当前位置:文档之家› 实验十 聚合物温度-形变曲线的测定

实验十 聚合物温度-形变曲线的测定

实验十 聚合物温度-形变曲线的测定
实验十 聚合物温度-形变曲线的测定

微生物实验报告:测定细菌生长曲线

测定细菌生长曲线 一、实验目的 1.了解细菌生长曲线特征,测定细菌繁殖的代时; 2.学习液体培养基的配制以及接种方法; 3.反复练习无菌操作技术; 4.了解不同细菌,不同接种方法在同一培养基上生长速度的不同; 5.掌握利用细菌悬液混浊度间接测定细菌生长的方法; 二、实验原理 将一定量的菌种接种在液体培养基内,在一定的条件下培养,可观察到细菌的生长繁殖有一定规律性,如以细菌活菌数的对数做纵坐标,以培养时间做横坐标,可绘成一条曲线,称为生长曲线。单细胞微生物发酵具有4个阶段,即调整期(迟滞期)、对数期(生长旺盛期)、平衡期(稳定期)、死亡期(衰亡期)。生长曲线可表示细菌从开始生长到死亡的的全过程动态。不同微生物有不同的生长曲线,同一种微生物在不同的培养条件下,其生长曲线也不一样。因此,测定微生物的生长曲线对于了解和掌握微生物的生长规律是很有帮助的。 测定微生物生长曲线的方法很多,有血细胞计数法,平板菌落计数法,称重法和比浊法。本实验才用比浊法,由于细胞悬液的浓度与混浊度成正比,因此,可以利用分光光度计测定菌悬液的光密度来推知菌液的菌液的浓度。将所测得的光密度值(OD600)与对应的培养时间做图,即可绘出该菌在一定条件下的生长曲线。注意,由于光密度表示的是培养液中的总菌数,包括活菌和死菌,因此所测生长曲线的衰亡期不明显。 从生长曲线我们可以算出细胞每分裂一次所需要的时间,即代时,以G表示,其计算公式为: G=(t2-t1)/[(lgW1-lgW2)/lg2] 式中t2和t1为所取对数期两点的时间,W1和W2分别为对应时间测得的细胞含量或OD。 三、实验器材 大肠杆菌,枯草杆菌菌液及平板; 培养基(100mL/250mL三角瓶×10瓶/大组):牛肉膏蛋白胨葡萄糖培养基; 取液器(5000ul, 1000ul 各一支),无菌1000ul吸头若干,无菌5000ul吸头若干,比色皿10个及共用参比杯一个,培养箱3台,722s分光光度计; 四、实验步骤 1.活化菌种 将细菌接种到牛肉膏蛋白胨葡萄糖三角瓶培养基中,37℃振荡培养18h,另外准备单菌落平板各1块; 2.接种 6人大组分为3个小组,按表1接种。 表1.各培养基接入菌种及培养条件

聚合物温度―形变曲线的测定(精)

实验 4聚合物温度—形变曲线的测定 一 . 实验目的: 1.掌握测定聚合物温度-形变曲线的方法。 2.测定聚甲基丙烯酸甲酯(PMMA 的玻璃化温度 T g ;粘流温度 T f ,加深对线型非晶聚合物的三种力学状态理论的认识。 3.掌握等速升温控制和用于形变测量的差动变压器。 二 . 实验原理 聚合物试样上施加恒定荷载,在一定范围内改变温度,试样形变随温度的变化以形变或相对形变对温度作图, 所得的曲线, 通常称为温度—形变曲线, 又称为热机械曲线。 材料的力学性质是由其内部结构通过分子运动所决定的, 测定温度-形变曲线,是研究聚合物力学性质的一种重要的方法。聚合物的许多结构因素 (包括化学结构、分子量、结晶、交联、增塑和老化等的改变,都会在其温度—形变曲线上有明显的反映, 因而测定温度-形变曲线, 也可以提供许多关于试样内部结构的信息, 了 解聚合物分子运动与力学性能的关系, 并可分析聚合物的结构形态, 如结晶、交联、增塑、分子量等等,可以得到聚合物的特性转变温度,如:玻璃化温度 T g ,粘流温度 T f ,和熔点等,对于评价被测试样的使用性能、确定适用温度范围和选样加工条件很有实用意义。测量所需仪器简单, 易于自制, 测量手续简便费时不多,是本方法的突出的优点。 高分子运动单元具有多重性, 它们的运动又具有温度依赖性, 所以在不同的温度下,外力恒定时,聚合物链段可以呈现完全不同的力学特征。

对于线型非晶聚合物有三种不同的力学状态:玻璃态,高弹态,粘流态。温度足 够低时,高分子链和链段的运动被“冻结” ,外力的作用只能引起高分子键长和键角的变化,因此聚合物的弹性模量大,形变-应力的关系服从虎克定律, 其机械性能与玻璃相似, 表现出硬而脆的物理机械性质, 这时聚合物处于玻璃态, 在玻璃态温度区间内, 聚合物的这种力学性质变化不大, 因而在温度—形变曲线上 玻璃区是接近横坐标的斜率很小的一段直线 (见图 1 ;随着温度的上升,分子热运动 能量逐渐增加,到达玻璃化转变温度 Tg 后,分子运动能量已经能够克服链段运动所 需克服的位垒, 链段首先开始运动, 这时聚合物的弹性模量骤降, 形变量大增, 表现 为柔软而富于弹性的高弹体, 聚合物进入高弹态, 温度-形变曲线急剧向上弯曲,随后基本维持在一“平台”上。温度进一步升高至粘流温度 T f ,整个高分子链能够在外力作用下发生滑移,聚合物进入粘流态,成为可以流动的粘液,产生不可逆的永久形变, 在温度-形变曲线上表现为形变急剧增加, 曲线向上弯曲。 图 1 非晶线型高聚物的温度-形变曲线

细胞生长曲线的绘制实验报告

细胞生长曲线的绘制实验报告 篇一:实验五微生物生长量的测定及生长曲线的绘制 一、实验目的 学习了解微生物生长量测定的方法 学习了解细菌生长曲线的绘制方法 学习掌握血细胞计数板的使用方法 微生物生长量的测定 计数法重量法生理指标法 1、显微镜直接计数法 利用血细胞计数板计数 涂片计数 2、活菌菌落计数法 3、滤膜法 细菌生长曲线 将单细胞细菌接种到恒定容积的液体培养基中,不补充营养物或移去培养物,细菌以二分裂方式繁殖,以时间为横坐标,细菌数目的对数值为纵坐标,可画出一条反映细菌在整个培养期间菌数变化规律的曲线,称为生长曲线 篇二:细胞生长曲线的测定 细胞生长曲线的测定 一、实验目的

