当前位置:文档之家› NuRBs曲线插补算法

NuRBs曲线插补算法

NuRBs曲线插补算法
NuRBs曲线插补算法

NuRBs曲线插补算法

插补运动(逐点比较法)

1、概述 在机床的实际加工中,被加工工件的轮廓形状千差万别,各式各样。严格说来,为了满足几何尺寸精度的要求,刀具中心轨迹应该准确地依照工件的轮廓形状来生成。然而,对于简单的曲线,数控装置易于实现,但对于较复杂的形状,若直接生成,势必会使算法变得很复杂,计算机的工作量也相应地大大增加。因此,在实际应用中,常常采用一小段直线或圆弧去进行逼近,有些场合也可以用抛物线、椭圆、双曲线和其他高次曲线去逼近(或称为拟合)。所谓插补是指数据密化的过程。在对数控系统输入有限坐标点(例如起点、终点)的情况下,计算机根据线段的特征(直线、圆弧、椭圆等),运用一定的算法,自动地在有限坐标点之间生成一系列的坐标数据,即所谓数据密化,从而自动地对各坐标轴进行脉冲分配,完成整个线段的轨迹运行,以满足加工精度的要求。 机床数控系统的轮廓控制主要问题就是怎样控制刀具或工件的运动轨迹。无论是硬件数控(NC)系统,还是计算机数控(CNC)系统或微机数控(MNC)系统,都必须有完成插补功能的部分,只是采取的方式不同而已。在CNC或MNC中,以软件(程序)完成插补或软、硬件结合实现插补,而在NC中有一个专门完成脉冲分配计算(即插补计算)的计算装置——插补器。无论是软件数控还是硬件数控,其插补的运算原理基本相同,其作用都是根据给定的信息进行数字计算,在计算过程中不断向各个坐标发出相互协调的进给脉冲,使被控机械部件按指定的路线移动。 有关插补算法问题,除了要保证插补计算的精度之外,还要求算法简单。这对于硬件数控来说,可以简化控制电路,采用较简单的运算器。而对于计算机数控系统来说,则能提高运算速度,使控制系统较快且均匀地输出进给脉冲。 经过多年的发展,插补原理不断成熟,类型众多。从产生的数学模型来分,有直线插补、二次曲线插补等;从插补计算输出的数值形式来分,有基准脉冲插补(又称脉冲增量插补)和数据采样插补。在基准脉冲插补中,按基本原理又分为以区域判别为特征的逐点比较法插补,以比例乘法为特征的数字脉冲乘法器插补,以数字积分法进行运算的数字积分插补,以矢量运算为基础的矢量判别法插补,兼备逐点比较和数字积分特征的比较积分法插补,等等。在CNC系统中,除了可采用上述基准脉冲插补法中的各种插补原理外,还可采用各种数据采样插补方法。 本文将介绍在数控系统中常用的逐点比较法、数字积分法、时间分割法等多种插补方法以及刀具半径补偿计算原理。 2、逐点比较法 逐点比较法是我国数控机床中广泛采用的一种插补方法,它能实现直线、圆弧和非圆二次曲线的插补,插补精度较高。

逐点比较插补原理的实现

目录 1设计任务及要求 (1) 2方案比较及认证 (2) 3设计原理 (4) 3.1硬件原理 (4) 3.2硬件原理 (5) 4软件系统 (9) 4.1软件思想 (9) 4.2流程图 (9) 4.3源程序 (9) 5调试记录及结果分析 (10) 5.1界面设置 (10) 5.2调试记录 (10) 5.3结果分析 (11) 6心得体会 (13) 7 参考资料 (14) 附录 (15)

1设计任务及要求 设计一个计算机控制步进电机系统,该系统利用PC 机的并口输出控制信号,其信号驱动后控制X 、Y 两个方向的三相步进电机转动,利用逐点比较法插补绘制出如下曲线。 课程设计的主要任务: 1.设计硬件系统,画出电路原理框图; 2.定义步进电机转动的控制字; 3.推导出用逐点比较法插补绘制出下面曲线的算法; 4.编写算法控制程序,参数由键盘输入,显示器同时显示曲线; 5. 撰写设计说明书。课程设计说明书应包括:设计任务及要求;方案比较及认证;系统滤波原理、硬件原理,电路图,采用器件的功能说明;软件思想,流程,源程序;调试记录及结果分析;参考资料;附录:芯片资料,程序清单;总结。 X Y O

2方案比较及认证 本次课程设计内容为设计一个计算机控制步进电机系统,该系统利用PC 机的并口输出控制信号,其信号驱动后控制X 、Y 两个方向的三相步进电机转动,利用逐点比较法插补绘制出第一象限逆圆弧。数字程序控制主要应用于机床的自动控制,如用于铣床、车床、加工中心、以及线切割等的自动控制中。 采用数字程序控制的机床叫数控机床,它能加工形状复杂的零件、加工精度高、生产效率高、便于改变加工零件品种等优点,是实现机床自动化的一个重要发展方向。本次课程设计采用逐点比较法插补原理以及作为数字程序控制系统输出装置的步进电机控制技术进行第一象限圆弧插补。第一象限圆弧如图2-1所示。 图2-1 第一象限逆圆弧 针对以上设计要求,采用步进电机插补原理进行逐步逼近插补。 硬件方面,步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 逐点比较法是以阶梯折线来逼近直线或圆弧等曲线,它与规定的加工直线或圆弧之间的最大误差为一个脉冲当量,因此只要把脉冲当量(每走一步的距离即步长)取得足够小,就可以达到精度的要求。以下为课程设计要求插补的第一象限逆圆弧。图3-3为第一象限逆圆弧。 X Y O

