当前位置:文档之家› 电化学生物传感器的应用实例zhuyue

电化学生物传感器的应用实例zhuyue

电化学生物传感器的应用实例zhuyue
电化学生物传感器的应用实例zhuyue

电化学生物传感器的应用实例

摘要:生物电化学传感器是生物传感器中研究最早、种类最多的一个分支, 它具有专一、高效、简便、快速的优点, 已应用于生物、医学及工业分析等方面。目前,生物传感器正进人全面深人研究开发时期,各种微型化、集成化、智能化、实用化的生物传感器与系统越来越多。相信在不久的将来,生物传感器的面貌会焕然一新。

关键词:生物传感器,应用

引言

生物传感器正是在生命科学和信息科学之间发展起来的一门交叉学科。

最早的生物传感器发明于1962年,英国Clark[1]利用不同的物质与不同的酶层发生反应的工作原理,在传统的离子选择性电极上固定了具有生物功能选择的酶,从而构成了最早的生物传感器一一酶电极。生物传感器的研究全面展开是在20世纪80年代,20多年来发展迅速,在食品工业、环境监测、发酵工业、医学等方面得到了高度重视和广泛应用。

1 工作原理及其分类

1.1 工作原理

传感器主要由信号检测器和信号转换器组成,它能够感受一定的信号并将这种信号转换成信息处理系统便于接收和处理的信号,如电信号、光信号等。生物传感器是利用生物分子探测生物反应信息的器件。换句话说,它是利用生物的或有生命物质分子的识别功能与信号转换器相结合,将生物反应所引起的化学、物理变化变换成电信号、光信号等。Rogers[2]等人将生物传感器定义为:由生物识别单元,如酶、微生物、抗体等和物理转换器相结合所构成的分析仪器,生物部分产生的信号可转换为电化学信号、光学信号、声信号而被检测。可见,任何一个生物传感器都具有两种功能,即分子识别和信号转换功能。

1.2 主要分类

生物传感器的分类方式很多,但根据生物学和电子工程学各自的范畴,主要有以下两种分类方式。

(1)根据生物传感器中信号检测器上的敏感物质分类

生物传感器与其它传感器的最大区别在于生物传感器的信号检侧器中含有敏感的生命物质。这些敏感物质有酶、微生物、动植物组织、细胞器、抗原和抗体等。根据敏感物质的不同,生物传感器可分酶传感器、微生物传感器、组织传感器、细胞器传感器、免疫传感器等。生物学工作者习惯于采用这种分类方法。(2)根据生物传感器的信号转换器分类

生物传感器中的信号转换器与传统的转换器并没有本质的区别。例如:可以利用电化学电极、场效应晶体管、热敏电阻、光电器件、声学装置等作为生物传感器中的信号转换器。据此又将传感器分为电化学生物传感器、半导体生物传感器、测热型生物传感器、测光型生物传感器、测声型生物传感器等。电子工程学工作者习惯于采用这种分类方法。

当然,以上两种分类方法之间可以互相交叉.例如:微生物传感器又可以分成电化学微生物传感器,测热型微生物传感器等。总之,生物传感器种类繁多,内容广泛,随着科学技术的不断发展,其内容也将不断丰富。

2 研究现状及主要应用实例

2.1 食品工业

生物传感器在食品分析中的应用包括食品成分、食品添加剂、有害毒物及食品鲜度等的测定分析。

(1)食品成分分析

在食品工业中,葡萄糖的含量是衡量水果成熟度和贮藏寿命的一个重要指标。已开发的酶电极型生物传感器可用来分析白酒、苹果汁、果酱和蜂蜜中的葡萄糖。其它糖类,如果糖,啤酒、麦芽汁中的麦芽糖,也有成熟的测定传感器。Niculescu[3]等人研制出一种安培生物传感器,可用于检测饮料中的乙醇含量。这种生物传感器是将一种配蛋白醇脱氢酶埋在聚乙烯中,酶和聚合物的比例不同可以影响该生物传感器的性能。在目前进行的实验中,该生物传感器对乙醇的测量极限为lnM。

食品添加剂的分析

亚硫酸盐通常用作食品工业的漂白剂和防腐剂,采用亚硫酸盐氧化酶为敏感材料制成的电流型二氧化硫酶电极可用于测定食品中的亚硫酸盐含量,测定的线性范围为0-6-4mol/L。又如饮料、布丁、昔等食品中的甜味素,Guibault[4]等采用天冬氨酶结合氨电极测定,线性范围为2x10-5 _1x l0-3mol/L。此外,也有用生物传感器测定色素和乳化剂的报道。

农药残留量分析

近年来,人们对食品中的农药残留问题越来越重视,各国政府也不断加强对食品中的农药残留的检测工作。

Yamazaki[5]等人发明了一种使用人造酶测定有机磷杀虫剂的电流式生物传感器,利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测定极限为10-7mol,在40℃下测定只要4min。Albareda[6]等用戊二醛交联法将乙酞胆碱醋酶固定在铜丝碳糊电极表面,制成一种可检测浓度为10-10mol/L的对氧磷和10-11mol/L的克百

威的生物传感器,可用于直接检测自来水和果汁样品中两种农药的残留。

微生物和毒素的检验

食品中病原性微生物的存在会给消费者的健康带来极大的危害,食品中毒素不仅种类很多而且毒性大,大多有致癌、致畸、致突变作用,因此,加强对食品中的病原性微生物及毒素的检测至关重要。食用牛肉很容易被大肠杆菌0157.H7.所感染,因此,需要快速灵敏的方法检测和防御大肠杆菌0157.H7一类的细菌。Kramerr[7]等人研究的光纤生物传感器可以在几分钟内检测出食物中的病原体(如大肠杆菌0157.H7.),而传统的方法则需要几天。这种生物传感器从检测出病原体到从样品中重新获得病原体并使它在培养基上独立生长总共只需1天时间,而传统方法需要4天。还有一种快速灵敏的免疫生物传感器[8]可以用于测量牛奶中双氢除虫菌素的残余物,它是基于细胞质基因组的反应,通过光学系统传输信号。已达到的检测极限为16.2ng/ml。一天可以检测20个牛奶样品。

食品鲜度的检测

食品工业中对食品鲜度尤其是鱼类、肉类的鲜度检测是评价食品质量的一个主要指标。V olpe[9]等人以黄嗦吟氧化酶为生物敏感材料,结合过氧化氢电极,通过测定鱼降解过程中产生的一磷酸肌昔(IMP)肌昔(IIXR)和次黄嗓吟(HX)的浓度,从而评价鱼的鲜度,其线性范围为5x10-10-2x10-4mol/L。

2.2 环境监测

近年来,环境污染问题日益严重,人们迫切希望拥有一种能对污染物进行连续、快速、在线监测的仪器,生物传感器满足了人们的要求。目前,已有相当部分的生物传感器应用于环境监测中。

水环境监测

生化需氧量(BOD)是一种广泛采用的表征有机污染程度的综合性指标。在水体监测和污水处理厂的运行控制中,生化需氧量也是最常用、最重要的指标之一。常规的BOD测定需要5天的培养期,而且操作复杂,重复性差,耗时耗力,干扰性比较大,不适合用于现场监测。SiyaWakin[10]等人利用一种毛抱子菌(Trichosporoncutaneum)和芽抱杆菌(Bacillus licheniformis)制作一种微生物 BOD 传感器。该BOD生物传感器能同时精确测量葡萄糖和谷氨酸的浓度。测量范围为0.5-40mg/L,灵敏度为5.84 nA/mgL。该生物传感器稳定性好,在多次实验中,标准偏差仅为0.0362。所需反应时间为5-l0min。