掌握测定细胞生长曲线的方法。 二、实验器具 24孔细胞培养板、微量加样器、eppendorf管、吸头、吸头盒、显微镜、细胞计数板、载玻片、盖玻片、吸管、试管架、普通显微镜、细胞悬液、0.4%台盼蓝。 三、实验方法 1. 培养细胞:首先在24孔细胞培养板内分别接种相同数量的细胞,计数并记录接种的细胞悬液密度,接种时间记为0小时。 2. 计数细胞密度:从接种时间算起,每隔24小时计数3孔的细胞密度,算出平均值。为提高准确率,对每孔细胞可计数2-3次,如此操作至第七天结束。 3. 绘制曲线:以培养时间为横坐标、细胞密度为纵坐标,将全部结果在坐标纸上绘图,即得所培养细胞的生长曲线。 篇三:MTT法绘制生长曲线 实验材料: 1,5%FBS-L-DMEM, 5x104个/ml细胞悬液,5mg/mlMTT溶液,DMSO,0.01M PBS,2, 96孔板共7个,酶标仪,50ml离心管,1.5ml离心管,0.22μm滤膜,锡箔纸,MTT工作液 实验步骤: 1,分别选取生长良好的P1、P3、P5代BMSCs消化后制备成细胞悬液,调整细胞密度为5x104/ml。接种到96孔板,每孔接种200μl 细胞悬液进行培养。

细菌生长曲线测定方案

细菌生长曲线的测定 1 目的 1.1 了解细菌生长曲线特点及测定原理 1.2 学习用比浊法测定细菌的生长曲线 2 原理 将少量细菌接种到一定体积的、适合的新鲜培养基中,在适宜的条件下进行培养,定时测定培养液中的菌量,以菌量的对数作纵坐标,生长时间作横坐标,绘制的曲线叫生长曲线。它反映了单细胞微生物在一定环境条件下于液体培养时所表现出的群体生长规律。依据其生长速率的不同,一般可把生长曲线分为延缓期、对数期、稳定期和衰亡期。这四个时期的长短因菌种的遗传性、接种量和培养条件的不同而有所改变。因此通过测定微生物的生长曲线,可了解各菌的生长规律,对于科研和生产都具有重要的指导意义。 测定微生物的数量有多种不同的方法,可根据要求和实验室条件选用。本实验采用比浊法测定,由于细菌悬液的浓度与光密度(OD值)成正比,因此可利用分光光度计测定菌悬液的光密度来推知菌液的浓度,并将所测的OD值与其对应的培养时间作图,即可绘出该菌在一定条件下的生长曲线,此法快捷、简便。 3 材料 3.1菌种 某细菌 3.2培养基 液体培养基 3.3 仪器和器具 721分光光度计,比色杯,恒温摇床,无菌吸管,试管,三角瓶。 4 流程 种子液→标记→接种→培养→测定 5 方法 5.1种子液制备 取细菌斜面菌种1支,以无菌操作挑取1环菌苔,接入肉膏蛋白胨培养液中(液体培养基接种法),静止培养24h作种子培养液。 5.2标记编号 取盛有50mL无菌肉膏蛋白胨培养液的250mL三角瓶11个,分别编号为0、1.5、3、4、6、8、10、12、14、16、20h。

5.3接种培养 用2mL无菌吸管分别准确吸取2mL种子液加入已编号的11个三角瓶中,于37℃下振荡培养。然后分别按对应时间将三角瓶取出,立即放冰箱中贮存,待培养结束时一同测定OD 值。 5.4生长量测定 将未接种的肉膏蛋白胨培养基(空白对照)倾倒入比色杯中,选用600nm波长分光光度计上调节零点,作为空白对照,并对不同时间培养液从0h起依次进行测定,对浓度大的菌悬液用未接种的牛肉膏蛋白胨液体培养基适当稀释后测定,使其OD值在0.10.~0.65以内,经稀释后测得的OD值要乘以稀释倍数,才是培养液实际的OD值。 6 结果 6.1 将测定的OD值填入下表: 时间(h) 对照 0 1.5 3 4 6 8 10 12 14 16 20光密度值(OD600) 0 6.2 以上述表格中的时间为横坐标,OD600 值为纵坐标,绘制细菌的生长曲线。 Point: 1液体培养基的配制以及接种方法 2无菌操作技术 3直接计数法

大肠杆菌生长曲线实验报告

一、实验方案设计

实验数据原始记录: 随时间的变化大肠杆菌液吸光度的数据(括号内数字表示稀释倍数)

3.5 曲线图时间/h 0 1 3.75 6 7 8 8.5 9 10 OD600 0.073 0.073 0.079 0.282 0.456 1.105 1.168 1.662 2.284 时间/h 11 12 13 14 18.33 20.5 23 24 OD b。 2.564 2.016 3.020 2.605 3.315 2.860 3.024 3.324 时间/h 0 1 3.75 6 7 8 8.5 9 10 11 13 18.33 20.5 0应0 0.073 0.073 0.079 0.282 0.456 1.105 1.168 1.662 2.284 2.564 3.020 3.315 2.86 时间/h 0 1 3.75 6 7 8 8.5 9 10 11 OD6b0 0.073 0.073 0.079 0.282 0.456 1.105 1.168 1.662 2.284 2.564 前小时的大肠杆菌的吸光度数据 六?参考文献 前12小时的大肠杆菌的生长曲线图 [1] .牛天贵?食品微生物学实验技术?第1版?北京:科学出版社,2010. [2] .杨革.微生物学实验教程.第2版.北京:科学出版社,2010. [3] .何国庆,贾英民,丁立孝等.食品微生物学.第2版.北京:中国农业大学出版社,2009. [4] .周德庆,胡宝龙.微生物学实验教程.第2版.北京:高等教育出版社,2006.

