当前位置:文档之家› 压力测试系统课程设计

压力测试系统课程设计

压力测试系统课程设计
压力测试系统课程设计

摘要 (2)

第一章设计背景

1.1压力测试系统的相关背景 (3)

1.2总体设计方案论证 (3)

1.2.1压力测试系统设计框图 (3)

1.2.2压力测试系统设计框图分析 (3)

1.2.3总体设计方案分析 (4)

第二章硬件设计

2.1AT89C51单片机简介 (5)

2.1.1 主要特性 (5)

2.1.2 管脚说明 (6)

2.1.3AT89C51单片机在电路图中连接 (7)

2.2 51单片机最小系统的设计 (8)

2.2.1 单片机组成 (8)

2.2.2 51单片机最小系统电路介绍 (8)

2.3 压力传感器 (9)

2.3.1压力传感器的选择 (9)

2.3.2压力传感器工作原理 (9)

2.3.3电阻应变片 (9)

2.4 模数转换电路的设计 (10)

2.4.1 模数转换 (10)

2.4.2 ADC0808芯片 (10)

2.5 接口电路的设计 (13)

2.6 驱动与显示电路 (14)

2.6.1 74LS245的原理 (14)

2.6.2 74LS245驱动电路 (15)

2.7 电源电路的设计 (16)

2.8 原理图 (16)

第三章软件设计

3.1 总体流程图 (17)

3.2 子程序 (17)

3.2.1 A/D转换子程序 (17)

3.2.2 显示子程序 (17)

第四章调试及仿真

4.1 程序代码 (18)

4.2 仿真结果 (20)

4.3数据分析 (20)

附录一课程设计总结 (21)

附录二参考文献 (22)

1

此次设计是基于单片机的压力检测系统,选择的单片机是基于AT89C51单片机的测量与显示,将压力经过压力传感器转变为电信号,经过放大器放大,然后进入A/D转换器将模拟量转换为数字量显示,我们所采样的A/D转换器为ADC0808。

2

3

第一章 设计背景

1.1 压力测试系统的相关背景

近年来,随着微型计算机的发展,传感器在人们的工作和日常生活中应用越来越普遍。压力是工业生产过程中的重要参数之一。压力的检测或控制是保证生产和设备安全运行必不可少的条件。实现智能化压力检测系统对工业过程的控制具有非常重要的意义。压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。压力测量对实时监测和安全生产具有重要的意义。在工业生产中,为了高效、安全生产,必须有效控制生产过程中的诸如压力、流量、温度等主要参数。由于压力控制在生产过程中起着决定性的安全作用,因此有必要准确测量压力。通过压力传感器将需要测量的位置的压力信号转化为电信号,再经过运算放大器进行信号放大,送至8位A /D 转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED 显示器可以识别的信息,最后显示输出。

1.2总体设计方案论证

1.2.1压力测试系统设计框图

1-1 压力测试系统原理方框图

1.2.2压力测试系统设计框图分析 电路主要分成两个模块:

A/D 转换模块和显示模块,我们选用的A/D 转换器是

ADC0808,单片机为AT89C51,显示为4位数码管显示。根据硬件电路编程,调试出来并显示结果。

1.2.3总体设计方案分析

本次设计是基于AT89C51单片机的测量与显示。电路采用ADC0808模数转换电路,ADC0808是CMOS工艺,采用逐次逼近法的8位A/D转换芯片,片内有带锁存功能的8路模拟电子开关,先用ADC0808的转换器对各路电压值进行采样,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。本次设计是以单片机组成的压力测量,系统中必须有前向通道作为电信号的输入通道,用来采集输入信息。压力的测量,需要传感器,利用传感器将压力转换成电信号后,再经放大并经A/D转换为数字量后才能由计算机进行有效处理。然后用LED进行显示。本设计的最终结果是,将软件下载到硬件上调试出来了需要显示的数据,当输入的模拟信号发生变化的时候,通过A/D转换后,LED将显示不同的数值。

4

第二章硬件设计

2.1AT89C51单片机简介

AT89C51是一种带4K字节闪烁可编程可擦除只读存储(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL 的AT89C51是一种高效微控制器。如图2-1:

图2-1AT89C51外部引脚图

2.1.1 主要特性

· 8031 CPU与MCS-51 兼容· 全静态工作:0Hz-24KHz

· 4K字节可编程FLASH存储器(寿命:1000写/擦循环)

· 三级程序存储器保密锁定· 128*8位内部RAM

· 32条可编程I/O线· 两个16位定时器/计数器

· 6个中断源· 可编程串行通道

· 低功耗的闲置和掉电模式· 片内振荡器和时钟电路

5

2.1.2 管脚说明

VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH 编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口:

P3口管脚备选功能

P3.0 RXD(串行输入口)

P3.1 TXD(串行输出口)

P3.2 /INT0(外部中断0)

P3.3 /INT1(外部中断1)

P3.4 T0(记时器0外部输入)

P3.5 T1(记时器1外部输入)

P3.6 /WR(外部数据存储器写选通)

P3.7 /RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个

6

机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

2.1.3AT89C51单片机在电路图中连接

连接如下图2-2所示:

图2-2AT89C51单片机在电路图中的连接

7

8

2.2 51单片机最小系统的设计

2.2.1 单片机组成

单片机的最小系统由RAM ,ROM,晶振电路,复位电路,电源,地线组成。 电路设计如图2-3所示:

图2-3 单片机最小系统

随着电子技术的发展,单片机的功能将更加完善,因而单片机的应用将更加普及。它们将在智能化仪器、家电产品、工业过程控制等方面得到更广泛的应用。单片机将是智能化仪器和中、小型控制系统中应用最多的有种微型计算机。

2.2.2 51单片机最小系统电路介绍

2.2.2.151单片机最小系统复位电路的极性电容C1的大小直接影响单片机的复位时间,一般采用10~30uF ,51单片机最小系统容值越大需要的复位时间越短。

2.2.2.251单片机最小系统晶振Y1也可以采用6MHz 或者11.0592MHz ,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。

2.2.2.3 51单片机最小系统起振电容C2、C3一般采用15~33pF ,并且电容离晶振越近越好,晶振离单片机越近越好4.P0口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10k 。

2.2.2.4设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。计数值N 乘以机器周期Tcy 就是定时时间t 。

2.2.2.5设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。在每个机器周期的S5P2期间采样T0、T1引脚电平。当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1

,更新的计数值在下

一个机器周期的S3P1期间装入计数器。由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。

2.3压力传感器

2.3.1 压力传感器的选择

压力传感器是将压力转换为电信号输出的传感器。通常把压力测量仪表中的电测式仪表称为压力传感器。压力传感器一般由弹性敏感元件和位移敏感元件(或应变计)组成。弹性敏感元件的作用是使被测压力作用于某个面积上并转换为位移或应变,然后由位移敏感元件或应变计转换为与压力成一定关系的电信号。有时把这两种元件的功能集于一体。压力传感器广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。

力学传感器的种类繁多,但常用的压力传感器有电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器,光纤压力传感器等。应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。

压力传感器是使用最为广泛的一种传感器。传统的压力传感器以机械结构型的器件为主,以弹性元件的形变指示压力,但这种结构尺寸大、质量轻,不能提供电学输出。随着半导体技术的发展,半导体压力传感器也应运而生。其特点是体积小、质量轻、准确度高、温度特性好。特别是随着MEMS技术的发展,半导体传感器向着微型化发展,而且其功耗小、可靠性高。

2.3.2 压力传感器工作原理

压阻式应变压力传感器的主要由电阻应变片按照惠斯通电桥原理组成。

2.3.3 电阻应变片

一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,

使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

金属电阻应变片的内部结构如图2-4:

9

图2-4 金属电阻应变丝的结构

如图所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。

2.4 模数转换电路的设计

2.4.1 模数转换

模拟量输入通道的任务是将模拟量转换成数字量。能够完成这一任务的器件称之为模数转换器,简称A/D转换器。本次设计的中A/D转换器的任务是将放大器输出的模拟信号转换位数字量进行输出。

A/D转换电路的核心元件是ADC0808芯片

2.4.2ADC0808芯片

ADC 0808和ADC 0809除精度略有差别外(前者精度为8位、后者精度为7位),其余各方面完全相同。它们都是CMOS器件,不仅包括一个8位的逐次逼近型的ADC部分,而且还提供一个8通道的模拟多路开关和通道寻址逻辑,因而有理由把它作为简单的“数据采集系统”。利用它可直接输入8个单端的模拟信号分时进行A/D转换,在多点巡回检测和过程控制、运动控制中应用十分广泛。

1) 主要技术指标和特性

(1)分辨率: 8位。

(2)总的不可调误差: ADC0808为±1/2LSB,ADC 0809为±1LSB。

(3)转换时间:取决于芯片时钟频率,如CLK=500kHz时,TCONV=128μs。

(4)单一电源: +5V。

(5)模拟输入电压范围:单极性0~5V;双极性±5V,±10V(需外加一定电路)。

10

(6)具有可控三态输出缓存器。

(7)启动转换控制为脉冲式(正脉冲),上升沿使所有内部寄存器清零,下降沿使A/D转换开始。

(8)使用时不需进行零点和满刻度调节。

2) 内部结构和外部引脚

ADC0808/0809的内部结构和外部引脚分别如图2-5和图2-6所示。内部各部分的作用和工作原理在内部结构图中已一目了然,在此就不再赘述,下面仅对各引脚定义分述如下:

图2-5 ADC0808/0809内部结构框图

(1)IN0~IN7——8路模拟输入,通过3根地址译码线ADDA、ADDB、ADDC 来选通一路。

(2)D7~D0——A/D转换后的数据输出端,为三态可控输出,故可直接和微处理器数据线连接。8位排列顺序是D7为最高位,D0为最低位。

(3)ADDA、ADDB、ADDC——模拟通道选择地址信号,ADDA为低位,ADDC 为高位。地址信号与选中通道对应关系如表1所示。

(4)VR(+)、VR(-)——正、负参考电压输入端,用于提供片内DAC电阻网络的基准电压。在单极性输入时,VR(+)=5V,VR(-)=0V;双极性输入时,VR(+)、VR(-)分别接正、负极性的参考电压。

11

12

图2-6 ADC0808/0809外部引脚图

(5)ALE ——地址锁存允许信号,高电平有效。当此信号有效时,A 、B 、C 三位地址信号被锁存,译码选通对应模拟通道。在使用时,该信号常和START 信号连在一起,以便同时锁存通道地址和启动A/D 转换。

(6)START ——A/D 转换启动信号,正脉冲有效。加于该端的脉冲的上升沿使逐次逼近寄存器清零,下降沿开始A/D 转换。如正在进行转换时又接到新的启动脉冲,则原来的转换进程被中止,重新从头开始转换。

(7)EOC ——转换结束信号,高电平有效。该信号在A/D 转换过程中为低电平,其余时间为高电平。该信号可作为被CPU 查询的状态信号,也可作为对CPU 的中断请求信号。在需要对某个模拟量不断采样、转换的情况下,EOC 也可作为启动信号反馈接到START 端,但在刚加电时需由外电路第一次启动。

(8)OE ——输出允许信号,高电平有效。当微处理器送出该信号时,ADC0808/0809的输出三态门被打开,使转换结果通过数据总线被读走。在中断工作方式下,该信号往往是CPU 发出的中断请求响应信号。

3) 工作时序与使用说明

ADC 0808/0809的工作时序如图2-7所示。当通道选择地址有效时,ALE 信号一出现,地址便马上被锁存,这时转换启动信号紧随ALE 之后(或与ALE 同时)出现。START 的上升沿将逐次逼近寄存器SAR 复位,在该上升沿之后的2

μs 加8个时钟周期内(不定),EOC 信号将变低电平,以指示转换操作正在进行中,直到转换完成后EOC 再变高电平。微处理器收到变为高电平的EOC 信号后,便立即送出OE 信号,打开三态门,读取转换结果。

图2-7 ADC 0808/0809工作时序

模拟输入通道的选择可以相对于转换开始操作独立地进行(当然,不能在转换过程中进行),然而通常是把通道选择和启动转换结合起来完成(因为ADC0808/0809的时间特性允许这样做)。这样可以用一条写指令既选择模拟通道又启动转换。在与微机接口时,输入通道的选择可有两种方法,一种是通过地址总线选择,一种是通过数据总线选择。

如用EOC信号去产生中断请求,要特别注意EOC的变低相对于启动信号有2μs+8个时钟周期的延迟,要设法使它不致产生虚假的中断请求。为此,最好利用EOC上升沿产生中断请求,而不是靠高电平产生中断请求

2.5 接口电路的设计

ADC0808与AT89C51采用中断方式。由于ADC0808片内有三态输出锁存器,因此可以直接与AT89C51接口。这里将ADC0808作为一个外部扩展并行I/O口,采用先选法寻址。由P3.0控制启动转换信号端(START),三位地址线加到ADC0808的ADDA、ADDB、ADDC端。当启动ADC0808时,先送通道号地址到ADDA、ADDB 和ADDC;锁存通道号并启动A/D转换。A/D转换完毕,EOC端置1,然后使OE 端有效,打开输出锁存器三态门,8位数据便读入到单片机中。

接口电路原理图2-8所示:

13

图2-8 ADC0806接口电路原理图

2.6驱动与显示电路

2.6.1 74LS245的原理

74LS245为8路通向三态双向总线收发器,可双向传输数据。16个三态门每两个三态门组成一路双向驱动。驱动方向由,DIR两个控制端控制,控制端控制驱动器有效或高阻态,在控制端有效(=0)时,DIR控制端控制驱动器的驱动方向.即:DIR=0信号由B→A;DIR=1信号由A→B传输。在=1时,A、B 为高阻状态。74LS245的管脚图如图2-9所示:

14

图2-9 74LS245引脚图

2.6.2 74LS245驱动电路

当数码管显示时,由于单片机的驱动能力达不到数码管的驱动电流,有时工作不稳定,因此需要一个驱动电路,使数码管显示电路,如下图2-10所示。本电路用74LS245

16个三态门每两个三态门组成一路双向驱动。通过单片机输送过来的信号有74LS245 进行驱动,由数码管进行显示。

图2-10 74LS245驱动电路与数码管连接图

15

2.7 电源电路的设计

电源电路设计图如2.11所示:

图2-11电源电路的设计图2.8 原理图

图2-12原理图

16

第三章软件设计

3.1 总体流程图

主程序模块

主程序主要完成定时器初始化和A/D转换模拟值通道口选定,调用显示子程序等。主程序的流程图如图3-1所示:

图3-1 主程序流程图

3.2 子程序

3.2.1 A/D转换子程序

A/D转换子程序用于对ADC0808的输入模拟电压进行A/D转换,并将转换的数值存入8个相应的存入单元中。A/D转换子程序每隔一定时间调用一次,即每隔一段时间对输入电压采样一次。

3.2.2 显示子程序

显示子程序采用动态扫描法实现4位数码管的数值显示。LED数码管采用软件译码动态扫描方式。在显示子程序中包含多路循环显示和单路显示程序。多路循环显示把8个存储单元的数值依次取出送到4位数码管上显示。每一路显示1秒,单路显示程序只对当前选中的一路数据进行显示。每路数据显示时需经过转换变成十进制BCD码,放于4个数码管的显示缓冲中。单路显示或多路显示通过标志位控制。在显示控制程序中加入了对单路或多路循环按键和通道选择按键判断。

17

第四章调试及仿真

4.1 程序代码

#include

#define uchar unsigned char

#define uint unsigned int

unsigned char code tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar code tab1[]={0xfe,0xfd,0xfb,0xf7};

uchar dis_buf[4];

sbit ST=P3^0;

sbit OE=P3^1;

sbit EOC=P3^2;

sbit CLK=P3^3;

sbit P20=P2^0;

sbit P21=P2^1;

sbit P22=P2^2;

sbit P23=P2^3;

sbit AA=P3^5;

sbit BB=P3^6;

sbit CC=P3^7;

void delay()//延时函数

{

uchar t;

for(t=0;t<250;t++);

}

void display()

{

uchar j;

for(j=0;j<4;j++)

{

P1=tab[dis_buf[j]];

P2=tab1[j];

delay();

P2=0xff;

}

}

void t1() interrupt 1 //定时器中断服务函数;作用:产生CLK信号

{

TH0=(65536-200)/256;

TL0=(65536-200)%256;

CLK=~CLK;

}

18

void main()//主函数

{

uchar sj=0,ge=0,shi=0,bai=0,qian=0;

uint temp;

TMOD=0x01;

TH0=(65536-200)/256;//定时时间为0.2us,亦即CLK周期为0.4us

TL0=(65536-200)%256;

EA=1;

ET0=1;

TR0=1;

while(1)

{

AA=0;//选择通道0

BB=0;

CC=0;

ST=0;//关闭转换

OE=0;//关闭输出

ST=1;//开启转换

ST=0;//关闭转换

while(EOC==0);//判断是否转换结束:是则执行以下语句,否则等待

OE=1;//开启数据输出允许

sj=P0;//将数据取走,存放在变量sj中

OE=0;//关闭输出

temp=sj;//电压值转换,5V作为参考电压,分成256份

qian=temp/1000; //个位

bai=(temp-qian*1000)/100;//十位

shi=(temp-qian*1000-bai*100)/10;//百位

ge=temp-qian*1000-bai*100-shi*10;//千位

dis_buf[0]=ge;

dis_buf[1]=shi;

dis_buf[2]=bai;

dis_buf[3]=qian;

display();

OE=0;

}

}

19

4.2 仿真结果

图4-1 仿真结果图

4.3数据分析

由外部传感器检测压力,数码显示管显示范围为0~255,本次课程设计用滑动变阻器代替外部传感器,将滑动变阻器平均分成266份,通过上调或下调压力同步改变压力值,得到仿真结果。

例如测0~5V电压:

当外部传感器检测到压力,为显示相应电压(电压显示范围为0~5V),因数码管显示范围为0~255,根据数码管显示的值可以求得相应电压的变化,结合压力检测传感器的参数可得到压力的值。如图4-2所示:

图4-2 电压值与数码管显示值换算表

20

控制装置与仪表课程设计报告书

控制装置与仪表课程设计 课程设计报告 ( 2012-- 2013年度第二学期) 名称:控制装置与仪表课程设计 题目:炉膛压力系统死区控制系统设计院系: 班级: 学号: 学生: 指导教师: 设计周数:一周 成绩: 日期:2013年7 月5日

一、课程设计(综合实验)的目的与要求 1.1 目的与要求 (1)认知控制系统的设计和控制仪表的应用过程。 (2)了解过程控制方案的原理图表示方法(SAMA图)。 (3)掌握数字调节器KMM的组态方法,熟悉KMM的面板操作、数据设定器和KMM数据写入器的使用方法。 (4)初步了解控制系统参数整定、系统调试的过程。 1.2设计实验设备 KMM数字调节器、KMM程序写入器、PROM擦除器、控制系统模拟试验台1 1.3 主要容 1. 按选题的控制要求,进行控制策略的原理设计、仪表选型并将控制方案以SAMA 图表示出来。 2 . 组态设计 2.1 KMM组态设计 以KMM单回路调节器为实现仪表并画出KMM仪表的组态图,由组态图填写KMM 的各组态数据表。 2.2 组态实现 在程序写入器输入数据,将输入程序写入EPROM芯片中。 3. 控制对象模拟及过程信号的采集 根据控制对象特性,以线性集成运算放大器为主构成反馈运算回路,模拟控制对 象的特性。将定值和过程变量送入工业信号转换装置中,以便进行观察和记录。 4. 系统调试 设计要求进行动态调试。动态调试是指系统与生产现场相连时的调试。由于生产 过程已经处于运行或试运行阶段,此时应以观察为主,当涉及到必需的系统修改 时,应做好充分的准备及安全措施,以免影响正常生产,更不允许造成系统或设 备故障。动态调试一般包括以下容: 1)观察过程参数显示是否正常、执行机构操作是否正常; 2)检查控制系统逻辑是否正确,并在适当时候投入自动运行; 3)对控制回路进行在线整定; 4)当系统存在较大问题时,如需进行控制结构修改、增加测点等,要重新组态下装。 二、设计(实验)正文 1设计题目:炉膛压力系统死区控制系统设计(如附图1) 附图1: 引风机 炉膛压力系统死区单回路控制系统

基于LabVIEW的压力测试系统设计

基于LabVIEW的压力测试系统设计 【摘要】设计了压力测试系统,该系统以压力传感器、信号调理电路、数据采集卡、PC机为硬件开发平台,以图形化编程语言LabVIEW为软件开发平台,将虚拟仪器技术运用到压力测试中。结果表明,本设计各项功能运行情况良好,使工作效率和准确性都得到较大提升,同时也减少了故障率,能够有效地应用于各种通用的测试系统中。 【关键词】压力测试;LabVIEW;虚拟仪器 一、引言 压力是过程生产中四大重要参数之一,它是检测生产过程能否完全可靠正常运行的重要参数指标。目前很多传统的压力测试多采用手动方式或者是单片机来采集相关测试信息。其测试系统功能单一,开发周期长,功能难以扩展,测试精度不高[1]。应用LabVIEW虚拟仪器技术能按照客户的需求来设计仪器,方便灵活而且开发周期短。它不仅降低了仪器成本,而且提高了工作效率[2]。本文应用LabVIEW软件设计的压力测试系统,包括压力传感器、信号调理电路、数据采集与传输和计算机软件模块等。 二、压力测试系统硬件部分设计 压力测试系统的硬件由压力传感器、信号调理电路、数据采集卡及PC机等组成,压力信号的处理过程是:压力传感器把压力转换成电信号,经过调理电路,将信号放大,通过数据采集卡采集,再送入PC机进行各种处理。 1.压力传感器 压力传感器是用金属弹性体将压力转换为应变的功能元件,通过粘贴在弹性体敏感表面的电阻应变计及其以一定方式组成的电桥网络,在外加电源的激励下,实现压力、应变、电阻变化、电信号变化等转换环节的一种压力传感器[3]。此硬件系统主要利用陶瓷压力传感器AP681来测量压力信号。 2.信号调理电路设计 信号调理电路,是把模拟信号变换为用于数据采集、控制过程、执行计算显示读出或其他目的的数字信号。包括零点调整电路,信号的放大、滤波、隔离电路,多路数据转换电路及电源电路。 3.数据采集卡的选择 本系统采用研华PCI-1711,该数据采集卡完全符合PCI规格Rev2.1标准。支持即插即用;有16路单端模拟输入。12位MD转换器,16路数字量输入及16