NURBS曲线插补过程中运动平滑处理

NURBS 曲线插补过程中运动平滑处理 姬俊锋 周来水 张得礼 南京航空航天大学,南京,210016 摘要:由于不能通过积分方法在短时间内精确计算NURBS 曲线的长度,使得在数控加工过 程中实时计算减速距离、判断最终减速段开始点变得非常困难。基于插补的实际情况,给出一种实时计算减速距离的方法,在此基础上,实现了基于梯形速度曲线的速度平滑处理以及基于S 形速度曲线的加速度平滑处理。模拟结果表明,该方法在NURBS 曲线实时插补过程中,在保证误差的基础上,满足了插补周期和加减速的要求,且实现了速度以及加速度的平滑过渡。 关键词:NURBS ;插补;速度曲线;平滑处理中图分类号:TG 659;TP391 文章编号:1004—132X (2006)21—2225—04Motion Smoothing Implem entation for NURB S Curve I nterpolation Ji J unfeng Zhou Laishui Zhang Deli Nanjing University of Aeronautics and Astronautics ,Nanjing ,210016 Abstract :Due to the impossibility to compute the exact length of NURBS curve through integration in a short time ,it is very difficult to get the deceleration distance and to forecast the point to begin the deceleration stage in real time.Based on the practical process ,this paper presented a method to compute the deceleration distance in real time.With the result ,trapezoidal velocity profile was adopted to smooth the velocity profile and S -curve velocity profile was adopted to smooth the acceleration profile.The simulation results show that the method presented here satisfies the needs of the interpolator cycle and the acceleration and deceleration be 2sides ensuring the chordal errors. K ey w ords :NURBS ;interpolator ;velocity curve ;smoothing implementation 收稿日期:2005—08—01 0 引言 由于NURBS 方法不仅能够描述自由型曲线曲面,又能够精确表示二次曲线弧与二次曲面,因此,它在一些商用CAD/CAM 软件中获得了广泛的应用,并被国际标准化组织定为描述自由型曲线曲面的唯一标准。另一方面,传统的数控系统只提供直线以及圆弧插补。为了解决先进的设计方法与相对落后的加工方法之间的矛盾,实现对NURBS 曲线曲面的实时插补具有重要意义。 文献[1]将直线插补、圆弧插补同参数曲线插补做了比较,结果表明,参数曲线实时插补不仅具有程序量小、传输速度快的优点,同时在加工自由型曲线曲面时也能够保证高速度和高精度。 文献[2]将参数增量Δu 设为常量,即均匀插补。该方法计算简单,程序量小,缺点是在插补周期一定的情况下会造成速度剧烈跳跃,并在曲率很大的地方会造成过大的弦长误差。 Houng 等[3]提出了基于恒速进给的插补算法, 利用一阶泰勒展开公式,得到进给速度v 与参数增量Δu 的关系,进而对曲线进行插补。Y ang 等[1]在 此基础上利用二阶泰勒展开得到了更精确的结果。 这两种方法的进给步长均为恒量,因此在曲率大的地方的误差仍有可能超出允许的范围。文献[4]在泰勒展式基础上提出一种基于圆弧近似的自适应进给速度插补方法,这种方法首先保证了弦长误差,但也造成了速度的波动。这种方法被称为开环方法,其结果的精确程度取决于泰勒展开公式的精度。文献[5,6]分别给出了另外一种被称为闭环的方法。该方法利用差分代替泰勒展开公式中的微分,并将实际进给速度与给定进给速度之间的差值作为反馈,通过迭代使误差收敛以实现精确插补,算法的关键在于迭代方法的建立以及收敛速度的快慢。文献[7]对上述开环与闭环两种方法进行了比较,开环方法计算时间稳定,闭环方法需要进行迭代,计算时间难以保证,但公式比较简单,且可以由用户来设定误差。 以上方法满足了插补过程中的误差要求,但没有考虑机床的动态性能,包括机床的加减速能力以及如何保证加速度不会超过机床的能力极限,尤其是没有考虑插补最终减速点的预测问题,而这一点又是参数曲线实时插补中的难点。 文献[8]在考虑机床动态性能的基础上,给出 NURBS 曲线插补过程中运动平滑处理———姬俊锋 周来水 张得礼