七?教师对实验方案设计的意见 签名: 年月日 、实验报告 宴验现象验现象、实验结果的分析及其结论 分随着培养时间的增加,培养基里的液体变得越来越混浊,所散发出来的味道也越来越浓,味道很难闻。实验结果随着培养时间的增加,培养基里的液体变得越来越混浊,所散发出来的味道也越来越浓,味道大肠杆菌难培养基因为大肠杆菌增长迅越来越后来数量达一定数量后此时培养基内的营养物质已被进行营尽,养和空间肠杆菌进行营些大肠杆间的死亡争,最后数量肠杆菌死亡,直最后数量不断减尙,。直至变为0。 ②通过对大肠杆菌生长曲线的测定,了解了细菌生长 的特点,是:刚开始时细菌缓慢增长,后来增 长迅速,呈“ J”型,最后细菌生长缓慢,数量达到顶峰,在一段时间内保持不变。 因实验测量的时间不够合理等各种因素,因此用原始数据绘制出来的大肠杆菌的生长曲线图不够有规律,经修正后生长曲线比较好。 结论: 细菌的生长曲线分为延缓期、生长期、稳定期和衰亡期。体内及自然界细菌的生长繁殖受机体 免疫因素和环境因素的多方面影响,不会出现象培养基中那样典型的生长曲线。掌握细菌生长规律,可有目的地研究控制病原菌的生长,发现和培养对人类有用的细菌。 这4个时期的长短因菌种的遗传性、接种量和培养条件的不同而有所不同。因此通过测定微生物的生长曲线,可了解细菌的生长规律,对于科研和生产都具有重要的指导意义。

聚合物温度—形变曲线的测定

实验三聚合物温度—形变曲线的测定 聚合物的温度—形变曲线是研究聚合物热—力性质的一种方法。这一方法是在聚合物的测试上施加一恒定的或间歇的负荷,并使试样以一定的速度加热升温,观察试样形变随温度的变化,以形变对温度作图所得曲线即为温度—形变曲线,又称热—机械曲线。从该曲线上,可以确定试样的玻璃化温度T g,流动温度T f和熔点T m。这些数据对以评价被测试样的使用温度范围和选择成型加工条件具有实际意义。用间歇加力方法可观察到过渡区的松弛现象,求取绝对形变值,进行定量计算。 一、实验目的 本实验以聚甲基丙烯酸甲酯圆柱体为试样,用持续加力或间歇加力的方法,通过自动记录试样形变随温度升高而发生的变化,测定其温度——形变曲线。通过实验得到: 1.掌握测定聚合物温度——形变曲线的实验方法以及仪器的使用。 2.验证线性非晶聚合物的三种力学状态理论,并用分子运动论理论解释温度—形变曲线上各区域的特点。 3.计算聚甲基丙烯酸甲酯的玻璃化温度T g。 4.计算聚甲基丙烯酸甲酯的杨氏模量,高弹态的初始弹性模量及缠结点间的平均分子质量。 二、基本原理 高分子链运动单元具有多重性,而且它们的运动具有温度依赖性。当外力一定时,聚合物在不同的温度范围可以呈现完全不同的力学特性。线性无定形聚合物有三种不同的力学状态。在温度足够低时,大分子链段的运动被“冻结”,外力的作用只能引起大分子链键长和键角的改变,此时聚合物处于玻璃态,表现出模量大,形变小的硬脆力学性质。当温度升高到一定值时,分子热运动的能量增加,使链段得以运动,此时聚合物处于橡胶态(高弹态),表现出模量小,形变大的质软而富有弹性的力学性质。当温度进一步升高到能使整个大分子链移动时,聚合物进入粘流态,在外力作用下形变急剧增加而且不可逆,如图3-1所示。 聚合物由玻璃态向高弹态的转变称为玻璃化转变,转变温度为玻璃化温度(T f),由高弹态向粘流态转变的温度称为粘流温度(T f)。T g.、T f是聚合物的重要物理指标,它们都可由温度—形变曲线定出。聚合物的许多结构因素变化如:化学组成、分子质量、结晶、交

物理化学实验思考题解答

实验一 燃烧热的测定 1. 在本实验中,哪些是系统?哪些是环境?系统和环境间有无热交换?这些热交换对实验结果有何影响?如何校正?提示:(氧弹中的样品、燃烧丝、棉线和蒸馏水为体系,其它为环境。)盛水桶内部物质及空间为系统,除盛水桶内部物质及空间的热量计其余部分为环境,(实验过程中有热损耗:内桶水温与环境温差过大,内桶盖有缝隙会散热,搅拌时搅拌器摩擦内筒内壁使热容易向外辐射。)系统和环境之间有热交换,热交换的存在会影响燃烧热测定的准确值,可通过雷诺校正曲线校正来减小其影响或(降低热损耗的方法:调节内筒水温比外筒水温低0.5-1℃,内桶盖盖严,避免搅拌器摩擦内筒内壁,实验完毕,将内筒洗净擦干,这样保证内筒表面光亮,从而降低热损耗。)。 2. 固体样品为什么要压成片状?萘和苯甲酸的用量是如何确定的?提示:压成片状有利于样品充分燃烧;萘和苯甲酸的用量太少测定误差较大,量太多不能充分燃烧,可根据氧弹的体积和内部氧的压力确定来样品的最大用量。 3. 试分析样品燃不着、燃不尽的原因有哪些? 提示:压片太紧、燃烧丝陷入药片内会造成燃不着;压片太松、氧气不足会造成燃不尽。 4. 试分析测量中影响实验结果的主要因素有哪些? 本实验成功的关键因素是什么? 提示:能否保证样品充分燃烧、系统和环境间的热交换是影响本实验结果的主要因素。本实验成功的关键:药品的量合适,压片松紧合适,雷诺温度校正。 5. 使用氧气钢瓶和氧气减压器时要注意哪些事项?1. 在氧弹里加10mL 蒸馏水起什么作用? 答:在燃烧过程中,当氧弹内存在微量空气时,N 2的氧化会产生热效应。在一般的实验中,可以忽略不计;在精确的实验中,这部分热效应应予校正,方法如下:用0.1mol ·dm -3 NaOH 溶液滴定洗涤氧弹内壁的蒸馏水,每毫升0.1 mol ·dm -3 NaOH 溶液相当于5.983 J(放热)。2. 在环境恒温式量热计中,为什么内筒水温要比外筒的低?低多少合适?在环境恒温式量热计中,点火后,系统燃烧放热,内筒水温度升高 1.5-2℃,如果点火前内筒水温比外筒水温低1℃,样品燃烧放热最终内筒水温比外筒水温高1℃,整个燃烧过程的平均温度和外筒温度基本相同,所以内筒水温要比外筒水温低0.5-1℃较合适。 实验二 凝固点降低法测定相对分子质量 1. 什么原因可能造成过冷太甚?若过冷太甚,所测溶液凝固点偏低还是偏高?由此所得萘的相对分子质量偏低还是偏高?说明原因。答:寒剂温度过低会造成过冷太甚。若过冷太甚,则所测溶液凝固点偏低。根据公式*f f f f B T T T K m ?=-=和310B B f f A W M K T W -=??可知由于溶液凝固点偏低, ?T f 偏大,由此所得萘的相对分子质量偏低。 2. 寒剂温度过高或过低有什么不好?答:寒剂温度过高一方面不会出现过冷现象,也就不能产生大量细小晶体析出的这个实验现象,会导致实验失败,另一方面会使实验的整个时间延长,不利于实验的顺利完成;而寒剂温度过低则会造成过冷太甚,影响萘的相对分子质量的测定,具体见思考题1答案。 3. 加入溶剂中的溶质量应如何确定?加入量过多或过少将会有何影响?答:溶质的加入量应该根据它在溶剂中的溶解度来确定,因为凝固点降低是稀溶液的依数性,所以应当保证溶质的量既能使溶液的凝固点降低值不是太小,容易测定,又要保证是稀溶液这个前提。如果加入量过多,一方面会导致凝固点下降过多,不利于溶液凝固点的测定,另一方面有可能超出了稀溶液的范围而不具有依数性。过少则会使凝固点下降不明显,也不易测定并且实验误差增大。 4. 估算实验测定结果的误差,说明影响测定结果的主要因素?答:影响测定结果的主要因素有控制过冷的程度