-

3

NO离子是主要的水污染物之一,如果添加到食品中,对人体的健康极其有害。

Zatsll[11]等人提出了一种整体化酶功能场效应管装置检测

-

3

NO离子的方法。该装

置对

-

3

NO离子的检测极限为7x 10-5mol,响应时间不到50s,系统操作时间约为

85s。

此外,还有报道Han[12]等人将假单胞菌固定在抓离子电极上,实时监测工业废水中三氯乙烯,检测范围0.1-4 mg/L,检测时间在l0min内。

(2)大气环境监测

二氧化硫(S02)是酸雨酸雾形成的主要原因,传统的检测方法很复杂。Martyr[13]等人将亚细胞类脂类(含亚硫酸盐氧化酶的肝微粒体)固定在醋酸纤维膜上,和氧电极制成安培型生物传感器,对S02形成的酸雨酸雾样品溶液进行检测,l0min 可以得到稳定的测试结果。

NOx不仅是造成酸雨酸雾的原因之一,同时也是光化学烟雾的罪魁祸首。Charles[14]等人用多孔渗透膜、固定化硝化细菌和氧电极组成的微生物传感器来测定样品中亚硝酸盐含量,从而推知空气中NOx的浓度,其检测极限为0.01 × l0-6mo1/L。

2.3 发酵工业

在各种生物传感器中,微生物传感器具有成本低、设备简单、不受发酵液混浊程度的限制、可能消除发酵过程中干扰物质的干扰等特点。因此,在发酵工业中广泛地采用微生物传感器作为一种有效的测量工具。

原材料及代谢产物的测定

微生物传感器可用于测量发酵工业中的原材料(如糖蜜、乙酸等)和代谢产物(如头抱霉素、谷氨酸、甲酸、醇类、乳酸等)。测量的装置基本上都是由适合的微生物电极与氧电极组成,原理是利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。2002年,Tkac[15]等人将一种以铁氰化物为媒介的葡萄糖氧化酶细胞生物传感器用于测量发酵工业中的乙醇含量,13s内可以完成测量,测量灵敏度为3.SnAlnmol.L-1。该微生物传感器的检测极限为0.85nmo1.L-1,测量范围为2-270nmo1.L-1,稳定性能很好。在连续8.5h的检测中,灵敏度没有任何降低。

微生物细胞数目的测定

发酵液中细胞数的测定是重要的。细胞数(菌体浓度)即单位发酵液中的细胞数量。一般情况下,需取一定的发酵液样品,采用显微计数方法测定,这种测定方法耗时较多,不适于连续测定。在发酵控制方面迫切需要直接测定细胞数目的简单而连续的方法。人们发现:在阳极(Pt)表面上,菌体可以直接被氧化并产生电流。这种电化学系统可以应用于细胞目的侧定。侧定结果与常规的细胞计数法测定的数值相近。利用这种电化学微生物细胞数传感器可以实现菌体浓度连续、在线的测定。

2.4 医学

医学领域的生物传感器发挥着越来越大的作用。生物传感技术不仅为基础医学研究及临床诊断提供了一种快速简便的新型方法,而且因为其专一、灵敏、响应快等特点,在军事医学方面,也具有广的应用前景。

(1)临床医学

在临床医学中,酶电极是最早研制且应用最多的一种传感器,目前,已成功地应用于血糖、乳酸、维生素C、尿酸、尿素、谷氨酸、转氨酶等物质的检测。其原理是:用固定化技术将酶装在生物敏感膜上,检测样品中若含有相应的酶底物,则可反应产生可接受的信息物质,指示电极发生响应可转换成电信号的变化,根据这一变化,就可测定某种物质的有无和多少。利用具有不同生物特性的微生物代替酶,可制成微生物传感器,在临床中应用的微生物传感器有葡萄糖、乙醉、胆固醇等传感器。若选择适宜的含某种酶较多的组织,来代替相应的酶制成的传感器称为生物电极传感器。如用猪肾、兔肝、牛肝、甜菜、南瓜和黄瓜叶制成的传感器,可分别用于检测谷酰胺、鸟嘌呤、过氧化氢、酪氨酸、维生素C和胱氨酸等。

DNA传感器是目前生物传感器中报道最多的一种,用于临床疾病诊断是DNA 传感器的最大优势,它可以帮助医生从DNA ,RNA、蛋白质及其相互作用层次上了解疾病的发生、发展过程,有助于对疾病的及时诊断和治疗。此外,进行药物检测也是DNA传感器的一大亮点。Brabec[16]等人利用DNA传感器研究了常用铂类抗癌药物的作用机理并测定了血液中该类药物的浓度。

罗济文[17]等人研究了道诺霉素(DNM) 在小牛胸腺DNA 修饰石墨粉末微电极上的电化学行为,提出了测定微量DNM的方法,DNM浓度在1. 0×10 - 7~1. 0 ×10 - 5mol/ L之间,其微分脉冲伏安(DPV) 峰电流与浓度有良好的线性关系。检出限为5. 0×10 - 8 mol/ L ,并以此为基础提出了一种测定人尿中痕量DNM的方法。该方法简单、快速、灵敏度较高。

(2)军事医学

在军事医学中,对生物毒素的及时快速检测是防御生物武器的有效措施。生物传感器已应用于监测多种细菌、病毒及其毒素,如炭疽芽胞杆菌、鼠疫耶尔森菌、埃博拉出血热病毒、肉毒杆菌类毒素等。2000年,美军报道[18]已研制出可检测葡萄球菌肠毒素B,蓖麻素、土拉弗氏菌和肉毒杆菌等4种生物战剂的免疫传感器。检测时间为3-l0min,灵敏度分别为10,50mg/L,5x10-5,和5x10-4cfu/ml。 Song 等人制成了检测霍乱病毒的生物传感器。该生物传感器能在30min内检测出低于1 x l0-5mol/L的霍乱毒素,而且有较高的敏感性和选择性,操作简单。该方法能够用于具有多个信号识别位点的蛋白质毒素和病原体的检测。

此外,在法医学中,生物传感器可用作DNA鉴定和亲子认证等。

3 前景与展望

近年来,随着生物科学、信息科学和材料科学发展成果的推动,生物传感器技术飞速发展。但是,目前,生物传感器的广泛应用仍面临着一些困难,今后一段时间里,生物传感器的研究工作将主要围绕选择活性强、选择性高的生物传感元件;提高信号检测器的使用寿命;提高信号转换器的使用寿命;生物响应的稳定性和生物传感器的微型化、便携式等问题。根据这些问题的出现则未来的生物传感器将具有下面所述的特点。

3.1 功能多样化

未来的生物传感器将进一步涉及医疗保健、疾病诊断、食品检测、环境监测、发酵工业的各个领域。目前,生物传感器研究中的重要内容之一就是研究能代替生物视觉、嗅觉、味觉、听觉和触觉等感觉器官的生物传感器,这就是仿生传感器,也称为以生物系统为模型的生物传感器。

