的生物传感器

2.1 测定SO2的生物传感器

SO2是酸雨酸雾形成的主要原因,传统的检测方法很复杂。将亚细胞类脂类——含亚硫酸盐氧化酶的肝微粒体固定在醋酸纤维膜上,和氧电极制成安培型生物传感器,可对SO2形成的酸雨酸雾样品进行检测[16]。将固定有类脂质的醋酸纤维膜附着在氧电极两层Telflon 气体渗透层之间,当样品溶液经过氧电极表面时,微粒体氧化样品,消耗氧,使氧电极电流随时间延长而减小,10 min达到稳定。在SO32-小于3.4×10-4 mol/L时,电流与SO32-浓度呈线性关系,检测限为0.6×10-4 mol/L。

新的生物传感器以噬硫杆菌和氧电极制作[17],将噬硫杆菌固定在两片硝化纤维膜之间,使微生物新陈代谢增加,溶解氧浓度下降,氧电极响应改变,从而测出亚硫酸物含量。

2.2 测定NO X的生物传感器

NO X是引起光化学烟雾的最主要原因,利用硝化细菌以硝酸盐为唯一能源这一特点,用多孔气体渗透膜,固定化硝化细菌和氧电极组成微生物传感器[18],能有效测定样品中亚硝酸盐的含量。此传感器选择性很高,不易受乙酸、乙醇等挥发物质的干扰。当亚硝酸盐低于0.59 mmol/L时,通过氧电极的电流与硝化细菌的好氧量之间有良好的线性关系,检测限为0.01 mmol/L。

除了能对以上两种大气中的主要污染物进行检测外,对其他空气污染物的监测也有报道。GIL等[19]采用埃希氏菌属作为基质,用琼脂固定与传导器组成生物传感器,对工厂周围的大气进行连续监测,能检测出空气中的苯和甲苯等有毒物质的浓度变化。

3 测定土壤重金属的生物传感器

生物传感器用于土壤中污染物的检测目前报道较少。基于抑制作用的酶生物传感器测定环境样品中的抑制剂的研究近年来备受关注,该法可应用于检测土壤中的污染物。汤琳等[20]提出了一种基于抑制作用的新型葡萄糖氧化酶生物传感器用于测定土壤样品中的二价汞离子。该法克服了传统的冷原子吸收分光光度法、高锰酸钾-过硫酸钾消解双硫腙分光光度法等方法中预处理过程复杂、费用高、不能实地检测的缺点。二价汞离子可作为葡萄糖氧化酶的一种抑制剂,在pH较低的酸性环境中,能与酶活性中心的某些位点结合而抑制酶的活性,从而引起响应电流的下降,产生可测定信号。该传感器对汞离子的检出限为0.49 ng/mL,抑制率和汞离子浓度的自然对数值在0.49~783.21 ng/mL和783.21 ng/mL~25.55 μg/mL内分别呈良好的线性关系,酶电极在抑制后可以完全恢复活性。

4 生物传感器在环境监测其他方面的应用

4.1 检测内分泌干扰物

环境内分泌干扰物(EDCs)通过食物、水、大气和土壤等环境介质与包括人类在内的环境生物体系全方位的接触,成为迫切需要治理的第3代环境污染物。

ANDREEACU等[21]发展了1种以酪氨酸酶为基础的电化学生物传感器(Tyr-CPE),成功应用于检测酚类EDCs。近年来,以表面等离子体共振(SPR)为原理的高灵敏度转换器被较多的应用于生物传感器中,形成1种新的更为简单快捷的检测法。该法通过检测SPR信号的改变,来反映识别元件生物分子与受试物分子的相互作用(结合或解离),从而定量测定待测物。SHIMOMUM[22]等使用该法来检测2,3,7,8-TCDD、PCB和阿特拉津,仅15 min 便可完成全部测定过程,3者的检出限分别为0.1、2.5、5 ng/mL。

4.2 检测持久性有机污染物

常见的持久性有机污染物是氯化烃类,如三氯乙烯(TCE)、四氯乙烯(PCE)等。这类物质大都具有致癌作用,一旦进入地下水或土壤中,将对人体健康构成极大危害。HAN 等[23]发明了1种用假单细胞菌JI104固定在聚四氟乙烯薄膜上制成的新型微生物传感器,将附有假单细胞菌的薄膜固定于氯离子电极上,再将带有AgCl/Ag薄膜的氯离子电极和Ag/AgCl参比电极连接到离子计上,记录电压的变化,通过与标准曲线对照,测定三氯乙烯的浓度。

4.3 监测水体富营养化

水域中一些浮游生物暴发性繁殖引起水色异常的现象称为赤潮。赤潮是水质受到污染,水体富营养化的结果,多发生在近海海域。叶绿素a是浮游植物进行光合作用时,有机物生产力的一个重要指标[24]。日本设计出叶绿素a的自动监测仪,通过对水中叶绿素a 的检测来监测水体富营养化的发生。该仪器体积小,可设置在表层水下10~100 cm处,检

测范围为0~20 μg/L。

5 未来发展趋势

由于生物传感器具有快速、在线、连续监测的优点,越来越受到人们的重视。经过近30年的研究,生物传感器已获得了很大发展。但是真正应用于环境监测领域的实例并不太多,这主要是由于目前的生物传感器还存在诸多不足之处,如稳定性差、对许多有毒物质缺乏抵抗性、使用寿命短、维护较为复杂等。

未来生物传感器发展的方向主要集中在两个方面[25]:换能器的发展和检测元件的改进。

信号转换是生物传感器的关键问题,如何在传感元件的氧化还原中心与电极换能器之间建立电子传递仍是一个技术难点。

生物传感器在工作过程中,往往会出现识别元件与待测物发生化学反应等不可逆的情况,这必然会影响传感器的检测能力,降低其灵敏度。因此,如何提高元件的使用寿命,选择灵活性强、选择性高的传感元件也是一个主要的研究方向。

活性物质的固定化技术在研究生物传感器的稳定性时占有重要位置,因此这个问题如果能得到很好的解决,必将极大推动生物传感器的发展,提高其实用性。

此外,便携式微型生物传感器的研究也是未来的一个发展方向,新生物材料的合成、纳米技术的应用等都将进一步推进生物传感器在环境监测领域的应用。

参考文献

[1] 吴邦灿,费龙.现代环境监测技术[M].北京:中国环境科学出版社,1999.