压力测量仪表原理及结构

压力表工作原理及结构 用来测量气体或液体压力的工业自动化仪表,又称压力表或压力计。垂直均匀地作用于单位面积上的力称为压力,又称压强。压力表可以指示、记录压力值并可附加报警或控制装臵。仪表所测压力包括绝对压力、大气压力、正压力(习惯上称表压)、负压 (习惯上称真空)和差压。 图1各种压力间的关系表示各种压力间的关系。工程技术上所测量的多为表压。压力的国际单位为帕(Pa)。压力的其他单位还有:工程大气压(kgf/cm2)、巴(bar)、毫米水柱(mmH2O)、毫米汞柱(mmHg)(即托)等。 压力是工业生产中的重要参数。如高压容器的压力超过额定值时便是不安全的,必须进行测量和控制。在某些工业生产过程中,压力还直接影响产品的质量和生产效率,如生产合成氨时,氮和氢不仅须在一定的压力下合成,而且压力的大小直接影响产量高低。此外,在一定的条件下,测量压力还可间接得出温度、流量和液位等参数。 弹性式压力测量仪表利用各种不同形状的弹性元件在压力下产生变形的原理制成的压力测量仪表。弹性式压力测量仪表按采用的弹性元件不同分为弹簧管压力表、膜片压力表、膜盒压力表和波纹管压力表等;按功能不同分为指示式压力表、电接点压力表和远传压力表等。这类仪表的特点是结构简单,结实耐用,测量范围宽(-0.1~1500兆帕),是压力测量仪表中应用最多的一种。 一、压力表 1.1、压力表的工作原理 弹簧管压力表又称为波登管压力表。压力表中的弹簧的自由端是封闭的,它通过拉杆带动扇形齿轮转动。测压时,弹簧管在被测压力作用下产生变形,因而弹簧管自由端产生位移,位移量与被测压力的大小成正比,使指针偏转,在度盘上指示出压力值。如果表壳内通有大气,压力表测出的压力为正压或负压;如果将表壳密封并抽真空,压力表测出的压力就是绝对压力。弹簧管压力表带有隔离装臵时,尚可测量温度较高或腐蚀性、粘稠状、易结晶和粉尘状介质的压力。在精确度较高(如0.25级以上)的弹性式压力测

课程设计说明书 压力表

《精密机械设计基础课程设计》 设计说明书 设计题目: 设计人员: 班级: 指导教师: 河北工业大学测控系 2018-01-03

目录 1 设计任务 (3) 2 方案论证 (4) 2.2原理分析 (4) 2.3国内外典型仪表现状及发展趋势 (6) 3 参数选择 (6) 3.1弹簧管 (6) 3.2曲柄滑块机构 (7) 3.3齿轮传动参数的选择 (7) 3.4 标尺指针参数选择 (7) 3.5 游丝的选择 (7) 4 参数的计算 (7) 4.1 弹簧管有关参数的确定。 (8) 4.2 曲柄滑块机构参数的确定 (9) 4.4 游丝应力校核 (11) 4.5 游丝各系数最后确定 (13) 4.6 总体方案设计 (13) 5 标准化统计 (14) 6 所绘制零件结构参数设计说明 (14) 6.1 按仪表特性的要求确定零件尺寸 (14) 6.2按标准化规范确定零件尺寸 (14) 6.3由材料规格确定 (15) 6.4由空间结构确定 (15) 6.5类比 (15) 7 工作总结 (15) 8 公式来源 (17) 参考资料 (17)

1 设计任务 设计一用于测压力的弹簧管压力表,其要求如下:

2 方案论证 2.1 结构概述 弹簧管压力表是一种用来 测量气体压力的仪表。 压力表的组成: 灵敏部分(弹簧管) 传动放大部分(曲柄滑 块、齿轮机构) 示数部分(指针、刻度盘) 辅助部分(支承、轴、游丝) 2.1.1灵敏元件:将不便测量的物理量转换成易于直接比较的物理量,本设计将弹簧管作为灵敏元件,将不易于比较的压力转换为易于测量的位移. 2.1.2传动放大机构:本设计由曲柄滑块机构和齿轮传动机构组成.目的在于传递或放大位移,改变位移性质和得到等分刻度,并且应具有一定的补偿特性,同时仪表有较好的线性特性. 2.1.3示数装置:其作用是在接受传动放大机构的位移后,指示出待测量的数值.本设计采用指针指示标尺刻度. 2.2原理分析 作为灵敏元件的弹簧管可以把气体压力转变为管末端的位移,通过曲柄滑块机构将此位移转变为曲柄的转角,然后通过齿轮机构将曲柄转角放大,带动指针偏转,从而指示压力的大小。将转