3.2 微型化

随着微加工技术和纳米技术的进步,生物传感器将不断的微型化,各种便携式生物传感器的出现使人们在家中进行疾病诊断,在市场上直接检测食品成为可能。

3.3 智能化集成化

未来的生物传感器必定与计算机紧密结合,自动采集数据、处理数据,更科学、更准确地提供结果,实现采样、进样、结果一条龙,形成检测的自动化系统。同时,芯片技术将愈加进人传感器,实现检测系统的集成化、一体化。

3.4 低成本高灵教度高穗定性高寿命

生物传感器技术的不断进步,必然要求不断降低产品成本,提高灵敏度、稳定性和寿命。这些特性的改善也会加速生物传感器市场化,商品化的进程。在不久的将来,生物传感器会给人们的生活带来巨大的变化,它具有广阔的应用前景,必将在市场上大放异彩。

参考文献

[16] 罗济文, 张敏, 张蓉颖, 等. [J ] . 分析科学学报, 2002 , 18(l) : 1 – 5

生物传感器的研究现状及应用

生物传感器的研究现状及应用 生物传感器?这个熟悉但又概念模糊的名词最近不断出现在媒体报道上,生物传感器相关的研究项目陆续获得巨额的研究资助,显示出越来越受重视的前景。要掌握生命科学研究的前研信息,争取好的研究课题和资金,你怎能不了解生物传感器? 让我们来看看生物通最近的一些报道: 英国纽卡斯尔大学科学家研发了可用于检测肿瘤蛋白以及耐药性MASA细菌的微型生物传感器。该系统利用一个回旋装置来检测,类似导航系统和气袋的原理。振荡晶片的大小类似于一颗尘埃尺寸,有望可使医生诊断和监测常见类型的肿瘤,获得最佳治疗方案。该装置可以鉴定肿瘤标志物-蛋白以及其它肿瘤细胞产生的丰度不同的生物分子。该小组下一步目标是把检测系统做成一个手持式系统,更加快速方便地检测组织样品。欧共体已经拨款1200万欧元资金给该小组,以使该技术进一步完善。 苏格兰IntermediaryTechnologyInstitutes计划投资1亿2千万英镑发展“生物传感器平台(BiosensorPlatform)”——一种治疗诊断技术。作为将诊断和治疗疾病结合在一起的新兴疗法,能够在诊断的同时,提出适合不同病人的治疗方案,可以降低疾病诊断和医学临床的费用与复杂性,同时具备提供疾病发展和药品疗效成果的能力。目前该技术已被使用在某些乳癌的治疗上,只需在事前做些特殊的测试,即可根据结果决定适合的疗程。这个技术更被医学界视为未来疾病疗程的主流。 来自加州大学洛杉矶分校的研究者使用GeneFluidics开发的新型生物传感器来鉴定引起感染的特定革兰氏阴性菌,该结果表明利用微型电化学传感器芯片已经可以用于人临床样本的细菌检查。GeneFluidics'16-sensor上的芯片包被了UCLA设计的特异的遗传探针。临床样本直接加到芯片上,然后其电化学信号被多通道阅读器获取。根据传感器上信号的变化来判断尿路感染的细菌种类。从样品收集到结果仅需45分钟。比传统方法(需要2天时间)

特种加工论文

特种加工技术的现代应用及其发展研究 摘要:特种加工技术是直接借助电能、热能、声能、光化学能或者复合能实现材料切削的加工方法,是难切削材料、复杂型面、低刚度零件及模具加工中的重要工艺方法。本文介绍了概念、特点、分类以及近些年应用于特种加工的一些新方法、新工艺。 关键词:特种加工电火花加工电化学加工高能束流加工超声波加工复合加工 1、特种加工技术的特点 现代特种加工(SP,SpciaI Machining)技术是直接借助电能、热能、声能、光能、电化学能、化学能及特殊机械能等多种能量或其复合以实现材料切除的加工方法。与常规机械加工方法相比它具有许多独到之处。 1.1以柔克刚。因为工具与工件不直接接触,加工时无明显的强大机械作用力,故加工脆性材料和精密微细零件、薄壁零件、弹性元件时,工具硬度可低于被加工材料的硬度。 1.2用简单运动加工复杂型面。特种加工技术只需简单的进给运动即可加工出三维复杂型面。特种加工技术已成为复杂型面的主要加工手段。 1.3不受材料硬度限制。因为特种加工技术主要不依靠机械力和机械能切除材料,而是直接用电、热、声、光、化学和电化学能去除金属和非金属材料。它们瞬时能量密度高,可以直接有效地利用各种能量,造成瞬时或局部熔化,以强力、高速爆炸、冲击去除材料。其加工性能与工件材料的强度或硬度力学性能无关,故可以加工各种超硬超强材料、高脆性和热敏材料以及特殊的金属和非金属材料,因此,特别适用于航空产品结构材料的加工。 1.4可以获得优异的表面质量。由于在特种加工过程中,工件表面不产生强烈的弹、塑性变形,故有些特种加工方法可获得良好的表面粗糙度。热应力、残余应力、冷作硬化、热影响区及毛刺等表面缺陷均比机械切削表面小。 各种加工方法可以任意复合,扬长避短,形成新的工艺方法,更突出其优越性,便于扩大应用范围。 由于特种加工技术具有其它常规加工技术无法比拟的优点,在现代加工技术中,占有越来越重要的地位。许多现代技术装备,特别是航空航天高技术产品的一些结构件,如工程陶瓷、涡轮叶片、燃烧室的三维型腔、型孔的加工和航空陀

我国电化学生物传感器的研究进展.

第12卷第6期重庆科技学院学报(自然科学版2010年12月 收稿日期:2010-07-20 基金项目:重庆市教委科学技术研究资助项目(KJ101315 作者简介:刘艳(1968-,女,四川乐山人,副教授,研究方向为电化学传感器。 在生命科学研究和医学临床检验中,需对各种各样的生物大分子进行选择性测定。据统计,全世界每年要进行数亿次免疫学和遗传学病理检验。常用的检验小型化分析装置和检测方法,成为目前现代分析化学研究领域的前沿课题。 1962年,Clark 提出将生物和传感器联用的设 想,并制得一种新型分析装置“酶电极”。这为生命科学打开一扇新的大门,酶电极也成为发展最早的一类生物传感器。生物传感器结合具有分子识别作用的生物体成分(酶、微生物、动植物组织切片、抗原和抗体、核酸或生物体本身(细胞、细胞器、组织作为敏感元件与理化换能器,能产生间断的或连续的信号,信号强度与被分析物浓度成比例。 电化学生物传感器是将生物活性材料(敏感元件与电化学换能器(即电化学电极结合起来组成的生物传感器。当前,电化学生物传感器技术已在环境监测、临床检验、食品和药物分析、生化分析[2-4]等研究中有着广泛的应用。本文在此综述电化学生物传感器的工作原理、分类及几个当今研究的热点。 1 电化学生物传感器概述 1.1 电化学生物传感器的原理 电化学生物传感器是将生物活性材料(敏感元