[2] ISAO K,KAZUYOSHI Y,SATOSHI S.Biosensors for environmental monitoring [J]. Annals of the

New York Academy of Sciences,1998,86:23-36.

[3] 范崇阳.生物传感器的发展和应用[J].传感器技术,1995,2:1-5.

[4] CLARK L C. Biosensor [M]. Ann. N. Y. Acad / Sci.,1962,102(29):41-48.

[5] BAMBANG K,ROBRETO A,RAL Y N W. Optical fibre biosensors based on immobilised enzymes [J].

The Analyst,2001,l26(8):1469.

[6] 司士辉.生物传感器[M].北京:化学工业出版社,2002:118.

[7] KARUBE I,NOMURA Y,ARIKAWA Y. Biosense Technology Applied to Environment Monitoring [J].

TrAc,1995,14(7):295-300.

[8] 叶裕才,王建龙.生物传感器快速测定生化需氧量的研究[J].分析化学,2005,3:405-406.

[9] 张悦.生物传感器快速测定BOD的开发[J].高技术通讯,2001,21(4):51.

[10] SOUZA S F D. Microbial biosensors [J] Biosensors & Bioeletronics,2001,16:337-353.

[11] 穆东燕,崔莉风.用酪氨酸酶生物传感器测水中酚类物质的研究[J].北京工商大学学报,2002,

20(1):12-16.

[12] 陈峻,林详钦.乙酰胆碱/胆碱电化学生物传感器研究进展[J].分析科学学报,2001,17(6):515-519.

[13] 蒋雪松,应义斌.生物传感器在农药残留检测中的应用[J].农业工程学报,2005,21(4):118-119.

[14] ALBAREDA SIRVENT M,MERKOCI A,ALEGRET S. Pesticide determination in tap water and juice

samples using disposable amperometric biosensors made using thick-film technology[J]. Analytica Chimica Acta,2001,442:35-44.

[15] MARTY J L,MIONETTO N,NOGURE T,et al. Applications and Prospects of Biosensor for

Environment Monitoring [J]. Biosens Bioelectron,1993,8:273.

[16] 郑怀礼,龚迎昆.用于环境监测的生物传感技术[J].光谱学与光谱分析,2003,23(2):411-413.

[17] 李彦文,杨仁斌.生物传感器在环境污染物检测中的应用[J].环境科学动态,2004,1:27-29.

[18] PAUL T C,PAUL R G,CHARLES H,et al. Applications and prospects of biosensor for environment

monitoring [J]. Environ Sci. Technol.,2000,34(21):4641.

[19] GIL G C,MITCHELL R J,SUK T C. A biosensor for the detection of gas toxicity using a recombinant

bioluminescent bacterium[J]. Biosensors & Bioelectronics,2000,15(1/2):23-30.

[20] 汤琳,曾光明.基于抑制作用的新型葡萄糖氧化酶传感器测定环境污染物汞离子的研究[J].分析科

学学报,2005,21(2):123-126.

[21] ANDREEACU S,SADIK O A. Correlation of analyte struetures with biosensor responses using the

detection of phenolic estrogens as a model[J]. Anal Chem.,2004,76(3):552-560.

[22] SHIMOMUM M,NOMURA Y,ZHANG W,et a1. Simple and rapid detection method using surface

plasmon resonance for dioxins,polychlorinated biphenyls and atrazine[J]. Analytica Chimica Acts,2001,434(2):223-230.

[23] HAN T S,KIM Y C,SASAKI S,et al. Microbial sensor for trichloroethylene determination [J]. Anal

Chim Acta,2001,43:225

[24] 胡辉,谢静.叶绿素a在监视赤潮和评价水环境中的应用[J].环境监测管理与技术,2001,13(5):

43.

[25] SARA R M,MARIA J. Biosensors for environmental monitoring a global perspective[J]. Talanta,

2005,65:291-297.

责任编辑:黄苇(收到修改稿日期:2007-04-02)

?版权所有《环境污染与防治》杂志社

生物传感器的研究现状及应用

生物传感器的研究现状及应用 生物传感器?这个熟悉但又概念模糊的名词最近不断出现在媒体报道上,生物传感器相关的研究项目陆续获得巨额的研究资助,显示出越来越受重视的前景。要掌握生命科学研究的前研信息,争取好的研究课题和资金,你怎能不了解生物传感器? 让我们来看看生物通最近的一些报道: 英国纽卡斯尔大学科学家研发了可用于检测肿瘤蛋白以及耐药性MASA细菌的微型生物传感器。该系统利用一个回旋装置来检测,类似导航系统和气袋的原理。振荡晶片的大小类似于一颗尘埃尺寸,有望可使医生诊断和监测常见类型的肿瘤,获得最佳治疗方案。该装置可以鉴定肿瘤标志物-蛋白以及其它肿瘤细胞产生的丰度不同的生物分子。该小组下一步目标是把检测系统做成一个手持式系统,更加快速方便地检测组织样品。欧共体已经拨款1200万欧元资金给该小组,以使该技术进一步完善。 苏格兰IntermediaryTechnologyInstitutes计划投资1亿2千万英镑发展“生物传感器平台(BiosensorPlatform)”——一种治疗诊断技术。作为将诊断和治疗疾病结合在一起的新兴疗法,能够在诊断的同时,提出适合不同病人的治疗方案,可以降低疾病诊断和医学临床的费用与复杂性,同时具备提供疾病发展和药品疗效成果的能力。目前该技术已被使用在某些乳癌的治疗上,只需在事前做些特殊的测试,即可根据结果决定适合的疗程。这个技术更被医学界视为未来疾病疗程的主流。 来自加州大学洛杉矶分校的研究者使用GeneFluidics开发的新型生物传感器来鉴定引起感染的特定革兰氏阴性菌,该结果表明利用微型电化学传感器芯片已经可以用于人临床样本的细菌检查。GeneFluidics'16-sensor上的芯片包被了UCLA设计的特异的遗传探针。临床样本直接加到芯片上,然后其电化学信号被多通道阅读器获取。根据传感器上信号的变化来判断尿路感染的细菌种类。从样品收集到结果仅需45分钟。比传统方法(需要2天时间)