课程设计说明书_智能压力测量仪

郑州华信学院 课程设计说明书 题目:智能压力测量仪 姓名:杨巍 院(系):机电工程学院 专业班级:电气工程三班 学号:1102120310 指导教师:宋东亚杨坤漓 成绩: 时间:2013年12月17 日至2013 年12 月28 日

郑州华信学院 课程设计任务书 题目智能压力测量仪 专业、班级电气工程及其自动化三班 学号 1102120310 姓名杨巍 主要内容: 利用单片机计一个智能压力测量仪,要求显示压力数据。 基本要求: 1.设计一个智能压力测量仪,要求显示当前压力数值。 2.利用proteus软件完成设计电路和仿真; 3.掌握并口驱动数码管动态显示的方法; 4.通过此次设计将单片机软硬件结合起来对程序进行编辑、校验,锻炼实践能力和理论联系实际的能力。 主要参考资料: [1]李全利,单片机原理及接口技术[M],高等教育出版社 [2]王文杰,单片机应用技术[M],冶金工业出版社 [3]朱清慧,PROTEUS教程——电子线路设计、制版与仿真[M], 清华大学出版社 [4]单片机实验指导书,天煌教仪 [5]彭伟,单片机C语言程序设计实训100例[M],电子工业出版社 完成期限: 指导教师签名: 课程负责人签名:

年月日 目录 摘要 ...................................................................................................................................................... - 4 -1 引言 .................................................................................................................................................... - 4 - 1.1 问题的提出 .................................................................................................................. - 4 - 1.2任务与分析 ................................................................................................................... - 4 - 2方案设计 ................................................................................................................................................. - 5 - 2.1 系统方案设计论证....................................................................................................... - 5 - 2.1.1系统的控制方案设计......................................................................................... - 5 - 2.2最终设计方案总体设计框图........................................................................................ - 5 - 3 系统硬件设计 ........................................................................................................................................ - 6 - 3.1 AT89C51单片机 ........................................................................................................... - 6 - 3.1.1 AT89C51单片机介绍 ........................................................................................ - 6 - 3.1.2 选用AT89C51单片机原因 ...................................................................................... - 7 - 3.2 时钟电路 ...................................................................................................................... - 8 - 3.3 复位电路 ...................................................................................................................... - 8 - 3.4 PG160128A显示电路................................................................................................... - 9 -

基于Labview的压力测试系统

现代检测技术综合设计报告 课程设计题目:基于虚拟仪器的压力测量系统 学院名称:电子与信息工程学院 专业:电气工程及其自动化 班级:电气12-1 姓名:杨育新学号 12401170103 同组者姓名: 指导教师:黄晶 日期:2014.06.09~2014.06.20

目录 一、任务书..................................................1 二、总体设计方案 2.1 现代测控技术发展概述.....................................1 2.2 自动检测系统的原理框图...................................2 三、压力传感器 3.1 传感器的选择.............................................2 3.2 工作原理.................................................2 3.3 工作特性.................................................3 四、硬件设计 4.1 应变片的测量转换电路.....................................3 4.2 电桥的放大电路...........................................4 4.3 压力测量的总电路图...........................................5 五、Labview软件设计 5.1 程序流程图的设计..........................................6 5.2 前面板的设计.............................................6 5.3 实验框图的设计...........................................8 六、调试情况及结论 6.1 程序的调试..............................................12 6.2 实验结论................................................14 七、课程设计心得体会.......................................14参考资料.....................................................14

检测及仪表课程设计(DOC)

目录 1设计目的 (2) 2题目介绍 (2) 3 背景意义 (2) 3.1实验装置简介 (2) 3.2研究污垢传热的理论知识 (3) 4参数检测与控制 (5) 4.1进出口温度水浴温度测量 (5) 4.1.1 仪表种类选用及依据 (5) 4.1.2 注意事项 (6) 4.1.3 可能误差 (6) 4.2 实验管壁温测量 (7) 4.2.1 仪表种类选用及依据 (7) 4.2.2 可能误差 (7) 4.3 水位的测量 (7) 4.3.1 仪表种类选用及依据 (7) 4.3.2 注意事项 (8) 4.3.3 可能误差 (8) 4.4 实验管内流体流量的测量 (8) 4.4.1仪表种类选用与依据 (8) 4.4.2 可能误差 (10) 4.5 差压测量 (10) 4.5.1仪表种类选用与依据 (10) 4.5.2 可能误差 (11) 5.参考文献 (12)