件与电化学换能器(即电化学电极结合起来组成的生物传感器。当电化学池中溶液的化学成分变化时,电极上流过的电流或电极表面与溶液的电势差会随之发生变化,这样通过测定电流或电势的 变化就可以获取溶液成分或相应的化学反应的变化信息。 电化学生物传感器是在上述电化学传感器原理的基础上,以具有生物活性的物质作为识别元件,通过特定反应使被测成分消耗或产生相应化学计量数的电活性物质,从而将被测成分的浓度或活度变化转换成与其相关的电活性物质的浓度变化,并通过电极获取电流或电位信息,最后实现特定物质的检测。如图1所示,这类传感器中使用的生物活性材料包括酶、微生物、细胞、组织、抗体、抗原等等。 图1电化学生物传感器的工作原理 1.2电化学生物传感器的类别 生物传感器主要包括生物敏感膜和换能器两部 分。按照敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA 传感器等,其中酶电极由于其高效、专一、反应条件温和且具有化学放大作用而成为电化学生物传感器的研究主流。 按照检测信号的不同,电化学生物传感器可分 我国电化学生物传感器的研究进展 刘 艳 (长江师范学院,重庆408100 摘

生物传感器的应用现状和发展趋势

生物传感器的应用现状和发展趋势 【摘要】改革开放以来,国民生活的各个方面都取得了明显的进步。随着科学的发展生产力的不断提高,生物传感器的应用越来越广泛。为我们的生产生活带来了很大的方便,研究生物传感器的应用现状和发展趋势,有利于我们对生物传感器进行全面深入的了解,有利于生物传感器的自身发展,同时有利于生物传感器的应用广泛推广。因此有必要详细说明生物传感器的应用现状和发展趋势。 【关键词】生物传感器;应用现状;发展趋势 1.前言 生物传感器作为一种高科技手段,在医学、军事、食品、农业等各个领域均得到了广泛的应用。它具有传感器不可替代的地位,利用生物中独特的物质,通过一系列的化学反应,检测出相关物质。生物传感器相对与传统的传感器相比,具有高灵敏度、高选择度、成本低廉、运用普及度高、污染程度小的特点。因此,研究生物传感器的应用现状和发展趋势具有重要意义。 2.简要介绍生物传感器 Gronow将生物传感器定义为一种含有固定化生物物质(如酶、抗体、全细胞、细胞器或其联合体)并与一种合适的换能器紧密结合的分析工具或系统,它可以将生化信号转化为数量化的电信号。生物传感器一般由两个主要部分组成:一是生物分子识别元件(感受器),是具有分子识别能力的生物活性物质(如酶、抗体、组织切片、细胞、细胞器、细胞膜、核酸、有机物分子等);二是信号转换器(换能器),主要有电化学电极、光学检测元件、热敏电阻、场效应晶体管、压电石英晶体及表面等离子共振器件等。当待测物与分子识别元件特异性结合后,所产生的复合物通过信号转换器转变为可以输出的电信号、光信号等,从而达到分析检测的目的。 3.生物传感器的具体应用 3.1 制药方面 生物传感器在生产药物时具体作用表现为对具体进行生化反应进行检测,生物传感器可以及时的测量有关生化反应的各项数据,并将它及时反馈给系统。在抗癌药物及癌症治疗方面,生物传感器发挥了极其重要的作用。在实验室中对癌细胞进行培养,并把用相应药物与之发生反应,通过生物传感器对实验数据进行测量,来具体观察药物对癌细胞的作用。在不同药物间的对比中,选出最具有抗癌性的药物。 3.2 食品方面

精密超精密加工技术论文

精密超精密加工技术 论文 班级:机械09-4班 姓名:侯艳飞 学号:20091058

精密超精密加工技术的发展,直接影响到一个国家尖端技术和国防工业的发展,因此世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。 精密超精密加工技术,是现代机械制造业最主要的发展方向之一。在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。 精密超精密加工是指亚微米级(尺寸误差为0.3~0.03μm,表面粗糙度为Ra0.03~0.005μm)和纳米级(精度误差为0.03nm,表面粗糙度小于 Ra0.005nm)精度的加工。实现这些加工所采取的工艺方法和技术措施,则称为精密超精加工技术。加之测量技术、环境保障和材料等问题,人们把这种技术总称为超精工程。 超精密加工主要包括三个领域: 1.超精密切削加工如金刚石刀具的超精密切削,可加工各种镜面。它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。2.超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。3.超精密特种加工如大规模集成电路芯片上的图形是用电子束、离子束刻蚀的方法加工,线宽可达0.1μm。如用扫描隧道电子显微镜(STM)加工,线宽可达2~5nm。 近年来,在传统加工方法中,金刚石刀具超精密切削、金刚石微粉砂轮超精密磨削、精密高速切削、精密砂带磨削等已占有重要地位;在非传统加工中,出现了电子束、离子束、激光束等高能加工、微波加工、超声加工、蚀刻、电火花和电化学加工等多种方法,特别是复合加工,如磁性研磨、磁流体抛光、电解研磨、超声珩磨等,在加工机理上均有所创新。 对精密和超精密加工所用的加工设备有下列要求。 (1)高精度。包括高的静精度和动精度,主要的性能指标有几何精度、定位精度和重复定位精度、分辨率等,如主轴回转精度、导轨运动精度、分度精度等; (2)高刚度。包括高的静刚度和动刚度,除本身刚度外,还应注意接触刚度,以及由工件、机床、刀具、夹具所组成的工艺系统刚度。 (3)高稳定性。设备在经运输、存储以后,在规定的工作环境下使用,应能长时间保持精度、抗干扰、稳定工作。设备应有良好的耐磨性、抗振性等。 (4)高自动化。为了保证加工质量,减少人为因素影响,加工设备多采用数控系统实现自动化。 加工设备的质量与基础元部件,如主轴系统、导轨、直线运动单元和分度转台等密切相关,应注意这些元部件质量。此外,夹具、辅具等也要求有相应的高精度、高刚度和高稳定性。 加工工具主要是指刀具、磨具及刃磨技术。用金刚石刀具超精密切削,值得研究的问题有:金刚石刀具的超精密刃磨,其刃口钝圆半径应达到2~4nm,同时应解决其检测方法,刃口钝圆半径与切削厚度关系密切,若切削的厚度欲达到10nm,则刃口钝圆半径应为2nm。 磨具当前主要采用金刚石微粉砂轮超精密磨削,这种砂轮有磨料粒度、粘接剂、修整等问题,通常,采用粒度为W20~W0.5的微粉金刚石,粘接剂采用树脂、铜、纤维铸铁等。 航天、航空工业中,人造卫星、航天飞机、民用客机等,在制造中都有大量的精密和超精密加工的需求,如人造卫星用的姿态轴承和遥测部件对观测性能影响很大。该轴承为真空无润滑轴承,其孔和轴的表面粗糙度要求为Ry0.01μm,即1nm,其圆度和圆柱度均要求纳米级精度。被送入太空的哈勃望远镜(HST),

特种加工论文电化学加工

目录 摘要: (2) 前言 (2) 1电化学加工的特点 (2) 2电化学加工的分类 (3) 2.1电解加工 (3) 2.2电解磨削 (3) 3电化学加工的设备 (4) 3.1电解液 (4) 3.2机床 (4) 3.3直流电源 (5) 4电化学加工的现状及发展前景 (5) 参考文献 (5)