生物传感器分析解析

阅读报告 生物传感器 教学单位:机电工程学院 专业名称:机械设计制造及其自动化 学号: 学生姓名: 指导教师: 指导单位:机电工程学院 完成时间: 电子科技大学中山学院教务处制发

生物传感器 摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。 传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。 生物传感器(biosensor),是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。 关键词:传感器生物传感器

目录 1 生物传感器 (1) 1.1生物传感器简介 (1) 2 生物传感器的介绍 (2) 2.1组成结构及工作原理 (2) 2.2技术特点 (2) 2.3国内外应用发展情况及应用案例 (3) 2.3.1国内应用发展 (3) 2.3.2国外应用发展 (3) 2.3.3应用案例 (4) 参考文献 (6)

生物传感器的应用现状和发展趋势

生物传感器的应用现状和发展趋势 【摘要】改革开放以来,国民生活的各个方面都取得了明显的进步。随着科学的发展生产力的不断提高,生物传感器的应用越来越广泛。为我们的生产生活带来了很大的方便,研究生物传感器的应用现状和发展趋势,有利于我们对生物传感器进行全面深入的了解,有利于生物传感器的自身发展,同时有利于生物传感器的应用广泛推广。因此有必要详细说明生物传感器的应用现状和发展趋势。 【关键词】生物传感器;应用现状;发展趋势 1.前言 生物传感器作为一种高科技手段,在医学、军事、食品、农业等各个领域均得到了广泛的应用。它具有传感器不可替代的地位,利用生物中独特的物质,通过一系列的化学反应,检测出相关物质。生物传感器相对与传统的传感器相比,具有高灵敏度、高选择度、成本低廉、运用普及度高、污染程度小的特点。因此,研究生物传感器的应用现状和发展趋势具有重要意义。 2.简要介绍生物传感器 Gronow将生物传感器定义为一种含有固定化生物物质(如酶、抗体、全细胞、细胞器或其联合体)并与一种合适的换能器紧密结合的分析工具或系统,它可以将生化信号转化为数量化的电信号。生物传感器一般由两个主要部分组成:一是生物分子识别元件(感受器),是具有分子识别能力的生物活性物质(如酶、抗体、组织切片、细胞、细胞器、细胞膜、核酸、有机物分子等);二是信号转换器(换能器),主要有电化学电极、光学检测元件、热敏电阻、场效应晶体管、压电石英晶体及表面等离子共振器件等。当待测物与分子识别元件特异性结合后,所产生的复合物通过信号转换器转变为可以输出的电信号、光信号等,从而达到分析检测的目的。 3.生物传感器的具体应用 3.1 制药方面 生物传感器在生产药物时具体作用表现为对具体进行生化反应进行检测,生物传感器可以及时的测量有关生化反应的各项数据,并将它及时反馈给系统。在抗癌药物及癌症治疗方面,生物传感器发挥了极其重要的作用。在实验室中对癌细胞进行培养,并把用相应药物与之发生反应,通过生物传感器对实验数据进行测量,来具体观察药物对癌细胞的作用。在不同药物间的对比中,选出最具有抗癌性的药物。 3.2 食品方面

生物传感器作业第一次

1.什么是生物传感器?主要由哪几部分组成,分别有什么功能. 答: 生物传感器:用生物质作为敏感元件的一种传感器。 主要部件:生物敏感膜(或称作分子识别原件)和换能器 生物敏感膜是生物传感器的关键元件,直接决定传感器的功能和质量 换能器的作用是将各种生物的、化学的和物理的信息转化成电信号 2.什么是酶联免疫测定法?描述其两种检测方法,可画图说明.并举一两个例子。答: 所谓酶联免疫测定法是指用酶促反应的放大作用来显示初级免疫学反应。主要有: 一、夹心法,多用于检测大分子物质,其操作步骤如下: (1)将特异性抗体与固相载体连接,形成固相抗体:洗涤除去未结合的抗体及杂质。 (2)加受检标本:使之与固相抗体接触反应一段时间,让标本中的抗原与同相载体上的抗体结合,形成固相抗原复合物。洗涤除去其他未结合的物质。(3)加酶标抗体:使同相免疫复合物上的抗原与酶标抗体结合。彻底洗涤未结合的酶标抗体。此时固相载体上带有的酶量与标本中受检物质的量正相关。(4)加底物:酶催化底物成为有色产物。根据颜色反应的程度进行该抗原的定性或定量。 举例:(1)应用双抗体夹心法可检测人体中的免疫球蛋白D的含量;(2)应用双抗体夹心法检测患者血清中的抗环瓜氨酸肽抗体的含量。 二、竞争法,多用于小分子或半抗原的检测,操作步骤如下: (1)将特异抗体与固相载体连接,形成固相抗体,洗涤。

(2)待测管中加受检标本和一定量酶标抗原的混合溶液,使之与固相抗体反应。如受检标本中无抗原,则酶标抗原能顺利地与固相抗体结合。如受检标本中含有抗原,则与酶标抗原以同样的机会与固相抗体结合,竞争性地占去了酶标抗原与固相载体结合的机会,使酶标抗原与固相载体的结合量减少。参考管中只加酶标抗原,保温后,酶标抗原与同相抗体的结合可达最充分的量。洗涤。 (3)加底物显色:参考管中由于结合的酶标抗原最多,故颜色最深,参考管颜色深度与待测管颜色深度之差,代表受检标本抗原的量。待测管颜色越淡,表于标本中抗原含量越多。 图示如下: 举例:(1)利用竞争法检测乙型肝炎病毒核心抗体的影响因素;(2)利用竞争法检测蓝舌病抗体的含量。 3. DNA的三级结构? 答: 一级结构:脱氧核苷酸在长链上的排列顺序 二级结构:双螺旋链(碱基配对原则) 三级结构:超螺旋结构 4.生物敏感元件的固定化方法有哪几种?分别有什么特点.酶和DNA分别常用哪几种固定方法. 答: (1)生物敏感元件常用固定方法有:夹心法、包埋法、吸附法、共价结合法、交联法、微胶囊法 (2)各方法的特点: 夹心法:操作简单,不需要化学处理,固定生物量大,响应速度快,重现性好,