第三章_曲线拟合算法的研究汇总

第三章 曲线拟合算法的研究 3.1 引言 随着航空、汽车等现代工业与计算机技术的发展,圆锥曲线与列表点曲线已经成为形状数学描述的常用方法,得到了广泛的应用。为了满足激光切割加工任务的需要,自动编程系统集成了多种曲线拟合算法,这样利用现有的激光切割机,即可实现特殊曲线的插补功能,极大地丰富系统的插补能力,满足复杂的生产要求。 3.2 圆锥曲线拟合算法的研究 在经济型数控系统中,对于圆锥曲线即平面二次曲线的加工是数控加工中经常遇到的问题,随着数控加工对圆锥曲线插补的需求,近年来有关各种圆锥曲线的插补算法应运而生[26]。常用的解决方法是先用低次的有理参数曲线拟合或将其离散,再用直线、圆弧逼近,然后才能进行数控加工[28]。本章从一个新的视角利用双圆弧方法,提出先对圆锥曲线进行标准化处理,再用双圆弧拟合逼近,然后再进行数控加工。这样的优点是:圆弧样条的等距曲线还是圆弧;双圆弧样条能达到C 1连续,基本上能满足要求;所有数控系统都具有直线插补和圆弧插补功能,无需增加额外负担。 由于工程应用不同,对曲线拟合的要求也不同。有的只要求拟合曲线光滑,有的要求光顺[9-10]。本章中开发的软件要求是:支持多种常用圆锥曲线的拟合;拟合曲线要求光滑;拟合曲线与函数曲线间的误差应控制在允许的范围之内,且拟合圆弧段数较少。 本章提出的对圆锥曲线的插补,是建立在对平面任意二次曲线可以进行分类的基础上,先将二次曲线进行分类,然后对各类曲线分别进行双圆弧拟合,这样就可以直接利用数控系统的圆弧插补功能进行插补。 3.2.1 圆锥曲线的一般理论[9] 在平面直角坐标系中,二元二次方程所表示的曲线称为二次曲线。其中系数A 、B 、 C 、 D 、 E 、 F 为实常数,且A 、B 、C 不同时为零。 022=+++++F Ey Dx Cy Bxy Ax (3.1) 式(3.1)称为圆锥曲线的隐式方程。令 AC B 42-=? (3.2) 称上式为二元二次方程(3.1)的判别式。 0

圆弧插补指令G02(精)

圆弧插补指令G02/G03 指令格式: G02 R__ X (U )__ Z (W )__ F__ ; G03 I__ K__ 指令意义:刀具沿X 、Z 两轴同时从起点位置(当前程序段运行前的位置)以R 指定的值 为半径或以I 、K 值确定的圆心顺时针(G02)/逆时针(G03)圆弧插补至X (U )、Z (W )指定的终点位置。

指令地址: G02:顺时针圆弧插补,见图3-15A ; G03:逆时针圆弧插补,见图3-15B ; X :终点位置在X 轴方向的绝对坐标值,其取值范围是:-9999.999mm ~ +9999.999mm; Z :终点位置在Z 轴方向的绝对坐标值,其取值范围是:-9999.999mm ~ +9999.999mm; U :终点位置相对起点位置在X 轴方向的坐标值,其取值范围是:- 9999.999mm ~+9999.999mm; W :终点位置相对起点位置在Z 轴方向的坐标值,其取值范围是:- 9999.999mm ~+9999.999mm; I :圆心相对圆弧起点在X 轴上的坐标值,其取值范围是:-9999.999mm ~+9999.999mm; K :圆心相对圆弧起点在Z 轴上的坐标值,其取值范围是:-9999.999mm ~+9999.999mm; R :圆弧半径; F :沿圆周运动的切线速度,其取值范围是:1~15000mm/min,其速度合成图见本手册3.6节进给功能F 代码。 图3-15A G02轨迹图图3-15B G03轨迹图 指令说明: ● 顺时针或逆时针是从垂直于圆弧所在平面的坐标轴的正方向看到的回转方向,它

是与采用前刀座坐标系还是后刀座坐标系有关的,如图3-16; 图3-16 圆弧方向的确定 ● 圆弧中心用地址I 、K 指定时,其分别对应于X ,Z 轴。I 、K 表示从圆弧起点到圆心 的矢量分量,是增量值: I =圆心坐标X -圆弧起始点的X 坐标; K =圆心坐标Z -圆弧起始点的Z 坐标; O

数字积分圆弧第一二三四象限顺逆插补计算

数控技术课程设计说明书 设计题目:数字积分法圆弧插补计软件设计指导老师: 专业:机械设计制造及其自动化 班级:机 姓名: 学号:

目录 一、课程设计题目 (1) 二、课程设计的目的 (1) 三、课程设计使用的主要仪器设备 (1) 四、课程设计的任务题目描述和要求 (1) 五、数字积分法插补原理 (2) 5.1从几何角度来看积分运算 (2) 5.2数字积分圆弧插补 (3) 5.3数字积分法圆弧插补程序流程图 (5) 5.4插补实例 (6) 六、程序清单 (7) 七、软件运行效果仿真 (18) 八、课程小节 (21) 九、参考文献 (22)