物化实验思考题答案doc

1.恒温槽的主要部件有哪些,它们的作用各是什么? 答:恒温水浴主要组成部件有:浴槽、加热器、搅拌器、温度计、感温元件和温度控制器。浴槽用来盛装恒温介质;在要求恒定的温度高于室温时,加热器可不断向水浴供给热量以补偿其向环境散失的热量;搅拌器一般安装在加热器附近,使热量迅速传递,槽内各部位温度均匀;温度计是用来测量恒温水浴的温度;感温元件的作用是感知恒温水浴温度,并把温度信号变为电信号发给温度控制器;温度控制器包括温度调节装置、继电器和控制电路,当恒温水浴的温度被加热或冷却到指定值时,感温元件发出信号,经控制电路放大后,推动继电器去开关加热器。 2.为什么开动恒温槽之前,要将接触温度计的标铁上端面所指的温度调节到低于所需温度处,如果高了会产生什么后果? 答:由于这种温度控制装置属于“通”“断”类型,当加热器接通后传热质温度上升并传递给接触温度计,使它的水银柱上升。因为传质、传热都有一个速度,因此,出现温度传递的滞后。即当接触温度计的水银触及钨丝时,实际上电热器附近的水温已超过了指定温度。因此,恒温槽温度必高于指定温度。同理,降温时也会出现滞后状太。 3.对于提高恒温槽的灵敏度,可以哪些方面改进? 答:①恒温槽的热容要大些,传热质的热容越大越好。②尽可能加快电热器与接触温度计间传热的速度,为此要使感温元件的热容尽量小,感温元件与电热器间距离要近一些,搅拌器效率要高。③做调节温度的加热器功率要小。 4.如果所需恒定的温度低于室温如何装备恒温槽? 答:通过辅助装臵引入低温,如使用冰水混合物冰水浴,或者溶解吸热的盐类盐水浴冷却(硝铵,镁盐等)3.在本实验装置中那些为体系?那些为环境?体系和环境通过那些途径进行热交换?这些热交换对结果影响怎样? 答:体系:内筒水,氧弹,温度计,内筒搅拌器。环境;外筒水 实验过程中,由于对流和辐射,存存在热消耗,如:内桶水温与环境温差过大,内桶盖有缝隙会散热,搅拌时搅拌器摩擦内筒内壁使热容易向外辐射。采取措施:(1)量热计上方加盖,减少对流;(2)外筒内壁和内筒外壁皆镀成镜面,减少热辐射。这些热辐射将会降低被测物的燃烧热。 4.使用氧气要注意哪些问题? 答:使用前要检查连接部位是否漏气,可涂上肥皂液进行检查,调整至确实不漏气后才进行实验;由于氧气只要接触油脂类物质,就会氧化发热,甚至有燃烧、爆炸的危险。因此,必须十分注意,不要把氧气装入盛过油类物质之类的容器里,或把它置于这类容器的附近或火源附近;使用时,要把钢瓶牢牢固定,以免摇动或翻倒;开关气门阀要慢慢地操作,切不可过急地或强行用力把它拧开。 5.搅拌过快或过慢有何影响? 答:搅拌太快则散热过多,测得反应热偏低;搅拌过慢则热量分布不均匀,误差较大。 2.本实验产生温差的主要原因有哪几方面?如何修正? 答:本实验产生温差的原因:(1)电流电压不稳定;(2)加入样品速度太快堵住搅拌棒或加样速度太慢;(3)样品颗粒太大,溶解速度太慢;(4)装置绝热密闭性差,与外界有热交换。修正:(1)仪器先预热,使实验室电流电压比较稳定;(2)加样速度适中;(3)将颗粒尽量研磨细。 3.如何判断等压计中式样球与等压计间空气已全部排出?如未排尽对实验有何影响? 答:⑴应使试样球内液体沸腾3--5 分钟,可认为其中空气已被赶净;⑵在试样球与等压计间有空气会使所测蒸汽压降低,导致所测沸点降低。 测定蒸汽压时为何要严格控制温度 在一定的温度下,真空密闭容器内的液体能很快和它的蒸汽相建立动态平衡,即蒸汽分子向液面凝结和液体中分子从表面逃逸的速率相等.此时液面上的蒸汽压力就是液体在此温度下的饱和蒸汽压力.液体的饱和蒸汽压力,液体的饱和蒸汽压与温度有关:温度升高,分子运动加速,因而在单位时间内从液相进入气相的分子数增加,蒸汽压升高.