电化学加工论文 摘要:本文通过对电化学的各种加工方法的研究,以及分析电化学加工的各种特点,对电化学加工的前景发展趋势进行分析总结。电化学加工包括从工件上去除金属的电解加工和向工件上沉积金属的电镀、涂覆、电铸加工两大类。虽然有关的基本理论在19世纪末已经建立,但真正在工业上得到大规模应用,还是20世纪30~50年代以后的事。目前,电化学加工已经成为我国民用和国防工业中一个不可或缺的加工手段。 关键词:电火花加工特点发展趋势 前言 电化学加工的基本理论建立与19世纪末,但在工业上的大规模应用,还应该是在20世纪30~50年代。目前,电化学加工已经成为我国民用、国防工业中的一个不可或缺的加工手段。电化学加工是一种重要的特种加工方法, 已被广泛应用于难加工金属材料、复杂形状零件的批量加工中。它利用金属的电解现象,在通电的电解液中,使离子从一个电极移向另一个电极,从而实现对工件材料的双向加工,即阳极溶解去除 (如电解、电化学抛光)和阴极沉积生长(如电镀、电铸)。无论材料的减少或增加,加工过程都是以离子的形式进行的,而金属离子的尺寸非常微小,因此,从原理上讲,电化学加工可以实现加工精度和微细程度在微米级甚至更小尺度的微加工。只要采取措施精确地控制电流密度和电化学反应发生的区域,就能实现电化学微加工,达到对金属表面进行微量“去除”或“生长”加工的目的。 电化学是一门古老而又年轻的学科,一般公认电化学起源于1791年意大利解剖学家伽伐尼发现解剖刀或金属能使蛙腿肌肉抽缩的“动物电”现象。1800年伏特制成了第一个实用电池,开始了电化学研究的新时代。在经历了一个多世纪以后,电化学科学的发展和成就举世瞩目,无论是基础研究还是技术应用,从理论到方法,都有许多重大突破。电化学科学的发展,推动了世界科学的进步,促进了社会经济的发展,对解决人类社会面临的能源、交通、材料、环保、信息、生命等问题,已经作出并正在作出巨大的贡献。 1电化学加工的特点 电化学加工工艺与一般的机制工艺相比较,具有以下特点:能同时进行三维的加工,一次加工出形状复杂的型面、型腔、异形孔;电化学加工的工件表面

纳米电化学生物传感器重点

收稿:2008年3月, 收修改稿:2008年8月 *深圳大学科研启动基金项目(No. 200818 资助**通讯联系人 e 2mail:yang hp@https://www.doczj.com/doc/9a3873134.html,. cn 纳米电化学生物传感器 * 杨海朋 ** 陈仕国李春辉陈东成戈早川 (深圳大学材料学院深圳市特种功能材料重点实验室深圳518060 摘要纳米电化学生物传感器是将纳米材料作为一种新型的生物传感介质, 与特异性分子识别物质如酶、抗原P 抗体、D NA 等相结合, 并以电化学信号为检测信 号的分析器件。本文简要介绍了生物传感器的分类和纳米材料在电化学生物传感器中的应用及其优势, 综述了近年来各类纳米电化学生物传感器在生物检测方面的研究进展, 包括纳米颗粒生物传感器, 纳米管、纳米棒、纳米纤维与纳米线生物传感器, 以及纳米片与纳米阵列生物传感器等。 关键词生物传感器电化学传感器纳米材料生物活性物质固定化 中图分类号:O65711; TP21213 文献标识码:A 文章编号:10052281X(2009 0120210207 Nanomaterials Based Electrochemical Biosensors Y ang Haipeng **

Chen Shiguo Li Chunhui Chen Dongche ng Ge Zaochuan (Shenzhen Key Laboratory of Special Functional M aterials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China Abstract Biosensors w hich utilize immobilized bioac tive compounds (such as enz ymes, antigen, antibody, D N A, etc. f or the c onversion of the target analytes into electroc he mically detectable products is one of the most widely used detection methods and have become an area of wide ranging research activity. The advances in biocompatible nano technology make it possible to develop ne w biosensors. A variety of biosensors with high sensitivity and excellent reproducibility based on nano technology have been reported in recent years. In this paper, the development of the researches on nano amperometric biosensors, one of the most important branches of biosensors, is revie wed. Nanoscale architectures here involve nano 2particles, nano 2wires and nano 2rods, nano 2sheet, nano 2array, and carbon nanotube, etc. Remarkable sensitivity and stability have been achieved by coupling immobilized bioactive compounds and these nanomaterials. Key words biosensors; electroche mistry sensors; nanomaterials; bioactive compounds; immobiliz ation Contents 1 Introduction to biosensors 2 Nanomaterials based electrochemical biosensors 2. 1 Challenges and developments of biosensors 2. 2 Introduction of nanomaterials 2. 3 Nanomaterials based electrochemical biosensors 2. 3. 1 Nano particles based electrochemical biosensors

浅赏电化学加工和电火花加工

浅赏电化学加工和电火花加工 摘要 制造业是一个传统行业。一个国家的发展终归要落脚于制造业,因此作为基础工业,制造业必定拥有永久的生命力,而电加工行业也不例外。随着各项技术的不断发展,电加工技术也在进步,特种加技术作为先进制造技术中的重要部分,解决了好多传统加工方法的难题,电化学与电火花加工是特种加工的两大重要组成部分,在此分析两者的原理和特点,不同材料选择不同方法,通过各自的优点和适用范围选择出恰当的方法,是生产效率更高。 关键词:特种加工;电化学加工;电火花加工;发展 ABSTRACT Manufacturing is a traditional industry. The development of a country will eventually locate in manufacturing industry, so as the foundation industry, manufacturing will surely have permanent vitality, and electric processing industry is no exception. With the continuous development of the technology, electric processing technology is also in progress, special and technology as an important part of the advanced manufacturing technology, the traditional processing method to solve a lot of problems, electrochemical and electrical discharge machining is special processing of two important constituent, in the analysis of their principle and characteristics of different materials to choose different methods through their respective advantages and applicability of the choice of the right method, the production efficiency is higher. Keywords:Special processing;Electrochemical machining;Electrical discharge machining;development 1 绪论 随着现代科技的不断发展以及社会需求,对于工业上的要求在不断的改变中,特种加工技术这个被称为21世纪的技术的发展给工业上的发展提供了很大的帮助。新型工程材料不断涌现和被采用,工件的复杂程度以及加工精度的要求越来越高,对机械制造工艺技术提出了更高的要求。由于受刀具材料性能、结构、设备加工能力的限制,使用传统的切削加工方法很难完成对高强度,高韧性,高

最新电化学生物传感器

电化学生物传感器 生物分子的分析检测对获取生命过程中的化学与生物信息、了解生物分子及其结构与功能的关系、阐述生命活动的机理以及对疾病的有效诊断与治疗都具有十分重要的意义。如何高效、快速、灵敏地检测这些生物分子,是当前生命科学领域中面临的一个十分重要的问题。解决这些问题的关键就在于发展各种新型的分析检测技术。生物传感器的出现为有效地解决这些问题提供了新的工具,为生命科学及其相关领域的研究提供了许多新的方法 1电化学生物传感器的基本结构及工作原理 1.1 基本结构 通常情况下,生物传感器由两个主要部分组成即生物识别元件和信号转换器。生物识别元件是指具有分子识别能力,能与待测物质发生特异性反应的生物活性物质,如酶、抗原、抗体、核酸、细胞、组织等。信号转换器主要功能是将生物识别作用转换为可以检测的信号,目前常用的有电化学、光学、热和质量分析几种方法[1]。其中,电化学方法就是一种最为理想的检测方法。 图1 电化学生物传感器的基本结构 1.2 工作原理 电化学生物传感器采用固体电极作基础电极,将生物敏感分子固定在电极表面,然后通过生物分子间的特异性识别作用,生物敏感分子能选择性地识别目标分子并将目标分子捕获到电极表面,基础电极作为信号传导器将电极表面发生的识别反应信号导出,变成可以测量的电信号,从面实现对分析目标物进行定量或定性分析的目的。 2电化学生物传感器的分类