生物传感器的原理及应用

生物传感器的原理及应用 摘要: 随着信息技术与生物工程技术的发展,生物传感器得到了极为迅速的发展,当今各发达国家都把生物传感器列为21世纪的关键技术,给予高度的重视。生物传感器不仅广泛用于传统医学领域,推动医学发展,而且还在空间生命科学、食品工业、环境监测和军事等领域广泛应用。 关键词:生物传感器;原理;应用;发展 Abstract: As information technology and biological engineering technology, bio-sensors has been very rapid development,today's developed countries regard the biosensor technology as the key to the 21st century, given a high priority. Biosensors are widely used in traditional medicine not only to promote the development of medicine, but also in space life science, food industry, environmental monitoring and widely used in military and other fields. Keyword s: biosensor; principle; application; development

目录 一. 引言 (4) 二. 生物传感器的原理 (4) 三. 生物传感器的应用 (5) 3.1.生物传感器在医学领域的应用 (5) 3.1.1. 基于中医针灸针的传感针 (5) 3.1.2.生物芯片 (5) 3.1.3.生物传感器的临床应用 (5) 3.2.生物传感器在非传统医学领域的应用 (6) 3.2.1.在空间生命科学发展中的应用 (6) 3.2.2.在环境监测中的应用 (6) 3.2.3.在食品工程中的应用 (6) 3.2.4.在军事领域的应用 (6) 四. 生物传感器的未来 (7) 五. 结束语 (7) 六. 参考文献 (7)

生物传感器原理及应用

Chapter 1生物传感器 (Biosensors) ? 1.1 Generalization(概述)? 1.2 Principle (基本原理)? 1.3 Classification(分类)? 1.4 Application(应用)

1.2 生物传感器工作原理 被测对象生物敏 感膜 (分子 识别感 受器) 电 信 号 换 能 器 物理、化学反应 化学物质 力 热 光 声 . . . 图16-1 生物传感器原理图

BIOSENSORS 1.2 生物传感器原理 无论是基于电化学、光学、热学或压电 晶体等不同类型的生物传感器,其探头均由 两个主要部分组成,一是感应器,它是由对 被测定的物质(底物)具有高选择性分子识 别功能的膜构成。二是转换器,它能把膜上 进行的生化反应中消耗或生成的化学物质, 或产生的光、热等转变成电信号,最后把所 得的电信号经过电子技术的处理后,在仪器 上显示或记录下来。

换能器(T r a n s d u c e r )感受器(R e c e p t o r )= 分析物(Analyte ) 溶液(Solution )选择性膜(Thin selective membrane ) 识别元件(Recognition )生物传感器工作机理 测量信号(Measurable Signal ) BIOSENSORS

(1)将化学变化转变成电信号 酶传感器为例,酶催化特定底物发生化学反应,从而使特定生成物的量有所增减。用能把这类物质的量的改变转换为电信号的装置和固定化酶耦合,即组成酶传感器.常用转换装置有氧电极、过氧化氢。

生物传感器的发展现状与趋势

生物传感器的应用与发展趋势 摘要:生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术, 是一种将生物感应元件的专一性与一个能够产生和待测物浓度成比例的信号传导器结合起来的分析装置,具有选择性好、灵敏度高、分析速度快、成本低、能在复杂的体系中进行在线连续检测的特点。生物传感器的高度自动化、微型化与集成化,减少了对使用者环境和技术的要求,适合野外现场分析的需求,在生物、医学、环境监测,视频,医药及军事医学等领域有着重要的应用价值。 关键词:生物传感器;应用;发展趋势 1生物传感器 从几百年以前,人类就已经在使用生物传感器,而生物传感器的研究始于1962年,Clark和Lyons首先提出使用含酶的修饰膜来催化葡萄糖,用pH计和氧电极来检测相应的信号转变。1967年,Updike和Hick 正式提出了生物传感器这一概念,并成功制备了第一支葡萄糖生物传感器,这一工作对生物学来说具有里程碑意义。生物传感器研究的全面展开是从20世纪80年代开始的,1977年,Kambe等用微生物作识别元素制备了生物传感器,为拓宽检测物的范围,所用到的识别元素不断得到扩展,如细胞、DNA、RNA、抗体等识别元素先后被应用于生物传感器的构筑中。换能器的种类和质量也不断得到提高和发展,随后细胞、DNA、RNA、抗体等识别元素也被应用于生物传感器中。逐渐从电化学向光谱学、热力学、磁力、质量及声波等方向拓展,这也使得生物传感器在种类和应用领域上得到发展。 1.1 生物传感器简介 生物传感器指对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质与适当的理化换能器如氧电极、光敏管、场效应管、压电晶体等等及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。对生物物质敏感并将其浓度转换为电信号进行检测的仪器。 将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了葡萄糖传感器。当改用其他的酶或微生物等固化膜,便可制得检测其对应物的其他传感器。固定感受膜的方法有直接化学结合法;高分子载体法;高分子膜结合法。现已发展了第二代生物传感器:微生物、免疫、酶免疫和细胞器传感器,研制和开发第三代生物传感器,将系统生物技术和电子技术结合起来的场效应生物传感器,90年代开启了微流控技术,生物传感器的微流控芯片集成为药物筛选与基因诊断等提供了新的技术前景。由于酶膜、线粒体电子传递系统粒子膜、微生物膜、抗原膜、抗体膜对生物物质的分子结构具有选择性识别功能,只对特定反应起催化活化作用,因此生物传感器具有非常高的选择性。缺点是生物固化膜不稳定。 在21世纪知识经济发展中,生物传感器技术必将是介于信息和生物技术之间的新增长点,在国民经济中的临床诊断、工业控制、食品和药物分析(包括生物药物研究开发)、环境保护以及生物技术、生物芯片等研究中有着广泛的应用前景。 1.2 生物传感器的分类 生物传感器主要有下面三种分类命名方式: 1.根据生物传感器中分子识别元件即敏感元件可分为五类:酶传感器,微生物传感器,细胞传感器,组织传感器和免疫传感器。相应的敏感材料依次为酶、微生物个体、细胞器、动植物组织、抗原和抗体。 2.根据生物传感器的换能器即信号转换器分类有:生物电极传感器,半导体生物传感器,光生物传感器,热生物传感器,压电晶体生物传感器等,换能器依次为电化学电极、半导体、光电转换器、热敏电阻、压电晶体等。 3.以被测目标与分子识别元件的相互作用方式进行分类有生物亲和型生物传感器、代谢型或催化型生