物化实验思考题答案

实验一燃烧热的测定 1.在本实验中,哪些是系统?哪些是环境?系统和环境间有无热交换?这些热交换对实验结果有何影响?如何校正? 提示:盛水桶内部物质及空间为系统,除盛水桶内部物质及空间的热量计其余部分为环境,系统和环境之间有热交换,热交换的存在会影响燃烧热测定的准确值,可通过雷诺校正曲线校正来减小其影响。 2.固体样品为什么要压成片状?萘和苯甲酸的用量是如何确定的? 提示:压成片状有利于样品充分燃烧;萘和苯甲酸的用量太少测定误差较大,量太多不能充分燃烧,可根据氧弹的体积和内部氧的压力确定来样品的最大用量。 3.试分析样品燃不着、燃不尽的原因有哪些? 提示:压片太紧、燃烧丝陷入药片内会造成燃不着;压片太松、氧气不足会造成燃不尽。4.试分析测量中影响实验结果的主要因素有哪些?本实验成功的关键因素是什么? 提示:能否保证样品充分燃烧、系统和环境间的热交换是影响本实验结果的主要因素。本实验成功的关键:药品的量合适,压片松紧合适,雷诺温度校正。 5.使用氧气钢瓶和氧气减压器时要注意哪些事项? 提示:阅读《物理化学实验》教材P217-220 实验三纯液体饱和蒸气压的测定 1.在停止抽气时,若先拔掉电源插头会有什么情况出现? 答:会出现真空泵油倒灌。 2.能否在加热情况下检查装置是否漏气?漏气对结果有何影响? 答:不能。加热过程中温度不能恒定,气-液两相不能达到平衡,压力也不恒定。 漏气会导致在整个实验过程中体系内部压力的不稳定,气-液两相无法达到平衡,从而造成所测结果不准确。 3.压力计读数为何在不漏气时也会时常跳动? 答:因为体系未达到气-液平衡。 4.克-克方程在什么条件下才适用? 答:克-克方程的适用条件:一是液体的摩尔体积V与气体的摩尔体积Vg相比可略而不计;二是忽略温度对摩尔蒸发热△vap H m的影响,在实验温度范围内可视其为常数。三是气体视为理想气体。 6.本实验主要误差来源是什么?

实验六步冷曲线法绘制二元合金相图

实验六步冷曲线法绘制二元合金相图 一、目的要求 1. 用热分析法测熔融体步冷曲线,再绘制绘Bi-Sn二元合金相图。 2. 了解热分析法的实验技术及热电偶测量温度的方法。 二、实验原理 1.相图 相图是多相(二相或二相以上)体系处于相平衡状态时体系的某些物理性质(如温度或压力)对体系的某一变量(如组成)作图所得的图形,因图中能反映出相图平衡情况(相的数目及性质等),故称为相图。由于相图能反映出多相平衡体系在不同自变量条件下的相平衡情况,因此,研究多相体系相平衡情况的演变(例如钢铁及其它合金的冶炼过程,石油工业分离产品的过程),都要用到相图。由于压力对仅由液相和固相构成的凝聚体系的相平衡影响很小,所以二元凝聚体系的相图通常不考虑压力的影响,而常以组成为自变量,其物理性质则取温度。 2.热分析法测绘步冷曲线 热分析法是绘制相图常用的基本方法。其原理是将体系加热融熔成一均匀液相,然后让体系缓慢冷却,用体系的温度随时间的变化情况来判断体系是否发生了相变化。记录体系的温度随时间的变化关系,再以时间为横坐标,温度为纵坐标,绘制成温度--时间曲线,称为步冷曲线(如图6

-1)。从步冷曲线中一般可以判断在某一温度时,体系有无相变发生。当系统缓慢而均匀地冷却时,若系统内无相的变化,则温度将随时间而均匀地改变,即在T-t曲线上呈一条直线,若系统内有相变化,则因放出相变热,使系统温度变化不均匀,在T-t图上有转折或水平线段,由此判断系统是否有相变化。 对于二组分固态不互溶凝聚系统(A-B系统),其典型冷却曲线形状大致有三种形态,见图6-1所示。 图6-1(a) 图6-1(b) 图6-1(c) 图6-1(a)体系是单组分体系。在冷却过程中,在a~a1段是单相区,只有液相,没有相变发生,温度下降速度较均匀,曲线平滑。冷却到a1时,达到物质的凝固点,有固相开始析出,两相共存,自由度为零,温度保持不变,冷却曲线出现平台(温度不随时间而改变)。当到达a1′点液相完全消失,系统成为单一固相,自由度为1,此后随着冷却,温度不断下降。 图6-1(b)体系是一般二元混合物。在冷却过程中,在b~b1段是单