一、课程设计题目 数字积分法第一、二、三、四象限顺、逆圆插补计算 二、课程设计的目的 《数控原理与系统》是自动化(数控)专业的一门主要专业课程,安排课程设计的目的是通过课程设计方式使学生进一步掌握和消化数控原理基本内容,了解数控系统的组成,掌握系统控制原理和方法,通过设计与调试,掌握各种功能实的现方法,为今后从事数控领域的工作打下扎实的基础。 1)了解连续轨迹控制数控系统的组成原理。 2) 掌握数字积分法(DDA)插补的基本原理。 3)掌握数字积分法(DDA)插补的软件实现方法。 三、课程设计使用的主要仪器设备 1、PC计算机一台 2、数控机床实验装置一台 3、支持软件若干(选用VB环境) 四、课程设计的任务题目描述和要求 数字积分法又称数字微分分析法DDA(Digital Differential Analyzer)。数字积分法具有运算速度快、脉冲分配均匀、易于实现多坐标联动及描绘平面各种函数曲线的特点,应用比较广泛。其缺点是速度调节不便,插补精度需要采取一定措施才能满足要求。由于计算机有较强的计算功能和灵活性,采用软件插补时,上述缺点易于克服。 本次课程设计具体要求如下: (1)掌握数字积分插补法基本原理 (2)设计出数字积分(DDA)插补法插补软件流程图 (3)编写出算法程序清单算法描述(数字积分法算法在VB中的具体实现)(4)要求软件能够实现第一、二、三、四象限顺、逆圆插补计算 (5)软件运行仿真效果插补结果要求能够以图形模式进行输出

圆弧加减速插补算法

机电工程学院 数控加工技术课程设计——插补算法实现 学号:S311077006 专业:机械工程 学生姓名:胡晓锋 任课教师:李霞副教授 2011年4月

基于PC的圆弧曲线加减速算法实现 插补算法一直以来就是数控系统中的核心技术。从数控系统的原理来说,插补的本质问题就是对任意曲线进行分解,成为若干段微小的曲线,当对曲线的分解达到无穷级时,每一段曲线便成为微小的直线段。然后利用与相应微小曲线相类似的直线段代替,通过控制刀具按直线段行走进行加工,完成为整个曲线的插补运算加工。实际问题中不可能对任意曲线的分解达到无穷,因此总是存在相应的误差。然而在实际运用中对误差的容忍度有限,因此只需在满足精度的情况下进行曲线的分解。对曲线的分解过程即是将其坐标点进行密化,不但要保证精度,还需要在极短的时间内完成。受现代技术的限制,这一过程目前还存在一定的问题。由此而产生的对插补算法的研究也一直没有停止过,从经典的逐点比较法到现在的自由曲面直接插补法,各种算法层出不穷。 本次对圆弧的插补算法是基于PC技术的算法,利用MATLAB软件编写相应的插补程序,实现对插补轨迹的模拟与分析。 一、问题描述 本次设计针对圆弧曲线进行插补,采用加减速的方式完成刀具的行走过程。根据数据采样插补原理,实现数控轨迹的密化。本次插补的难点在于对刀具行走轨迹的自动加减速进行控制,由控制器发出相应指令,当刀具以不同速度运行到不同位置时,能够根据当前的状态判断下一个插补周期需要的状态,从而连续平滑的完成插补过程。 二、速度曲线的数学表达式 刀具在进行插补时的速度应该是一个加速-匀速-减速的过程,各个过程与时间的关系应该由相应的加速度来控制。因此曲线的形状呈现一定的抛物线形。 另初始进给速度为F1,末端进给速度为F2,指令速度为F,当前速度为V,减速距离为S,当前距离为CS,n为插补周期个数,t为当前时刻。则速度的数学表达式如下: (F1S),起始时刀具加速运动。 F1=F/2,加速度为a= (F1>=F)&&(CS>10),刀具做匀速运动。

逐点比较法插补实验报告

实验报告 实验内容:逐点比较法直线和圆弧插补2011年9月25日 院系:物科院班级:085 学号:07080518 姓名:陈实 实验目的: 利用逐点比较法的插补原理,编写直角坐标系下的直线、圆弧插补程序,观察屏幕上仿真的运动轨迹,掌握逐点比较法的插补原理。 实验原理: 逐点比较发是基于动点与理想曲线院函数的比较来实现插补的。逐点比较法的插补过程,每走一步要进行一下四个步骤: 偏差判别:根据偏差值确定刀具相对加工曲线的位置 坐标进给:根据偏差判别的结果,决定控制线沿哪个坐标进给一步以接近曲线 偏差计算:计算新加工店相对曲线的偏差,作为下一步偏差判别的依据 终点判别:判别是否到达终点,未到达终点则返回第一步继续插补,到终点则停止 1、逐点比较法直线插补原理: 逐点比较法在第一象限的直线插补原理如下图所示,其他象限情况可依次类推。 现加工OE直线,如果刀具动点在OE直线上方或在线上,则令刀具沿X正方向进给一步;若刀具动点在OE直线下方,则令刀具沿Y轴正方向进给一步,如此循环直到加工到E点。判别刀具动点的位置根据偏差函数判别公式: 根据这个公式可以推到出两种不同情况下的地推公式:

对于插补终点的判别,可以采用单向的计数长度法,即:取计数长度M等于Xe、Ye中的大者,并设该坐标方向为计数方向。插补时,仅在该方向上产生进给时,计数长度减一。图1的逐点比较法中,工作循环的结束条件就是M减为0. 2、逐点比较法圆弧插补原理: 逐点比较法在第一象限的圆弧插补原理如图所示,其他象限可一次类推: 对于第一象限的逆圆弧,如果动点在圆弧的外侧则令刀具动点沿X轴负方向进给一步。如果动点在圆弧的内侧则令刀具沿Y轴正方向进给一步。 圆弧的偏差计算公式为: 根据这个公式同样可推导出圆弧插补的两种不同情况下的递推公式: 对于插补终点的判别,同样可以采用单向的计数长度法,不过对于圆弧,计数的方向并不取决于终点坐标中的大者,而是取决于圆弧终点处。 逐点比较法插补中需要编写插入部分流程图:

逐点比较法插补原理实验报告

南昌航空大学实验报告 年月日 课程名称:数控技术实验名称:逐点比较法插补原理 班级:姓名:同组人: 指导老师评定:签名: 一、实验的目的与要求 1.目的 ①掌握逐点比较法插补的原理及过程; ②掌握利用计算机高级语言,设计及调试“插补运算轨迹”模拟画图的程序设计方法; ③进一步加深对插补运算过程的理解; 二、实验仪器 计算机一台 三、实验原理 ①逐点比较法插补运算的原理 首先粗略的简单介绍一下机床是如何按照规定的图形加工出所需的工件的。例如,现在要加工一段圆弧(图2-1),起点为A,终点为B,坐标原点就是圆心,Y轴、X轴代表纵、横拖板的方向,圆弧半径为R。 如从A点出发进行加工,设某一时刻加工点在M1,一般来说M1和圆弧 有所偏离。因此,可根据偏离的情 况确定下一步加工进给的方向,使下 一个加工点尽可能向规定图形(即圆 弧)靠拢。 若用R M1表示加工点M1到圆心O 的距离,显然,当R M1

可以看出,加工的结果是用折线来代替圆弧,为了清楚起见,在图2-1中,每步的步长画的很大,因此加工出来的折线与所需圆弧的误差较大。 若步长缩小,则误差也跟着缩小,实际加工时,进给步长一般为1微米,故实际误差时很小的。 ②计算步骤 由上述可以看出,拖板每进给一步都要完成四个工作节拍。 偏差判别:判别偏差符号,确定加工点是在要求图形外还是在图形内。 工作台进给:根据偏差情况,确定控制X坐标(或Y坐标)进给一步,使加工点向规定的图形靠拢,以缩小偏差。 偏差计算:计算进给一步后加工点与要求图形的新偏差,作为下一步偏差判别的依据。 终点判断:判定是否到达终点,如果未达到终点,继续插补,如果以到达终点,停止插补。 计算步骤的框图如下所示: 图2-2 逐点比较法插补计算步骤 ③插补运算公式 插补运算公式表 四、实验内容及步骤 应用VB设计逐点比较法的插补运算程序,在计算机屏幕上画出轨迹图。 1 程序界面 采用图形显示方式,动态的显示出直线和圆弧的插补过程。

数控圆弧编程举例讲解

数控圆弧编程举例讲解 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

数控圆弧编程举例讲解——I0和J0编程、圆弧用R编程封闭圆编程图 使机床在XOY、XOZ、YOZ平面内执行圆弧插补运动,加工出圆弧轮廓。G02为顺时针圆弧插补指令,G03为逆时针圆弧插补指令。圆弧的顺、逆可按图1给出的方向进行判断:沿圆弧所在平面(XOY)的另外一坐标轴的负方向(即-Z)看去,顺时针方向为G02,逆时针方向为G03。 圆弧插补程序应包括:坐标平面选择、圆弧的顺逆、圆弧的终点坐标及圆心坐标或半径。其程序格式为: G17 G02(G03) X┈Y┈I┈J┈(R┈)F┈ G18 G02(G03) X┈Z┈I┈K┈(R┈)F┈ G19 G02(G03) Y┈Z┈J┈K┈(R┈)F┈ 当机床只有一个坐标平面时,平面选择指令可省略(如车床);当机床具有三个坐标时(如立式加工中心),G17可以省略。 圆弧插补终点坐标可以用绝对坐标,也可以用增量坐标,取决于程序中已指定的G90或G91。 图1圆弧顺逆的区分 圆心坐标I、J、K一般用圆心相对于圆弧起点(矢量方向指向圆心)在X、Y、Z坐标的分矢量,且总是为增量值(圆弧起点作为圆心坐标的原点),与程序中已指定的G90无关。圆心参数也可用半径R。由于在同一半径R的情况下,从圆弧的起点到终点有两个圆弧的可能性,为区别二者,当圆心角θ≤180°的圆弧用R,当θ>180°的圆弧用-R。用R参数时,不能描述整圆。 应注意的是,圆弧是由数控装置的圆弧插补器完成的,若给出的圆弧参数有误差时,圆弧的终点处必残留一个小的直线段而形成圆弧误差ε,一般限制在ε≤10μ。 现代的数控机床都可跨象限编制圆弧程序。但有些旧式数控机床是按象限划分程序段的。 图2为封闭圆,用圆心坐标I、J编程。设刀具起点在坐标原点O,刀具回转中心快速移到 A ,按箭头方向以F=100mm/min速度切削整圆至A,再返回原点。 (1)假定不能跨象限编程,只能按Ⅰ、Ⅱ、Ⅲ、Ⅳ象限分别编程。 用绝对坐标:

基于FPGA的逐点比较圆弧插补算法设计

二○一三届毕业设计 基于FPGA逐点比较圆弧插补算法设计 学院:电子与控制工程学院 专业:电子科学与技术 姓名:…….. 学号:……… 指导教师:…….. 完成时间:2013年5月 二〇一三年五月

摘 要 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 摘 要 本课题主要是研究基于VHDL 实现数控系统中的逐点比较圆弧插补,要求圆弧运动过程平滑,在各象限能顺利过渡,并有较小的设计误差,能与运动控制部分很好的集成,实现较高的切割频率。 本课题采用QuartusII 软件来调试程序,并进行波形仿真。主要的工作如下: 1) 理解数控系统中逐点比较圆弧插补算法的原理及其实现方法; 2) 通过硬件描述语言VHDL 在FPGA 上实现上述算法; 3) 完成圆弧插补的仿真与测试。 关键词:VHDL ,FPGA ,逐点比较法,QuartusII

ABSTRACT ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ABSTRACT This topic mainly studies based on VHDL realization of point by point comparison circular arc interpolation in nc system, the movement for arc process smooth, in each quadrant can smooth transition, and a relatively small design error, can very good integration with motion control part, realize the high frequency of cutting. This subject adopts software QuartusII to debug program and waveform simulation. The main work is as follows: 1. Understand CNC system the principle of point by point comparison in circular arc interpolation algorithm and its realization method 2. Through the hardware description language VHDL FPGA to realize the above algorithms. 3. Finish arc interpolation of simulation and test KEY WORDS : VHDL, FPGA, point-by-point comparison, QUARTUS II

逐点比较法直线插补圆弧插补实例

逐点比较法直线插补 (1)偏差函数构造 对于第一象限直线OA上任一点(X,Y):X/Y = Xe/Ye 若刀具加工点为Pi(Xi,Yi),则该点的偏差函数Fi可表示为: 若Fi= 0,表示加工点位于直线上; 若Fi> 0,表示加工点位于直线上方; 若Fi< 0,表示加工点位于直线下方。 (2)偏差函数字的递推计算 采用偏差函数的递推式(迭代式):既由前一点计算后一点 Fi =Yi Xe -XiYe 若Fi>=0,规定向+X 方向走一步 Xi+1 = Xi +1 Fi+1 = XeYi –Ye(Xi +1)=Fi –Ye 若Fi<0,规定+Y 方向走一步,则有 Yi+1 = Yi +1 Fi+1 = Xe(Yi +1)-YeXi =Fi +Xe (3)终点判别 直线插补的终点判别可采用三种方法。 1)判断插补或进给的总步数:2)分别判断各坐标轴的进给步数;3)仅判断进给步数较多的坐标轴的进给步数。 (4)例 对于第一象限直线OA,终点坐标Xe=6 ,Ye=4,插补从直线起点O开始,故F0=0 。终点判别是判断进给总步数N=6+4=10,将其存入终点判别计数器中,每进给一步减1,若N=0,则停止插补。

逐点比较法圆弧插补(1)偏差函数构造 任意加工点Pi(Xi,Yi),偏差函数Fi可表示为 若Fi=0,表示加工点位于圆上;

若Fi >0,表示加工点位于圆外; 若Fi <0,表示加工点位于圆内 (2)偏差函数的递推计算 1) 逆圆插补 若F ≥0,规定向-X 方向走一步 若Fi<0,规定向+Y 方向走一步 2) 顺圆插补 若Fi ≥0,规定向-Y 方向走一步 若Fi<0,规定向+y 方向走一步 (3)终点判别 1)判断插补或进给的总步数: 2)分别判断各坐标轴的进给步数: (4)例 对于第一象限圆弧AB ,起点A (4,0),终点B (0,4) ???+-=-+-=-=++12)1(122211i i i i i i i X F R Y X F X X ???++=-++=+=++12)1(122211i i i i i i i Y F R Y X F Y Y ???+-=--+=-=++12)1(122211i i i i i i i Y F R Y X F Y Y ???++=-++=+=++12)1(122211i i i i i i i X F R Y X F X X b a b a Y Y X X N -+-=b a x X X N -= b a y Y Y N -=

(完整版)逐点比较法插补程序程序设计与模拟毕业论文

大连民族学院本科毕业设计(论文) 逐点比较法插补程序程序设计与运行 模拟 学院(系):机电信息工程学院_____ 专业:机械设计制造及其自动化__ 学生姓名: _________ 指导教师:李文龙 __________ 评阅教师:_________________________ 完成日期:_________________________