生物传感器的应用及发展趋势

生物传感器的应用及发展趋势 摘要: 生物传感器是一类特殊的化学传感器,是以生物体成分(如酶,抗原,抗体,激素等)或生物体本身(细胞,微生物,组织等)作为生物体敏感元件,对被测目标物具有高度选择性的检测器件。生物传感器不仅广泛用于传统医学领域,推动医学发展,而且还在空间生命科学、食品工业、环境监测和军事等领域广泛应用。 关键词:生物传感器种类;原理;应用;趋势 一.生物传感器基本结构和工作原理 生物传感器由分子识别部分(敏感元件)和转换部分(换能器)构成,以分子识别部 分去识别被测目标,是可以引起某种物理变化或化学变化的主要功能元件。分子识别部分 是生物传感器选择性测定的基础。生物传感器通过物理,化学型信号转换器捕捉目标物 与敏感元件之间的反应,并将反应的程度用离散或连续的电信号表达出来,从而得出 被测量。 生物体中能够选择性地分辨特定特质的物质有酶、抗体、组织、细胞等。这些分子识 别功能物质通过识别过程可与被测目标结合成复合物,如抗体和抗原的结合、酶与基质的 结合。在设计生物传感器时,选择适合于测定对象的识别功能物质,是极为重要的前提; 要考虑到所产生的复合物的特性。根据分子识别功能物质制备的敏感元件所引起的化学变 化或物理变化,去选择换能器,是研制高质量生物传感器的另一重要环节。敏感元件中光、热、化学物质的生成或消耗会产生相应的变化量。根据这些变化量,可以选择适光的换能器。 二.生物传感器的分类及应用 1.酶生物传感器 酶传感器是生物传感器的一种,是利用生化反应所产生的或消耗的物质的量,通过电化学 装置转换成电信号,进而选择性地测定出某种成分的器件。酶生物传感器应用于检测血糖 含量,检测氨基酸含量,测定血脂,测定青霉素和浓度,测定尿素,测定血液中的酶含量 酶传感器中应用的新技术:纳米技术 固定化酶时引入纳米颗粒能够增加酶的催化活性,提高电极的响应电流值。首先,纳米颗 粒增强在载体表面上的固定作用;其次是定向作用,分子在定向之后,其功能会有所改善;第三,由于金、铂纳米颗粒具有良好的导电性和宏观隧道效应,可以作为固定化酶之间、 固定化酶与电极之间有效的电子媒介体,从而使得氧化还原中心与铂电极间通过金属颗粒 进行电子转移成为可能,酶与电极间可以近似看作是一种导线来联系的。这样就有效地提 高了传感器的电流响应灵敏度。孟宪伟等首次研究了二氧化硅和金或铂组成的复合纳米颗 粒对葡萄糖生物传感器电流响应的影响,其效果明显优于这=种纳米颗粒单独使用时对葡萄糖生物传感器的增强作用。其原因是纳米粒子具有吸附浓缩效应、吸附定向和量子尺寸颗 粒效应,复合纳米颗粒比单独一种纳米颗粒更易于形成连续势场,降低电子在电极和固定 化酶间的迁移阻力,提高电子迁移率,有效地加速了酶的再生过程,因此复合纳米颗粒可 以显著增强传感器的电流响应。 2.免疫传感器 免疫传感器应用于检测食品中的毒素和细菌,检测DNA 光纤,检测残留的农药,毒品和滥 用药物的检测。

生物传感器的应用现状及发展前景

生物传感器的应用现状 及发展前景 Hessen was revised in January 2021

生物传感器的应用现状及发展前景 摘要:到来后,获取准确可靠的信息对现代化生产有着重大作用,而传感器是获取自然和生产领域中信息的主要途径与手段。其中生物传感器早已渗透到国民经济的各个部门如食品、制药、、、环境监测等方面。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。生物传感器的研究开发,已成为世界科技发展的新热点。相信不久的将来,生物传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 关键词:生物传感器、应用、前景 一、传感器概述 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(法则)转换成可用信号的器件或装置,通常由和转换元件组成”。 随着的到来,世界开始进入。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器早已渗透到工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等各个领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 由此可见,在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 传感器的特点主要有微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。 常见传感器有、、、、、、、以及等。 二、生物传感器概述 生物传感器是用生物活性材料(酶、、、抗体、抗原等)与换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。 1967年.乌普迪克等制出了第一个生物传感器--葡萄糖传感器。将包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了这种葡萄糖传感器。 生物传感器的分类: ⑴按照感受器生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、、DNA传感器等等。

生物传感器的应用现状及发展前景

生物传感器的应用现状及发展前景 摘要:到来后,获取准确可靠的信息对现代化生产有着重大作用,而传感器是获取自然和生产领域中信息的主要途径与手段。其中生物传感器早已渗透到国民经济的各个部门如食品、制药、、、环境监测等方面。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。生物传感器的研究开发,已成为世界科技发展的新热点。相信不久的将来,生物传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 关键词:生物传感器、应用、前景 一、传感器概述 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(法则)转换成可用信号的器件或装置,通常由和转换元件组成”。 随着的到来,世界开始进入。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器早已渗透到工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等各个领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 由此可见,在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 传感器的特点主要有微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。 常见传感器有、、、、、、、以及等。 二、生物传感器概述 生物传感器是用生物活性材料(酶、、、抗体、抗原等)与换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。 1967年.乌普迪克等制出了第一个生物传感器--葡萄糖传感器。将包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了这种葡萄糖传感器。 生物传感器的分类: ⑴按照感受器生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、、DNA传感器等等。