由各种生物分子(抗体、DNA、酶、微生物或全细胞)与电化学转换器(电流型、电位型、电容型和电导型)组合可构成多种类型的电化学生物传感器,根据固定在电极表面的生物敏感分子的不同,电化学生物传感器可分为电化学免疫传感器、电化学DNA传感器、电化学酶传感器、电化学微生物传感器和电化学组织细胞传感器等。 2.1 电化学免疫传感器 电化学免疫传感器是一种将免疫技术与电化学检测相结合的标记免疫分析方法。它是以抗原.抗体特异性反应为基础,将抗原/抗体反应达到平衡状态后的生物反应信号转换成可测量的电信号并通过基础电极将其导出。当采用电化学检测方法测量时,其信号大小与目标分析物在一定浓度范围内成线性关系,从而实现对目标检测物的分析测定。 根据抗原-抗体间的免疫反应的类型,电化学免疫传感器可分为两种:竞争法和夹心法。竞争法的分析原理是基于标记抗原和非标记抗原共同竞争与抗体的反应[2]。而夹心法则是将捕获抗体、抗原和检测抗体结合在一起,形成一种捕获抗体/抗原/检测抗体的夹心式复合物,也称“三明治”式结合物[3]。 图2 竞争法 图3 夹心法 2.2 DNA生物传感器 DNA生物传感器主要检测的是核酸的杂交反应。电化学DNA传感器的工作原理如图所示,即将单链DNA(ssDNA)探针,固定在电极上,在适当的温度、pH、离子

生物传感器的原理及应用

生物传感器的原理及应用 摘要: 随着信息技术与生物工程技术的发展,生物传感器得到了极为迅速的发展,当今各发达国家都把生物传感器列为21世纪的关键技术,给予高度的重视。生物传感器不仅广泛用于传统医学领域,推动医学发展,而且还在空间生命科学、食品工业、环境监测和军事等领域广泛应用。 关键词:生物传感器;原理;应用;发展 Abstract: As information technology and biological engineering technology, bio-sensors has been very rapid development,today's developed countries regard the biosensor technology as the key to the 21st century, given a high priority. Biosensors are widely used in traditional medicine not only to promote the development of medicine, but also in space life science, food industry, environmental monitoring and widely used in military and other fields. Keyword s: biosensor; principle; application; development

目录 一. 引言 (4) 二. 生物传感器的原理 (4) 三. 生物传感器的应用 (5) 3.1.生物传感器在医学领域的应用 (5) 3.1.1. 基于中医针灸针的传感针 (5) 3.1.2.生物芯片 (5) 3.1.3.生物传感器的临床应用 (5) 3.2.生物传感器在非传统医学领域的应用 (6) 3.2.1.在空间生命科学发展中的应用 (6) 3.2.2.在环境监测中的应用 (6) 3.2.3.在食品工程中的应用 (6) 3.2.4.在军事领域的应用 (6) 四. 生物传感器的未来 (7) 五. 结束语 (7) 六. 参考文献 (7)

生物传感器原理及应用

Chapter 1生物传感器 (Biosensors) ? 1.1 Generalization(概述)? 1.2 Principle (基本原理)? 1.3 Classification(分类)? 1.4 Application(应用)

1.2 生物传感器工作原理 被测对象生物敏 感膜 (分子 识别感 受器) 电 信 号 换 能 器 物理、化学反应 化学物质 力 热 光 声 . . . 图16-1 生物传感器原理图

BIOSENSORS 1.2 生物传感器原理 无论是基于电化学、光学、热学或压电 晶体等不同类型的生物传感器,其探头均由 两个主要部分组成,一是感应器,它是由对 被测定的物质(底物)具有高选择性分子识 别功能的膜构成。二是转换器,它能把膜上 进行的生化反应中消耗或生成的化学物质, 或产生的光、热等转变成电信号,最后把所 得的电信号经过电子技术的处理后,在仪器 上显示或记录下来。

换能器(T r a n s d u c e r )感受器(R e c e p t o r )= 分析物(Analyte ) 溶液(Solution )选择性膜(Thin selective membrane ) 识别元件(Recognition )生物传感器工作机理 测量信号(Measurable Signal ) BIOSENSORS

(1)将化学变化转变成电信号 酶传感器为例,酶催化特定底物发生化学反应,从而使特定生成物的量有所增减。用能把这类物质的量的改变转换为电信号的装置和固定化酶耦合,即组成酶传感器.常用转换装置有氧电极、过氧化氢。

生物传感器的发展现状与趋势

生物传感器的应用与发展趋势 摘要:生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术, 是一种将生物感应元件的专一性与一个能够产生和待测物浓度成比例的信号传导器结合起来的分析装置,具有选择性好、灵敏度高、分析速度快、成本低、能在复杂的体系中进行在线连续检测的特点。生物传感器的高度自动化、微型化与集成化,减少了对使用者环境和技术的要求,适合野外现场分析的需求,在生物、医学、环境监测,视频,医药及军事医学等领域有着重要的应用价值。 关键词:生物传感器;应用;发展趋势 1生物传感器 从几百年以前,人类就已经在使用生物传感器,而生物传感器的研究始于1962年,Clark和Lyons首先提出使用含酶的修饰膜来催化葡萄糖,用pH计和氧电极来检测相应的信号转变。1967年,Updike和Hick 正式提出了生物传感器这一概念,并成功制备了第一支葡萄糖生物传感器,这一工作对生物学来说具有里程碑意义。生物传感器研究的全面展开是从20世纪80年代开始的,1977年,Kambe等用微生物作识别元素制备了生物传感器,为拓宽检测物的范围,所用到的识别元素不断得到扩展,如细胞、DNA、RNA、抗体等识别元素先后被应用于生物传感器的构筑中。换能器的种类和质量也不断得到提高和发展,随后细胞、DNA、RNA、抗体等识别元素也被应用于生物传感器中。逐渐从电化学向光谱学、热力学、磁力、质量及声波等方向拓展,这也使得生物传感器在种类和应用领域上得到发展。 1.1 生物传感器简介 生物传感器指对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质与适当的理化换能器如氧电极、光敏管、场效应管、压电晶体等等及信号放大装置构成的分析工具或系统。生物传感器具有接受器与转换器的功能。对生物物质敏感并将其浓度转换为电信号进行检测的仪器。 将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了葡萄糖传感器。当改用其他的酶或微生物等固化膜,便可制得检测其对应物的其他传感器。固定感受膜的方法有直接化学结合法;高分子载体法;高分子膜结合法。现已发展了第二代生物传感器:微生物、免疫、酶免疫和细胞器传感器,研制和开发第三代生物传感器,将系统生物技术和电子技术结合起来的场效应生物传感器,90年代开启了微流控技术,生物传感器的微流控芯片集成为药物筛选与基因诊断等提供了新的技术前景。由于酶膜、线粒体电子传递系统粒子膜、微生物膜、抗原膜、抗体膜对生物物质的分子结构具有选择性识别功能,只对特定反应起催化活化作用,因此生物传感器具有非常高的选择性。缺点是生物固化膜不稳定。 在21世纪知识经济发展中,生物传感器技术必将是介于信息和生物技术之间的新增长点,在国民经济中的临床诊断、工业控制、食品和药物分析(包括生物药物研究开发)、环境保护以及生物技术、生物芯片等研究中有着广泛的应用前景。 1.2 生物传感器的分类 生物传感器主要有下面三种分类命名方式: 1.根据生物传感器中分子识别元件即敏感元件可分为五类:酶传感器,微生物传感器,细胞传感器,组织传感器和免疫传感器。相应的敏感材料依次为酶、微生物个体、细胞器、动植物组织、抗原和抗体。 2.根据生物传感器的换能器即信号转换器分类有:生物电极传感器,半导体生物传感器,光生物传感器,热生物传感器,压电晶体生物传感器等,换能器依次为电化学电极、半导体、光电转换器、热敏电阻、压电晶体等。 3.以被测目标与分子识别元件的相互作用方式进行分类有生物亲和型生物传感器、代谢型或催化型生