热机械分析法测定聚合物的温度-形变曲线

热机械分析法测定聚合物的温度-形变曲线 热机械分析法(TMA)是测定聚合物力学性质变化的一种重要方法。它是在程序控制温度下,测定聚合物在非振动负荷下形变与温度关系的一种技术。实验时对具有一定形状的聚合物样品上施加恒定外力,在一定范围内改变温度,观察样品随温度变化而发生形变的情况,以形变或相对形变对温度作图,所得的曲线,通常称为温度-形变曲线,又称为热机械曲线。根据所测样品的温度-形变曲线就可以得到样品在不同温度时的力学性质。 一.实验目的: 1.掌握测定聚合物温度-形变曲线的方法。 2.测定聚甲基丙烯酸甲酯(PMMA)的玻璃化转变温度Tg,粘流温度Tf;加深对线型非晶聚合物的三种力学状态理论的认识。 3.掌握现代精密仪器热机械分析仪(NETZSCH TMA202)的使用 二、实验原理: 材料的力学性质是由其内部结构通过分子运动所决定的,对于聚合物材料,由于其结构单元的多重性而导致了运动单元的多重性。它们的运动又具有温度依赖性,所以,在不同的温度下,外力恒定时,聚合物可以呈现不同的力学行为,这些性质及转变都可以被温度-形变曲线反映出来。测定温度-形变曲线,是研究聚合物力学性质的一种重要方法。聚合物的许多结构因素(包括化学结构、分子量、结晶、交联、增塑和老化)的改变,都会在温度形变曲线上有明显的反映,因而材料的温度-形变曲线,也可以提供许多关于试样内部结构的信息,了解聚合物分子运动与力学性能的关系,并分析聚合物的结构形态,如结晶、交联、增塑、分子量等,可以得到聚合物的特性转变温度,如:玻璃化转变温度Tg,,粘流温度Tf和熔点等,对于评价被测试样的使用性能,确定适用温度范围和选择加工条件很有实用意义。 对于线型非晶聚合物有三种不同的力学状态:玻璃态,高弹态,粘流态。温度足够低时,高分子链和链段的运动被“冻结”,外力的作用只能引起高分子键长和键角的变化,因此,聚合物的弹性模量大,形变-应力关系服从虎克定律,其机械性能与玻璃相似,表现出硬而脆的物理机械性质,这时聚合物处于玻璃态,在玻璃态温度区间内,聚合物的这种力学性质变化不大,因而在温度—形变曲线上玻璃区是接近横坐标的斜率很小的一段直线(见图1);随着温度的上升,分子热运动能量逐渐增加,到达玻璃化转变温度Tg后,分子运动能量已经能够克服链段运动所需克服的位垒,链段首先开始运动,这时聚合物的弹性模量骤降,形变量大增,表现为柔软而富于弹性的高弹体,聚合物进入高弹态,温度-形变曲线急剧向上弯曲,随后 ,整个高分子链能够在外力基本维持在一“平台”上。温度进一步升高至粘流温度T f 作用下发生滑移,聚合物进入粘流态,成为可以流动的粘液,产生不可逆的永久形变,在温度-形变曲线上表现为形变急剧增加,曲线向上弯曲。

细菌生长曲线

实验九测定细菌生长曲线 [实验目的] 1.了解细菌生长曲线特征:2.学习液体培养基的配制以及注意事项。3.学习液体种子和固体种子的不同接种方法和注意事项。4.利用细菌悬液浑浊度间接测定细菌生长。 [仪器和材料] 1.实验材料 (1)大肠杆曲,枯草杆曲培养液及大肠杆菌平板。 (2)牛肉膏蛋门胨葡萄糖培养基(150ml/250ml 三角瓶X 4瓶/大组),配方:牛肉膏5g,蛋白胨10g,NaCl 5g,葡萄糖10g,加水至1000ml,pH7.5。 2.实验仪器 取液器(5000μl,1000μl,200tμl 各一支);培养箱.摇床,722s分光光度汁;1000μl 无菌吸头100个;5000μl 无菌吸头2个;1ml或4ml玻璃或塑料比色皿4个,共用参比杯一个。 [实验原理] 将一定量的细菌接种在液体培养基内.在一定的条件下培养,可观察到细菌的生长繁殖有一定规律性,如以细菌活菌数的对数作纵坐标,以培养时间作横坐标,可绘成一条曲线,称为生长曲线(图9 1)。 单细胞微生物发酵具有4个阶段,即调整(迟滞期)、对数期(生长旺盛期)、平衡期(稳定期)、死亡期(衰亡期)。 生长曲线可表示细菌从开始生长到死亡的全过程动态。不同微生物有不同的生长曲线,同一种微生物在不同的培养条件下,其生长曲线也不一样。因此,测定微生物的生长曲线对于了解和掌握微生物的生长规律是很有帮助的. 测定微生物生长曲线的方法很多,有血细胞计数法,平板菌落计数法,称重法和比浊法等。本实验采用比浊法测定,由于细菌悬液的浓度与浑浊度成正比,因此,可以利用分光光度计测定菌悬液的光密度来推知菌液的浓度。将所测得的光密度值(测OD550或OD620或OD600或OD420,可任选一波长)与对应的培养时间作图,即可绘出该菌在一定条件下的生长曲线。注意,由于光密度表示的是培养液中的总菌数,包括活菌与死菌,因此所测生长曲线的衰亡期不明显。 从生长曲线我们可以算出细胞每分裂一次所需要的时间,即代时,以G表示。其计算公式为; G=(t2-t1)/[(1gW1—lgW2)/lg2] 式中tl和t2为所取对数期两点的时间;w1和w2分别为相应时间测得的细胞含量(g/L)或OD。 [实验步骤] 1.准备菌种:将大肠杆菌,枯草杆菌分别接种到装有牛肉膏蛋白胨葡萄糖培养基的三角瓶中,37℃,200r/min振荡培养14-18h.另外准备大肠杆菌单菌落平板l块(37'C培养24h)。 2.接种:分别将1.5ml(1%接种量)和4-5ml(3%接种量)大肠杆菌菌液和一个大肠杆菌单菌落接人含150ml培养液的三角瓶中.37℃,200r/min振荡培养;把4.5ml枯草杆菌(3%接种量)接入含150ml培养液的三角瓶中,37℃,200r/min振荡培养。 3.测量;每培养1h取样一次.净培养(不包括取样时间)10h结束培养,测量培养液pH值。零小时也要测。 如果选用4ml比色皿取500μl培养液到2000μl蒸馏水中(稀释5倍),以蒸馏水为对照,测OD650。或OD620或OD600或OD420任选一波长),如果选用lml比色皿,可以取1000μl培养液,以蒸馏水为对照,直接测OD620 、OD600或OD420(任选一波长),当OD值大于0.6时,下一样品要稀释1倍测量. [实验结果].