电化学生物传感器的应用实例zhuyue

电化学生物传感器的应用实例 摘要:生物电化学传感器是生物传感器中研究最早、种类最多的一个分支, 它具有专一、高效、简便、快速的优点, 已应用于生物、医学及工业分析等方面。目前,生物传感器正进人全面深人研究开发时期,各种微型化、集成化、智能化、实用化的生物传感器与系统越来越多。相信在不久的将来,生物传感器的面貌会焕然一新。 关键词:生物传感器,应用 引言 生物传感器正是在生命科学和信息科学之间发展起来的一门交叉学科。 最早的生物传感器发明于1962年,英国Clark[1]利用不同的物质与不同的酶层发生反应的工作原理,在传统的离子选择性电极上固定了具有生物功能选择的酶,从而构成了最早的生物传感器一一酶电极。生物传感器的研究全面展开是在20世纪80年代,20多年来发展迅速,在食品工业、环境监测、发酵工业、医学等方面得到了高度重视和广泛应用。 1 工作原理及其分类 1.1 工作原理 传感器主要由信号检测器和信号转换器组成,它能够感受一定的信号并将这种信号转换成信息处理系统便于接收和处理的信号,如电信号、光信号等。生物传感器是利用生物分子探测生物反应信息的器件。换句话说,它是利用生物的或有生命物质分子的识别功能与信号转换器相结合,将生物反应所引起的化学、物理变化变换成电信号、光信号等。Rogers[2]等人将生物传感器定义为:由生物识别单元,如酶、微生物、抗体等和物理转换器相结合所构成的分析仪器,生物部分产生的信号可转换为电化学信号、光学信号、声信号而被检测。可见,任何一个生物传感器都具有两种功能,即分子识别和信号转换功能。 1.2 主要分类 生物传感器的分类方式很多,但根据生物学和电子工程学各自的范畴,主要有以下两种分类方式。 (1)根据生物传感器中信号检测器上的敏感物质分类 生物传感器与其它传感器的最大区别在于生物传感器的信号检侧器中含有敏感的生命物质。这些敏感物质有酶、微生物、动植物组织、细胞器、抗原和抗体等。根据敏感物质的不同,生物传感器可分酶传感器、微生物传感器、组织传感器、细胞器传感器、免疫传感器等。生物学工作者习惯于采用这种分类方法。(2)根据生物传感器的信号转换器分类

生物传感器应用

生物传感器在环境监测中的应用 摘要: 生物传感器以其方便快捷、灵敏度高、选择性好等优点,已然成为了各个学科中不可或缺的测试仪器。其广泛应用于食品工业、发酵工业、医学、环境监测等各个领域。在环境领域,生物传感器以又应用于水质、大气等介质中的各种污染物的检测,已经是日常监测中不可替代的分析仪器。本文对生物传感器在环境监测的应用进行综述。未来,生物传感器会越来越灵敏、越来越方便快捷,将会大大提高环境监测人员的工作效率。 关键词:生物传感器,污染物监测,环境监测。 1.生物传感器简介: 生物传感器是一种对生物物质敏感并将其浓度转化为电信号进行监测的仪器。一般由需要以下几个部位组成:识别元件、理化换能器、信号放大器以及分析系统等。识别元件一般由固定化的生物敏感材料制成,这些材料可以是酶、抗体、抗原、细胞、核酸、组织、微生物等物质;适当的理化换能器,如氧电极、光敏管等可以制成换能器,这是将一些物质浓度转化为电信号的关键;而信号放大装置的作用就是将电信号放大,然后方便信号接收进而给分析系统进行分析。生物传感器是一种将信息学、生物芯片、计算机等学科融合交叉的科学产物,是科技发展的过程必不可少的先进的检测装置。从第一支生物酶传感器的研制后,生物传感器以其高选择性、体积小、方便携带、实时监测、环境污染小、高灵敏度和连续测定等优点,在生物科学、环境科学、食品科学等领域皆有十分广阔的探索价值和应用前景[1]。 生物传感器有许多种分类方式:根据生物活性物质的类别,生物传感器可以分为酶传感器、免疫传感器、DNA传感器、组织传感器和微生物传感器等;根据检测原理,生物传感器可分光学生物传感器、电化学生物传感器及压电生物传

纳米材料在生物传感器中的应用

纳米材料在生物传感器中的应用 生物传感器是目前生命科学及临床医学测试方法研究中最为活跃的领域之一,而纳米材料则被认为是跨世纪材料研究领域的热点,有“21 世纪最有前途的材料”的美誉,受到国内外普遍重视,进入21世纪后,纳米科技的迅猛发展为新型生物传感器的研制提供了难得的机遇。纳米生物传感器是纳米科技与生物传感器的融合,其研究涉及到生物技术、信息技术、纳米科学、界面科学等多个重要领域,因而成为国际上的研究前沿和热点。 一、生物传感器 生物传感器是一类特殊形式的传感器,是一种对生物物质敏感并将其转换为声、光、电等信号进行检测的仪器。生物传感器具有接受器与转换器的功能,由识别元件(固定化的生物敏感材料,包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、理化换能器(如氧电极、光敏管、场效应管、压电晶体等) 和信号放大装置构成。生物传感器技术是一个非常活跃的工程技术研究领域,它与生物信息学、生物芯片、生物控制论、仿生学、生物计算机等学科一起处在生命科学和信息科学的交叉区域,是发展生物技术必不可少的一种先进的检测与监控装置。与传统的分析方法相比, 具有以下特点:1)体积小、响应快、准确度高,可以实现连续在线检测;2)一般不需进行样品的预处理,可将样品中被测组分的分离和检测统一为一体,使整个测定过程简便、迅速,容易实现自动分析;3)可进行活体分析; 4)成本远低于大型分析仪器,便于推广普及。 生物传感器有许多种分类方式:1)根据生物活性物质的类别,生物传感器可以分为酶传感器、免疫传感器、DNA传感器、细胞传感器、组织传感器和微生物传感器等;2)根据检测原理,生物传感器可分光学生物传感器、电化学生物传感器和压电生物传感器等;3)按照生物敏感物质相互作用的类型分类,可分为亲和型和代谢型2种;4)可根据所监测的物理量、化学量或生物量而命名为热传感器、光传感器和胰岛素传感器等。 生物传感器的应用,涉及到医疗保健、疾病诊断、食品检测、环境监测、发酵工业等领域。 二、纳米材料 纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等,使得其表现出奇异的化学物理性质。纳米粒子作为一种常用的纳米材料,具有制备方法简单、尺寸可控、表面易于修饰、表征简便等优点,在分析化学领域得到了广泛的应用。 纳米材料的特点与传感器所要求的多功能、微型化、高速化相对应。另外,作为传感器材料,还要求功能广、灵敏度高、响应速度快、检测范围宽、选择性好等优点,纳米材料能较好地符合上述要求。纳米材料引入生物传感器领域后,提高了生物传感器的检测性能,并促发了新型的生物传感器。纳米材料的独特的化学和物理性质使得其对生物分子或者细胞的检测灵敏度大幅提高,检测的反应时间也得以缩短,并且可以实现高通量的实时检测分析。