大连民族学院

摘要 在数控编程时,一般仅提供描述该线形所必须的相关参数,但为了满足几何零件尺寸精度要求,必须在刀具(或工件)运动过程中实时计算出满足线形和进给速度要求的在起点和终点之间的若干中间点,所以就有了插补。 本设计主要阐述了逐点比较法的基本原理,在四个象限直线、圆弧插补的插补原理以及如何实现。重点研究了逐点比较法的基本算法,控制程序的原理框图,对逐点比较法做了详细的研究,掌握基本的G代码的内容与运用,编写插补程序,并且基于vb平台演示插补过程。 从调试结果来看,本文所提供的运算与编程能够通过简洁的“输入输出”界面,较好的实现了计算机屏幕模拟。 关键词:简易数控;逐点比较法插补;G代码;VB;计算机屏幕模拟

Abstract By-point comparison interpolation program design and run the simulation program In NC programming, generally only provide a description of the relevant parameters necessary for linear, but in order to meet the accuracy requirements of the geometric part size must be in the tool (or workpiece) during exercise to meet the real-time calculation and linear feed rate required at the start and some intermediate point between the endpoints, so there will be interpolated. The design is mainly explained by-point comparison of the basic principles in the four quadrants linear and circular interpolation interpolation theory and a point by point comparison of the basic algorithm, a block diagram of the control program, right by-point comparison method to do a detailed study and master the basic content and the use of G-code, write interpolation procedures, and is based on interpolation vb platform demo process. From the debugging results, provided computing and programming through simple "input output" interface, to achieve a better simulation of the computer screen Keywords:Simple numerical control; interpolation point by point comparison;G code;VB;Computer simulation on the screen

NURBS 曲线插补技术

NURBS 曲线插补技术 1. 前言 数控系统的NURBS曲线插补技术是基于PC开放式数控系统的发展关键技术之一。数控加工时 经常遇到诸如飞机的机翼、汽车流线型覆盖件、成型模具型腔、汽轮机叶片等许多具有复杂外形型 面的零件,CAD/CAM 通常用列表曲线来描述它们。列表曲线的拟合方法很多,如三次样条、B样条、圆弧样条及牛顿插值方法等。由于NURBS曲线具有良好的直观性,且在“局部性”及收敛、逼近 性方面占有优势,已经成为当前最为通用的列表曲线拟合方法,利用NURBS在CAD/CAM系统中可以 使所有的曲线具有统一的数学表达式,国际标准化组织(ISO)在其正式颁布的工业产品几何定义STEP标准中,亦将NURBS作为产品交换的国际标准。于是,对CNC添加NURBS曲线曲面插补功能,成为现代开放式数控系统的关键技术之一。基于PC开放式数控系统可以充分利用PC的强大计算能力,实现NURBS曲线曲面高速度高精度的实时插补。 2.数控插补原理 在CNC系统中,插补器的硬件功能全部或部分地由计算机的系统程序来实现。CNC根据来自数 据处理结果缓冲区中存储的零件程序数据段的信息,以数字方式进行计算,不断向系统提供坐标 轴的位置命令,这种计算叫做插补计算,简称插补。插补软件的任务是完成在轮廓起点到终点的中 间点的坐标计算。尤其对于轮廓控制系统而言,插补是最重要的计算任务。插补必须是实时的, 即必须在有限的时间内完成计算任务,对各坐标轴分配速度或位置信息。插补程序的运行时间和计 算精度影响着整个CNC系统的性能指标。总结目前普遍应用的插补算法可分为两类: (1)脉冲增量插补。脉冲增量插补也称为行程标量插补,就是用软件模拟NC系统常用的逐点比 较法、DDA积分法以及这两种算法的改型算法。插补的结果是产生单个的行程增量,以一个个脉冲 的方式输出给步进电机。脉冲增量插补输出的频率主要受插补程序所用的时间限制,适用于中等精 度和中等速度,以步进电机为驱动元件。 (2)数据采样插补。数据采样插补也称为时间分割插补,适用于闭环和半闭环以直流或交流电 机为执行机构的位置采样控制系统。插补程序的调用周期可以和系统的位置采样周期相同,也可 以是采样周期的整数倍。在这种系统中,插补程序的运行时间不多于计算机时间负荷的30%-40%, 在其余时间内,计算机可以实现显示、译码、刀补等数控功能。本文所研究的NURBS曲线插补算 法就属于这一类插补算法。 3. 参数曲线直接插补算法基础 曲线表示主要有两种方法:隐式方程法和参数方程法。参数方程法因其易于编程和计算成为 CAD系统首选的曲线表示方法。一个三维曲线就可以用如下的参数方程表示: x = x(u), y = y(u), z = z(u) 其中抽象参数u满足0 < u <1。曲线的参数方程可以非常方便的控制多轴机床的运动,而且 对各轴的控制可以是分别、独立的进行,故数控系统的各种曲线直接插补算法都基于曲线的参数 方程。通常把这三个方程合写成p(u) = [x(u), y(u), z(u)],或者笛卡儿分量表示形式P(u) = x(u)i + y(u) j + z(u)k ,其中i, j, k 分别为沿x, y, z轴正向的三个单位矢量。常简记Pi = p(ui)。 插补计算就是在CNC系统的第i-1工作周期中,实时计算出满足指定加工要求的下一个工作周 期的各轴运动分量ΔPi 。例如满足加工步长要求ΔLi的插补点Pi + 1为:

G02、G03圆弧插补指令教案

课题:G02/G03圆弧插补指令 所属课程数控编程与加工(车)授课章节第二章第四节授课教师刘晓东授课顺序第1讲授课班级2013级数控(1)班授课时间45分钟授课日期 学习目标【知识目标】 掌握G02、G03指令编程格式及各项内容的含义。 【能力目标】 熟练运用G02、G03指令编程和加工,培养学生运用所学知识解决问题的能力。 【德育目标】 培养学生勤于动脑、大胆实践、勇于探索以及严谨的工作习惯。 教学要求1、熟记圆弧插补功能指令; 2、学会判别方向,灵活运用R和I、K编程; 3、学完该知识点后,会灵活应用。 教学 重点 圆弧顺、逆的判断和圆心位置(R正负的确定和IK的计算)。 教学 难点 圆弧顺逆的判断。 关键要理解每个代码的含义及用法。 攻破难点使用方法1、通过复习G01、G00两种插补指令,联系旧课学习新课; 2、再讲解圆弧插补指令的用法,方向的判别法,结合例子讲授具体怎样 判别和使用G02/G03; 3、布置课堂练习,让学生应用所学知识点,达到消化的效果 教学 方法 理实一体化教具 准备 小黑板,挂图

教学 环节 教学内容教学方法说明 复习旧课提问1、快速定位G00格式? 解答:G00X(U)__Z(W)__ 提问2、直线插补G01格式? 解答:G01X(U)__Z(W)__ F__ 通过提问检 查学生对所学知 识掌握情况,并给 出问题解答起到 复习的作用。 引入新课 回顾前面所讲快速定位G00,直线插补G01指令,我们 学会了简单台阶零件的编程。但实际中很多零件外形往往是 圆弧连接的,例如图1。象这样的圆弧外形我们用什么指令来 加工呢?这就要用到今天我们所要学习的圆弧插补G02/G03。 通过简单的 实例讲解,引入新 课。 教学环节教学内容教学方法说明 图一

逐点比较法直线插补圆弧插补实例

N=6+4=10,将其存入终点判别计数器中,每进给一步减 1,若N=0,则停止插补。 (1)偏差函数构造 对于第一象限直线 0A 上任一点(X,Y): X/Y = Xe/Ye Pi (Xi , Yi ),则该点的偏差函数 Fi 可表示为: (2 )偏差函数字的递推计算 采用偏差函数的递推式(迭代式):既由前一点计算后一点 Fi =Yi Xe -XiYe 若Fi>=0,规定向 +X 方向走 Xi+1 = Xi +1 Fi+1 = XeYi 讦e(Xi +1)=Fi 讦e 若Fi<0,规定+Y 方向走一步,则有 Yi+1 = Yi +1 Fi+1 = Xe(Yi +1)-YeXi =Fi +Xe (3 )终点判别 直线插补的终点判别可采用三种方法。 逐点比较法直线插补 若刀具加工点为 若 Fi= 0, 表示加工点位于直线上; 若 Fi> 0, 表示加工点位于直线上方; 若 Fi< 0, 表示加工点位于直线下方。

1)判断插补或进给的总步数:2)分别判断各坐标轴的进给步数;3)仅判断进给步数较多的坐标轴的进给步数。 (4)例 对于第一象限直线0A终点坐标Xe=6 ,Ye=4,插补从直线起点0开始,故F0=0。终点判别是判断进给总步数

10 4 逐点比较法圆弧插补(1)偏差函数构造 任意加工点Pi (Xi , Yi),偏差函数Fi可表示为 若Fi=0,表示加工点位于圆上; 若Fi >0,表示加工点位于圆外; 2

若Fi<0,表示加工点位于圆内 (2)偏差函数的递推计 算 1)逆圆插补 若F> 0,规定向-X方向走一步X i 1 X i 若Fi<0,规定向+Y方向走一步 2)顺圆插补 若Fi > 0,规定向-Y方向走一步若Fi<0,规定向+y方向走一步 (3 )终点判 别 1 )判断插补或进给的总步数: 2)分别判断各坐标轴的进给步数: (4)例F i Y i F i Y i F i X i 1 F i 1 N x 对于第一象限圆弧AB,起点A(4,0), (X i Y i X i2 Y i X i2 X i (X i X a X a 终点 1 1)2 (Y i (Y i 1 1)2 X b X b B (0, Y i2 1)2 1)2 Y i2 Y a R2 R2 R2 R2 Y b N y F i F i F i F i Y a 2X i 2Y i 2Y i 2X i Y b

相关主题
文本预览
相关文档 最新文档