温度曲线设定

如何正确设定回流炉温度曲线 正确设定回流炉温度曲线是获得优良焊接质关键 前言 红外回流焊是SMT大生产中重要的工艺环节,它是一种自动群焊过程,成千上万个焊点在短短几分钟内一次完成,其焊接质量的优劣直接影响到产品的质量和可靠性,对于数字化的电子产品,产品的质量几乎就是焊接的质量。做好回流焊,人们都知道关键是设定回流炉的炉温曲线,有关回流炉的炉温曲线,许多专业文章中均有报导,但面对一台新的红外回流炉,如何尽快设定回流炉温度曲线呢?这就需要我们首先对所使用的锡膏中金属成分与熔点、活性温度等特性有一个全面了解,对回流炉的结构,包括加热温区的数量、热风系统、加热器的尺寸及其控温精度、加热区的有效长度、冷却区特点、传送系统等应有一个全面认识,以及对焊接对象--表面贴装组件(SMA)尺寸、组件大小及其分布做到心中有数,不难看出,回流焊是SMT工艺中复杂而又关键的一环,它涉及到材料、设备、热传导、焊接等方面的知识。 本文将从分析典型的焊接温度曲线入手,较为详细地介绍如何正确设定回流炉温度曲线,并实际介绍BGA以及双面回流焊的温度曲线的设定。 理想的温度曲线 图1是中温锡膏(Sn63/Sn62)理想的红外回流温度曲线,它反映了SMA通过回流炉时,PCB上某一点的温度随时间变化的曲线,它能直观反映出该点在整个焊接过程中的温度变化,为获得最佳焊接效果提供了科学的依据,从事SMT焊接的工程技术人员,应对理想的温度曲线有一个基本的认识,该曲线由四个区间组成,即预热区、保温区/活性区、回流区、冷却区,前三个阶段为加热区,最后一阶段为冷却区,大部分焊锡膏都能用这四个温区成功实现回流焊。故红外回流炉均设有4-5个温度,以适应焊接的需要。 图1 理想的温度曲线

3.差热分析法测定Pb-Sn的金属相图

差热分析法测定Pb-Sn的金属相图 一、实验目的和要求 1.用热分析法测绘Pb-Sn二元金属相图,并掌握应用步冷曲线数据绘制二元体系相图的基本方法; 2.了解步冷曲线及相图中各曲线所代表的物理意义; 二、实验原理 相是指体系内部物理性质和化学性质完全均匀的一部分。相平衡是指多相体系中组分在各相中的量不随时间而改变。研究多相体系的状态如何随组成、温度、压力等变量的改变而发生变化,并用图形来表示体系状态的变化,这种图就叫相图。 将某一物质进行加热或冷却,在这样的过程中,若有物相变化发生,如发生熔化、凝固、晶型转变、分解、脱水等相变时,总伴随着有吸热或放热的现象。两种混合物若发生固相反应,也有热效应产生。因此,在体系的温度——时间曲线上就会发生顿、折,但在许多情况下(例如在试样的来源有限,量很少),体系中发生的热效应相当小,不足以引起体系温度有明显的突变,从而温度——时间曲线的顿、折并不显著,甚至根本显不出来。在这种情况下,常将有物相变化的物质和一个基准物质(或参比物,即在实验温度变化的整个过程中不发生相变、没有任何热效应产生,如Al2O3、MgO等)在相同的条件下进行加热或冷却时,一旦样品发生相变,则在样品和基准物之间产生温度差。测定这种温度差,用于分析物质变化的规律,称为差热分析。。 本实验采用热分析法绘制相图,其基本原理:先将体系加热至熔融成一均匀液相,然后让体系缓慢冷却,①体系内不发生相变,则温度--时间曲线均匀改变; ②体系内发生相变,则温度--时间曲线上会出现转折点或水平段。根据各样品的温度--时间曲线上的转折点或水平段,就可绘制相图。

纯物质的步冷曲线如①、⑤所示,如①从高温冷却,开始降温很快,ab线的斜率决定于体系的散热程度,冷到A的熔点时,固体A开始析出,体系出现两相平衡(液相和固相A),此时温度维持不变,步冷曲线出现水平段,直到其中液相全部消失,温度才下降。 相图由一个单相区和三个两相区组成:即①溶液相区; ②纯A(s)和溶液共存的两相区; ③纯B(s)和溶液共存的两相区; ④纯A(s)和纯B(s)共存的两相区; 水平线段表示:A(s)、B(s)和溶液共存的三相线;水平线段以下表示纯A(s)和纯B(s)共存的两相区;o为低共熔点。 影响差热分析结果的因素很多,主要有: (1)升温速率的选择:升温速率对测定结果影响极大。一般说来速率低时,基线漂移小,可以分辨靠的近的差热峰,因而分辨力高,但测定时间长。速率高时,基线漂移较显著,分辨力下降,测定时间较省,一般选择每分钟2~200C (2)气氛及压力的选择:许多测定受炉中气氛及压力的影响很大。例如NH4ClO4在N2气氛及真空时测得的差热曲线差别很大,而氮气压力不同也有影响。有些物质在空气中易被氧化,所以选择适当的气氛及压力也

API 934 加氢反应器制造和材料要求

高温高压临氢2-1/4Cr和3Cr钢制厚壁压力容器材料和制造要求 API推荐规程934 第一版2000年12月 美国石油协会

目录 1 引言 1.1 适用范围 2 应用文件 3 名词定义 3.1 名词定义 3.2 缩写 4 设计 5 母材要求 5.1 材料规范 5.2 炼钢 5.3 化学成分 5.4 热处理 5.5 机械性能 6 焊接材料 6.1 材料要求 6.2 机械性能 7 焊接、热处理和产品试验7.1 一般焊接要求7.2 母材焊接 7.3 堆焊层 7.4 最终焊后热处理 8 无损检验(NDE) 8.2 制造前NDE 8.3 制造中NDE 8.4 制造完成后最终PWHT前NDE 8.5 最终PWHT后NDE 9 水压试验 10 装运准备 11 文件 图 7-1——维氏硬度测量部位 表 4-1——母材规范 5-1——试样热处理

高温高压临氢21/4Cr和3Cr钢制厚壁 压力容器材料和制造要求 1引言 本推荐规程适用于炼油、石油化工行业中新建的在高温和高压,氢和含氢流体介质条件下运行的厚壁压力容器。它是根据这些行业几十年来对这些设备的操作经验和制造厂商和用户的试验结果制订的。具有这些厚壁压力容器过程装置的业主和认可证颁发者可以修改或补充这个推荐规程,提出附加要求。 1.1 适用范围 本推荐规程提出了用于高温高压临氢的新的2 1/4Cr和3Cr钢制压力容器的材料和制造要求,适用于按照ASME规范第Ⅷ卷第2分卷,包括附录26 Cr-Mo钢焊接和热处理的附加要求的强制规则以及ASME 规范案例2151设计、制造、认证和颁发执照的压力容器。 本推荐规程涉及的材料有普通钢材包括标准的2-1/4Cr-1Mo钢, 标准的3Cr-1Mo钢和改进型钢包括增强的2-1/4Cr-1Mo钢、2-1/4C-1rMo-1/4V钢、3Cr-1Mo-1/4V-Ti-B钢和3Cr-1Mo-1/4V-Cb-Ca钢。这些厚壁压力容器的内表面可能有奥氏体不锈钢堆焊层以提供附加的耐腐蚀性能。