生物传感器应用及展望

生物传感器应用及展望 0 引言 有人把21世纪称为生命科学的世纪,也有人把21世纪称为信息科学的世纪。 生物传感器正是在生命科学和信息科学之间发展起来的一门交叉学科。最早的生物传感器发明于1962年,英国Clark利用不同的物质与不同的酶层发生反应的工作原理,在传统的离子选择性电极上固定了具有生物功能选择的酶,从而构成了最早的生物传感器一一酶电极。生物传感器的研究全面展开是在20世纪80年代,20多年来发展迅速,在食品工业、环境监测、发酵工业、医学等方面得到了高度重视和广泛应用。目前,生物传感器正进人全面深人研究开发时期,各种微型化、集成化、智能化、实用化的生物传感器与系统越来越多。相信在不久的将来,生物传感器的面貌会焕然一新。 1 工作原理及分类 1.1 工作原理 传感器主要由信号检测器和信号转换器组成,它能够感受一定的信号并将这种信号转换成信息处理系统便于接收和处理的信号,如电信号、光信号等。生物传感器是利用生物分子探测生物反应信息的器件。换句话说,它是利用生物的或有生命物质分子的识别功能与信号转换器相结合,将生物反应所引起的化学、物理变化变换成电信号、光信号等。 Rogers等人将生物传感器定义为:由生物识别单元,如酶、微生物、抗体等和物理转换器相结合所构成的分析仪器,生物部分产生的信号可转换为电化学信号、光学信号、声信号而被检测。可见,任何一个生物传感器都具有两种功能,即分子识别和信号转换功能。 1.2 主要分类 生物传感器的分类方式很多,但根据生物学和电子工程学各自的范畴,主要有以下两种分类方式。 (1)根据生物传感器中信号检测器上的敏感物质分类 生物传感器与其它传感器的最大区别在于生物传感器的信号检侧器中含有敏感的生命物质。这些敏感物质有酶、微生物、动植物组织、细胞器、抗原和抗体等。根据敏感物质的不同,生物传感器可分酶传感器、微生物传感器、组织传感器、细胞器传感器、免疫传感器等。生物学工作者习惯于采用这种分类方法。 (2)根据生物传感器的信号转换器分类 生物传感器中的信号转换器与传统的转换器并没有本质的区别。例如:可以利用电化学

生物传感器在医学上的应用

生物传感器在医学上的应用 [摘要]:生物传感器作为一项新兴的科学技术已应用于医学检验分析领域中, 是近来国际上医学检测技术的热点之一[1]。生物传感器具有选择性好、灵敏度高、分析速度快、成本低、能在复杂体系中进行在线连续监测等特点[2]。本文综述了生传感器的基本概念、基本原理、特点、分类,并对国内外近几年光学、电化学和压电3种生物传感器及其应用。 [关键词] 生物传感器医学应用发展前景 1、引言 传感器是一种可以获取并处理信息的特殊装置, 如人体的感觉器官就是一套完美的传感系统,通过眼、耳、皮肤来感知外界的光、声、温度、压力等物理信息, 通过鼻、舌感知气味和味道这样的化学刺激。而生物传感器是一类特殊的传感器, 它以生物活性单元( 如酶、抗体、核酸、细胞等) 作为生物敏感单元, 对目标测物具有高度选择性的检测器。生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术。因其具有选择性好、灵敏度高、分析速度快、成本低、能在复杂的体系中进行在线连续监测, 特别是它的高度自动化、微型化与集成化的特点, 使其在近几十年获得蓬勃而迅速的发展。在国民经济的各个部门如食品、制药、化工、临床检验、生物医学、环境监测等方面有广泛的应用前景。特别是分子生物学与微电子学、光电子学、微细加工技术及纳米技术等新学科、新技术结合, 正改变着传统医学、环境科学、动植物学的面貌。生物传感器的研究开发, 已成为世界科技发展的新热点, 形成21 世纪新兴的高技术产业的重要组成部分, 具有重要的战略意义[2]。 2、生物传感综述 2. 1 生物传感器的基本概念[3] 生物传感器是用固定化的生物活性材料( 酶、蛋白质、DN A、抗体、抗原、生物膜等) 与物理化学换能器有机结合的一门交叉学科, 是发展生物技术必不可少的一种先进的检测方法与监控方法, 也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构: 包括一种或数种相关生物活性材料( 生物膜) 及能把生物活性表达的信号转换为电信号的物理或化学换能器( 传感器) , 二者组合在一起, 用现代微电子和自动化仪表技术进行生物信号的再加工, 构成各种可以使用的生物传感器分析装置、仪器和系统。 2. 2 生物传感器的工作原理及特点[3]