特种加工课程论文

特种加工技术课程论文 论文名称:电化学加工应用案例分析 学院: 年级专业: 学生姓名: 学号: 评阅教师:

电化学加工应用案例分析 摘要:近年来, 延续了自20 世纪90 年代后期以来的良好发展态势, 电化学加工专业领域工艺技术水平及设备性能均取得了稳步发展, 应用领域进一步扩展, 产业发展也达到了一个新的高度。电化学加工技术广泛用于加工发动机叶片、火炮膛线、汽车锻模、汽轮机整体叶轮、花键及异形孔等零件。常用的电化学加工有电解加工、电磨削、电化学抛光、电镀、电刻蚀和电解冶炼等。介绍了电化学加工技术的基本原理、设备组成及加工特点。对其中的电化学抛光、电镀、电刻蚀、电解磨削技术的加工方法作了详细的阐述。与机械加工相比,电化学加工能加工出复杂的型面、腔孔,加工高硬度、高韧性、高强度材料,生产率高。将电化学加工技术与传统加工方法进行有机的结合,可以进一步提高了零件质量、改善零件使用性能和延长使用寿命,提高我国机械制造业在国际上的竞争力。 关键词:电化学加工技术概况应用状况 正文:电化学加工(Electrochemical Making),也称电解加工,是利用金属在外电场作用下的高速局部阳极溶解实现电化学反应,对金属材料进行加工的方法。电化学加工技术是特种加工技术的一个重要应用分支。常用的电化学加工有电解加工、电磨削、电化学抛光、电镀、电刻蚀和电解冶炼等。目前,电化学加工已经成为一种不可或缺的特种加工方法。电化学加工有三种不同的类型:(1)第Ⅰ类是利用电化学反应过程中的阳极溶解来进行加工,主要有电解加工、电化学抛光等。(2)第Ⅱ类是利用电化学反应过程中的阴极沉积来进行加工,主要有电镀、电铸等。(3)第Ⅲ类是利用电化学加工与其它加工方法相结合的电化学复合加工工艺进行加工,目前主要有电解磨削、电化学阳极机械加工。 一、工艺技术研究: 相对传统加工和其他优势特种加工技术而言,电化学加工的基础理论较为薄弱, 工艺技术尚欠成熟。但正因为如此, 其有待研究、开发的空间也更为广阔。近期, 电化学加工工艺技术研究涉及的方向主要集中在超纯水电解加工、微细加工、加工间隙的检测与控制、数字化设计与制造技术等重点领域。下面分别加以详述:1、超纯水电解加工:超纯水电解加工是在常规电解加工原理的基础上, 利用超纯水作电解液, 并采用强酸性阳离子交换膜来提高超纯水中OH- 离子的浓度, 使电流密度达到足够去除材料的一种新型电解加工工艺方法。日本学者率先提出以超纯水代替常规电解液, 实现绿色、微细电解加工的思想。国内学者近年来也开展了超纯水电解加工的机理、超纯水小孔电解加工、超纯水电化学扫描直写加工、超声辅助纯水微细电解加工等研究[ 2~ 6], 为超纯水电解加工的应用奠定了基础。2、微细电化学加工:微细加工是当前电化学加工研究中最活跃也是最热点的方向。从原理上而言, 电化学加工中材料的去除或增加过程都是以离子的形式进行的。由于金属离子的尺寸非常微小( 10- 1 nm 级) , 因此, 以“离子”方式去除材料的微去除方式使电化学加工技术在微细制造领域、以至于纳米制造领域存在着理论上的极大优势, 只要精细地控制电流密度和电化学发生区域, 就能实现电化学微细溶解或电化学微细沉积。3、加工间隙的检测与控制:电化学加工是一个复杂的非线性时变系统。由于加工间隙处于电场和流场的共同作用下, 是时间和空间的变化函数, 且空间极小, 因而在加工过程中适时测量非常困难, 特别是对于三维空间的间隙, 至今尚无成熟的采样方案的实际应用。但是, 随着计算机技术、传感器技术、测试技术、信号处理技术、电源技术等现

电化学论文

学院化工学院 专业生物工程 年级2015级本科一年级姓名冯国政 学号3015207252 指导教师王为 2016年5月14日

浅谈生物电池 摘要从我们读到的文献上发现目前生物电池按照作用机理可以大致以下两类。 一是生物质产氢,然后利用氢能进行发电。二是生物直接在电极将有机物(如糖类)氧化,进行直接发电。按照产电的主体划分又可以分为酶燃料电池和微生物燃料电池。本文将主要讨论生物电池的历史、微生物燃料电池、酶生物燃料电池,还将对生物电池的前景进行展望。 1 生物电池的历史 早在1910年,英国植物学家就将铂作为电极置于大肠杆菌的培养液里,成功地制造出了世界上第一个细菌电池。1984年,美国科学家设计出一种用于太空飞船的细菌电池,其电极的活性物来自宇航员的尿液和活细菌。但当时的细菌电池发电效率较低。到了20世纪80年代末,细菌发电取得重要进展,英国化学家让细菌在电池组里分解分子以释放电子并向阳极运动产生电能。他们在糖液中添加某些诸如染料之类的芳香族化合物作为稀释液来提高生物系统输送电子的能力,而在细菌发电期间还需朝电池里不断充气并搅拌细菌培养液和氧化物的混和物。理论上,利用这种细菌电池每100g糖可获得1352930库仑的电能,其效率可达40%远高于当时使用的电池的效率,而且还有10%的潜力可挖掘。只要不断地往电池里添入糖就可获得2A电流,且能持续数月之久。利用细菌发电原理,人们正在构想建立细菌发电站。比如,基于10m见方的立方体容器内的细菌培养液,可建立起一个1000kW的细菌发电站,每小时耗糖量为200kg。发电成本虽然高一些,但这是一种对环境无污染的“绿色”电站。且随着技术的发展,完全可用诸如锯末、秸秆、落叶等废有机物的水解物来代替糖液。因此,细菌发电的前景十分诱人。[1] 2 微生物燃料电池 2.1 微生物燃料电池的原理 微生物燃料电池本质上是收获微生物代谢过程中产生的电子并引导电子产生电流的系统。(如图1)微生物燃料电池的功率输出取决于系统传递电子的数量和速率以及阳极与阴极间的电位差。由于微生物燃料电池并非一个热机系统,避免了卡诺循坏的热力学限制,因此,理论上微生物燃料电池是化学能转化为电能最有效的装置,最大效率有可能接近100%。[2] 其基本原理是微生物可以通过各种途径从燃料(葡萄糖、蔗糖、乙酸盐、废水)中获取电子,并将电子从还原性物质(如葡萄糖)转移到氧化性物质(如氧)以获得能量。获得的能量可按下式计算: ?G=-n×F×?E 式中?G——获得的能量 n——电子转移的数量 F——法拉第常数,96485C/mol