细菌生长曲线的测定实验报告

竭诚为您提供优质文档/双击可除细菌生长曲线的测定实验报告 篇一:细菌生长曲线 实验九测定细菌生长曲线 [实验目的]1.了解细菌生长曲线特征:2.学习液体培养基的配制以及注意事项。3.学习液体种子和固体种子的不同接种方法和注意事项。4.利用细菌悬液浑浊度间接测定细菌生长。 [仪器和材料] 1.实验材料 (1)大肠杆曲,枯草杆曲培养液及大肠杆菌平板。 (2)牛肉膏蛋门胨葡萄糖培养基(150ml/250ml三角瓶x4瓶/大组),配方:牛肉膏5g,蛋白胨10g,nacl5g,葡萄糖10g,加水至1000ml,ph7.5。 2.实验仪器 取液器(5000μl,1000μl,200tμl各一支);培养箱.摇床,722s分光光度汁;1000μl无菌吸头100个;5000μl 无菌吸头2(:细菌生长曲线的测定实验报告)个;1ml或4ml

玻璃或塑料比色皿4个,共用参比杯一个。 [实验原理] 将一定量的细菌接种在液体培养基内.在一定的条件下培养,可观察到细菌的生长繁殖有一定规律性,如以细菌活菌数的对数作纵坐标,以培养时间作横坐标,可绘成一条曲线,称为生长曲线(图91)。 单细胞微生物发酵具有4个阶段,即调整(迟滞期)、对数期(生长旺盛期)、平衡期(稳定期)、死亡期(衰亡期)。 生长曲线可表示细菌从开始生长到死亡的全过程动态。不同微生物有不同的生长曲线,同一种微生物在不同的培养条件下,其生长曲线也不一样。因此,测定微生物的生长曲线对于了解和掌握微生物的生长规律是很有帮助的.测定微生物生长曲线的方法很多,有血细胞计数法,平板菌落计数法,称重法和比浊法等。本实验采用比浊法测定,由于细菌悬液的浓度与浑浊度成正比,因此,可以利用分光光度计测定菌悬液的光密度来推知菌液的浓度。将所测得的光密度值(测oD550或oD620或oD600或oD420,可任选一波长)与对应的培养时间作图,即可绘出该菌在一定条件下的生长曲线。注意,由于光密度表示的是培养液中的总菌数,包括活菌与死菌,因此所测生长曲线的衰亡期不明显。 从生长曲线我们可以算出细胞每分裂一次所需要的时间,即代时,以g表示。其计算公式为;

换热器性能试验大纲

换热能力验证 1、试验目的 验证换热器的换热性能流体阻力特性。 2、实验依据 JB/T 10379-2002 换热器热工性能和流体阻力特性通用测定方法。 3、试验单位资质 ISO17025 4、实验条件 4.1试验地点 4.2 试验对象 4.3 实验设备 序号名称数 量型号测试厂家鉴定单位合格证 到期日期 1 涡轮流量传 感器 1 LWGY-40 2 压力传感器 1 DW115DP0-500Kpa 3 水银温度计 2 50-100 4 温度传感器 6 PT100 5 风速仪 1 VT100 6 压力传感器 1 475-0 MARK III 4.4状态要求 乙二醇溶液额定流量15 l/min 冷风额定流量0,475 m3/s 乙二醇溶液配比48/52%(体积比)

4.5环境要求 测试环境温度为20 .....+45 ℃左右 5、试验步骤 5.1 换热量测试—变冷介质流量(在100%通风面积和90%通风面积两种条件下分别测试) 5.1.1 将换热器按照JB/T 10379-2002 图2安装到测试台上。 5.1.2 冷介质进口温度为环境温度a℃ 5.1.3 热介质进口温度为a+20℃。 5.1.4 调节热介质在15 l/min 5.1.5 将冷却介质(冷却风)分别调节到0.5m3/s,0.9m3/s,1.3m3/s,1.76m3/s,2.2m3/s, 2.64m3/s, 5.1.6 按照JB/T10379-2002 记录各项测试参数值。 5.1.7 计算换热量 冷介质热流量 热介质热流量 平均换热量 热平衡误差 5.2 换热量测试-变热介质流量

5.2.1 将换热器按照JB/T10379-2002 要求安装到测试台上。 5.2.2 冷介质进口温度为环境温度a ℃ 5.2.3 热介质进口温度为a+20℃ 5.2.4 按照下表调节冷热测流量 5.2.5 按照JB/T10379-2002 记录各项测试参数值 5.2.6 计算换热量 冷介质热流量 热介质热流量 平均换热量 热平衡相对误差 5.3 风侧阻力曲线 5.3.1 换热面积100% 5.3.1.1 将换热器按照JB/T10379-2002 图2要求安装到测试台上 5.3.1.2 冷风测试温度:环境温度20-45℃ 5.3.1.3 控制热介质(乙二醇溶液)在15 l/min 5.3.1.4 控制热介质(乙二醇溶液进口温度为75℃,进出口平均温度72℃。 5.3.1.5 冷风变化范围0.15m3/s-0.6 m3/s(0.15,0.25,35,0.475,0.6) 5.3.1.6 记录不同介质流量下对应的压降 5.3.2 换热面积90% 5.3.2.1 将换热器按照JB/T10379-2002 图2要求安装到测试台上 5.3.2.2 冷风测试温度:环境温度20-45℃ 5.3.2.3 控制热介质(乙二醇溶液)在15 l/min 5.3.2.4 控制热介质(乙二醇溶液进口温度为75℃,进出口平均温度72℃。 5.3.2.5 冷风变化范围0.5m3/s-2.64 m3/s(0.5,0.9,01.3,1.76,2.2,2.64) 5.3.2.6 记录不同介质流量下对应的压降 5.4 热侧(乙二醇溶液)阻力曲线 5.4.1将换热器按照JB/T10379-2002 图2要求安装到测试台上

相关主题
文本预览
相关文档 最新文档