生物传感器的应用现状及发展前景

生物传感器的应用现状及发展前景 摘要:信息时代到来后,获取准确可靠的信息对现代化生产有着重大作用,而传感器是获取自然和生产领域中信息的主要途径与手段。其中生物传感器早已渗透到国民经济的各个部门如食品、制药、化工、医学、环境监测等方面。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。生物传感器的研究开发,已成为世界科技发展的新热点。相信不久的将来,生物传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 关键词:生物传感器、应用、前景 一、传感器概述 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。国家标准GB7665-87 对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。 随着新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器早已渗透到工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等各个领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 传感器的特点主要有微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。 常见传感器有电阻式传感器、激光传感器、温度传感器、光敏传感器、生物传感器、压力传感器、超声波测距离传感器、盐浓度传感器以及电导传感器等。 二、生物传感器概述 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。 1967年S.J.乌普迪克等制出了第一个生物传感器--葡萄糖传感器。将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了这种葡萄糖传感器。 生物传感器的分类:

生物传感器的应用现状及发展前景

… 生物传感器的应用现状及发展前景 摘要:信息时代到来后,获取准确可靠的信息对现代化生产有着重大作用,而传感器是获取自然和生产领域中信息的主要途径与手段。其中生物传感器早已渗透到国民经济的各个部门如食品、制药、化工、医学、环境监测等方面。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。生物传感器的研究开发,已成为世界科技发展的新热点。相信不久的将来,生物传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 关键词:生物传感器、应用、前景 一、传感器概述 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。 随着新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 \ 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器早已渗透到工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等各个领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。 传感器的特点主要有微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。 常见传感器有电阻式传感器、激光传感器、温度传感器、光敏传感器、生物传感器、压力传感器、超声波测距离传感器、盐浓度传感器以及电导传感器等。 二、生物传感器概述 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。 1967年.乌普迪克等制出了第一个生物传感器--葡萄糖传感器。将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了这种葡萄糖传感器。

生物传感器在医学领域中的应用

医学检验需要建立各种快速检验方法,传统检验方法以实验室方法为主,包括一系列繁琐的操作过程,而且周期长,远远不能适应临床的需要,生物传感器的出现导致了分析生物学技术的一场革命,分析生物学从“半定量”向精确定量和自动化操作过程的转换。生物传感器是基于生物反应进行检测的一类特殊的化学传感器,它是以生物活性单元(如酶、抗体、核酸、微生物、细胞、组织等)作为生物敏感基元,对被测样品具有高度选择性的检测器,它通过各种化学、物理信号转换器捕捉目标与敏感基元三向的反应,然后将反应的程度用离散或连续的电信号表达出来,从而得出被检测品的浓度。由于生物传感器为临床检验提供了一条快速、操作简便的新型手段,已引起检验医学界的关注。 生物传感器是由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术,是一种将生物感应元件的专一性与一个能够产生和待测物浓度成比例的信号传导器结合起来的分析装置[1],主要用于生物医学信息的检测。 1962年英国学者Clark和Lyons最先提出,可以将酶反应的高度特异性和电极响应的高度灵敏结合起来,由此提出酶电极概念[2]。1967年,updike和Hicks成功的研制出第一个以铂电极为基本的葡萄糖氧化酶传感器[3]。70年代,相继出现了电流型和电位型微生物电极、组织电极、线粒体电极。80年代,利用生物反应的光效应、热效应、场效应和质量变化而开发的生物传感器蓬勃发展,开始了生物电子学传感器的新时代。我国的生物传感器就始于这一时期:1988年梁逸曾将其全面系统地介绍给了国内化学界[4]。90年代,虽然我国生物传感器的某些研究项目处于国际领先地位,但目前国内尚无真正商品化的传感器面市,总体研究水平与国际上还有一段差距。到目前为止,生物传感器大致经历了3个发展阶段:第一代生物传感器是由固定了生物成分的非活性基质膜和电化学电极组成;第二代生物传感器是将生物成分直接吸附或共价结合到换能器表面,而无需非活性的基质膜,测定时不必向样品中加入其它试剂;第三代生物传感器是把生物活性成分直接固定在电子元件上,它们可以直接感知和放大界面物质变化,从而把生物识别和信号转换处理结合在一起。 1 生物传感器的工作原理及结构生物传感器的检测原理:待测物质进入生物活性材料(如酶、蛋白质、DNA、抗体、抗原、生物膜等),经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电、声、光等信号[5]。再经二次仪表放大并输出,便可知道待测物浓度。传感器的结构一般由两部分组成,其一是生物分子识别元件(感受器),是指将一种或数 生物传感器在医学领域中的应用 鲁然 [关键词] 生物传感器;医学领域 咱相关生物活性材料固定在其表面(也称生物敏感膜);其二是能把生物活性表达的信号转换为电、声、光等信号的物理或化学换能器,二者结合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。 2 生物传感器的分类及特点2.1 生物传感器的类型 生物传感器的类型和命名方法比较多而且不一,主要有两种分法即按分子识别元件分类和按换能器类型分类,两种方法如图1[6]。 2.2 生物传感器的特点 ①采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过去酶法分析试剂费用高和化学分析繁琐复杂的缺点。②专一性强(选择特异性强),只对特定的底物起反应,而且不受颜色、浊度的影响。③分析速度快,可以在一分钟得到结果。④准确度高,一般相对误差可以达到1%。⑤操作系统比较简单,容易实现自动化分析。⑥成本低,在连续使用时,每例测定仅需要几分钱人民币。⑦有的生物传感器能够可靠地指示微生物培养系统内的供氧状况和副产物的产生,能得到许多复杂的物理化学传感器综合作用才能获得的信息。同时它们还指明了增加产物产率的方向。 3 在医学领域中的应用分子生物传感器可以广泛应用于对体检中的微量蛋白、小分子有机物、核酸等多种物质的检测。在现代医学检验中这些项目是临床诊断及病情分析的重要依据,能够在体内的实时监控生物传感器对于手术中和重症监护的病人很有帮助。 3.1 酶传感器的应用 酶传感器是由固定化酶作为敏感元件的生物传感器。应用酶传感器可以省去提纯酶的复杂步骤。许多酶传感器都可以用于临床生化指标(葡萄糖、乳酸、尿素、尿酸、肌酸、肌酐、谷氨酰胺、血清中总蛋白、血清中胆固醇、血清中甘油三脂、天 作者单位:071000 河北保定252医院检验科 (鲁然) 图1 生物传感器的分类

相关主题
文本预览
相关文档 最新文档