酶生物传感器

酶生物传感器得应用进展 摘要:酶生物传感器就是将酶作为生物敏感基元,通过各种物理、化学信号转换器捕捉目标物与敏感基元之间得反应所产生得与目标物浓度成比例关系得可测信号,实现对目标物定量测定得分析仪器。与传统分析方法相比,酶生物传感器具有独特得优点:选择性高、反复多次使用、响应快、体积小、可实现在线监测、成本低,便于推广普及。本文主要论述生物酶传感器得特征、发展及酶传感器中应用得新技术。 关键词:酶生物传感器;进展;应用新技术 1概述 生物传感器(Biosensor)就是一类特殊得化学传感器,通过各种物理、化学型信号转换器捕捉目标物与敏感基元之间得反应,然后将反应得程度用离散或连续得信号表达出来,从而得出被测物得浓度[1]。自1962年Clark[2]等人提出把酶与电极结合来测定酶底物得设想后,1967年Updike与Hicks[3]研制出世界上第一支葡萄糖氧化酶电极[2],用于定量检测血清中葡萄糖含量、此后,酶生物传感器引起了各领域科学家得高度重视与广泛研究,得到了迅速发展、 酶生物传感器就是将酶作为生物敏感基元,通过各种物理、化学信号转换器捕捉目标物与敏感基元之间得反应所产生得与目标物浓度成比例关系得可测信号,实现对目标物定量测定得分析仪器、与传统分析方法相比,酶生物传感辑就是由固定化得生物敏感膜与与之密切结合得换能系统组成,它把固化酶与电化学传感器结合在一起,因而

具有独特得优点:(1)它既有不溶性酶体系得优点,又具有电化学电极得高灵敏度;(2)由于酶得专属反应性,使其具有高得选择性,能够直接在复杂试样中进行测定、因此,酶生物传感器在生物传感器领域中占有非常重要得地位、生物传感器具有多样性、无试剂分析、操作简便、灵敏、快速、价廉、可重复连续使用等特点,已在食品发酵工业、临床医学、环境监测、军事科学等领域展现出十分广阔得应用前景[4-9]。 2酶生物传感器得基本结构 酶生物传感器得基本结构单元就是由物质识别元件(固定化酶膜)与信号转换器(基体电极)组成、当酶膜上发生酶促反应时,产生得电活性物质由基体电极对其响应、基体电极得作用就是使化学信号转变为电信号,从而加以检测,基体电极可采用碳质电极(石噩电板、玻碳电极、碳棚电极)、R电极及相应得修饰电极、 3酶生物传感器得分类 生物传感器按换能方式可分为电化学生物传感器与光化学生物传感器2种。 3、1电化学酶传感器 基于电子媒介体得葡萄糖传感器,具有响应速度快、灵敏度高、稳定性好、寿命长、抗干扰性能好等优点,尤为受到重视。二茂铁由于有不溶于水、氧化还原可逆性好、电子传递速率高等优点,得到了广泛得研究与应用。

生物传感器的应用及发展趋势

生物传感器的应用及发展趋势 摘要: 生物传感器是一类特殊的化学传感器,是以生物体成分(如酶,抗原,抗体,激素等)或生物体本身(细胞,微生物,组织等)作为生物体敏感元件,对被测目标物具有高度选择性的检测器件。生物传感器不仅广泛用于传统医学领域,推动医学发展,而且还在空间生命科学、食品工业、环境监测和军事等领域广泛应用。 关键词:生物传感器种类;原理;应用;趋势 一.生物传感器基本结构和工作原理 生物传感器由分子识别部分(敏感元件)和转换部分(换能器)构成,以分子识别部 分去识别被测目标,是可以引起某种物理变化或化学变化的主要功能元件。分子识别部分 是生物传感器选择性测定的基础。生物传感器通过物理,化学型信号转换器捕捉目标物 与敏感元件之间的反应,并将反应的程度用离散或连续的电信号表达出来,从而得出 被测量。 生物体中能够选择性地分辨特定特质的物质有酶、抗体、组织、细胞等。这些分子识 别功能物质通过识别过程可与被测目标结合成复合物,如抗体和抗原的结合、酶与基质的 结合。在设计生物传感器时,选择适合于测定对象的识别功能物质,是极为重要的前提; 要考虑到所产生的复合物的特性。根据分子识别功能物质制备的敏感元件所引起的化学变 化或物理变化,去选择换能器,是研制高质量生物传感器的另一重要环节。敏感元件中光、热、化学物质的生成或消耗会产生相应的变化量。根据这些变化量,可以选择适光的换能器。 二.生物传感器的分类及应用 1.酶生物传感器 酶传感器是生物传感器的一种,是利用生化反应所产生的或消耗的物质的量,通过电化学 装置转换成电信号,进而选择性地测定出某种成分的器件。酶生物传感器应用于检测血糖 含量,检测氨基酸含量,测定血脂,测定青霉素和浓度,测定尿素,测定血液中的酶含量 酶传感器中应用的新技术:纳米技术 固定化酶时引入纳米颗粒能够增加酶的催化活性,提高电极的响应电流值。首先,纳米颗 粒增强在载体表面上的固定作用;其次是定向作用,分子在定向之后,其功能会有所改善;第三,由于金、铂纳米颗粒具有良好的导电性和宏观隧道效应,可以作为固定化酶之间、 固定化酶与电极之间有效的电子媒介体,从而使得氧化还原中心与铂电极间通过金属颗粒 进行电子转移成为可能,酶与电极间可以近似看作是一种导线来联系的。这样就有效地提 高了传感器的电流响应灵敏度。孟宪伟等首次研究了二氧化硅和金或铂组成的复合纳米颗 粒对葡萄糖生物传感器电流响应的影响,其效果明显优于这=种纳米颗粒单独使用时对葡萄糖生物传感器的增强作用。其原因是纳米粒子具有吸附浓缩效应、吸附定向和量子尺寸颗 粒效应,复合纳米颗粒比单独一种纳米颗粒更易于形成连续势场,降低电子在电极和固定 化酶间的迁移阻力,提高电子迁移率,有效地加速了酶的再生过程,因此复合纳米颗粒可 以显著增强传感器的电流响应。 2.免疫传感器 免疫传感器应用于检测食品中的毒素和细菌,检测DNA 光纤,检测残留的农药,毒品和滥 用药物的检测。

相关主题
文本预览
相关文档 最新文档