第1章绪论 1.1设计目的 针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 2题目介绍 本课设题目以一多功能动态实验装置为对象,要求综合以前所学知识,完成此实验装置所需检测参数的检测。设计检测方案,包括检测方法、仪表种类选用以及需要注意事项,并分析误差产生的原因等等。 该实验装置上,需要检测和控制的参数主要有: 1、温度:包括实验管流体进口(20~40℃)、出口温度(20~80 ℃), 2、实验管壁温(20~80 ℃)以及水浴温度(20~80 ℃) 3、水位:补水箱上位安装,距地面2m,其水位要求测量并控制,以适应不同流速的需要,水位变动范围200mm~500mm 4、流量:实验管内流体流量需要测量,管径Φ25mm,流量范围0.5~4m3/h 5、差压:由于结垢导致管内流动阻力增大,需要测量流动压降,范围为0~50mm 水柱 3 背景意义 3.1实验装置简介 如图3—1所示的实验装置是东北电力大学节能与测控研究中心杨善让教授为首的课题组基于测量新技术—软测量技术开发的多功能实验装置。 基于本实验装置,先后完成国家、东北电力公司、省、市多项科研项目并获奖,鉴定结论为国际领先。目前承担国家自然科学基金、973项目部分实验工作。

基于Labview的压力测试系统

基于L a b v i e w的压力测 试系统 The latest revision on November 22, 2020

现代检测技术综合设计报告 课程设计题目:基于虚拟仪器的压力测量系统 学院名称:电子与信息工程学院 专业:电气工程及其自动化 班级:电气12-1 姓名:杨育新学号 同组者姓名: 指导教师:黄晶 日期:~ 目录 一、任务 书................................ ..................1 二、总体设计方案 2.1 现代测控技术发展概述.....................................1 2.2 自动检测系统的原理框图...................................2 三、压力传感器 3.1 传感器的选择.............................................2 3.2 工作原理.................................................2 3.3 工作特性.................................................3

四、硬件设计 4.1 应变片的测量转换电路.....................................3 4.2 电桥的放大电路...........................................4 4.3 压力测量的总电路图...........................................5 五、Labview软件设计 5.1 程序流程图的设计..........................................6 5.2 前面板的设计.............................................6 5.3 实验框图的设计................................... ........8六、调试情况及结论 6.1 程序的调试..............................................12 6.2 实验结论................................... .............14七、课程设计心得体会.......................................14 参考资料.....................................................14

基于MPX4115的数字压力测量仪器设计说明书

大作业说明书 基于MPX4115的数字压力测量仪器设计 学生姓名:xxx 学生学号:08372 专业:测控技术与仪器 指导教师:程xx

(一)系统总体设计 1:设计整体思想 基于MPX4115的数字气压计包括软硬件的设计与调试。软件部分通过对C 语言的学习和对单片机知识的了解,根据系统的特点编写出单片机程序。硬件部 分分为四大块,包括非电信号数据的采集、转换、处理以及显示: 。通过对设计 的了解,选择适合的器件,画出原理图。 2:系统总体框图 硬件部分由四部分构成,它们分别是:信息采集模块,数据转换模块,信息处理模块和数据显示模块。 (二)硬件电路设计及描述 1:数字压力测量仪设计意义 压力测量仪被广泛应用于国防领域、工业领域、医疗领域以及我们日常家庭生活中。其中的核心元件就是压力传感器,它在监视压力大小、控制压力变化以及物理参量的测量等方面起着重要作用。本系统设计的数字压力测量仪采用单片机控

制,具有使用方便、精度高、显示简单和灵活性等优点,而且可以大幅提高被控气压的技术指标,从而能够大大提高产品的质量 2:数据采集模块的芯片选择 压力传感器对于系统至关重要,需要综合实际的需求和各类压力传感器的性能参数加以选择。一般要选用有温度补偿作用的压力传感器,因为温度补偿特性可以克服半导体压力传感器件存在的温度漂移问题。 本设计要实现的数字气压计显示的是绝对气压值,同时为了简化电路,提高稳定性和抗干扰能力,要求使用具有温度补偿能力的压力传感器。经过综合考虑,本设计选用美国摩托罗拉公司的集成压力传感器。MPX4115可以产生高精度模拟输出电压。 数据采集模块由压力传感器MPX4115构成。其中1脚是输出信号端,输出的是与气压值相对应的模拟电压信号。数据采集模块的原理如图、 数据采集模块原理图 MPX4115的实物图 气压传感器MPX4115的原理 MPX4115系列压电电阻传感器是一个硅压力传感器。这个传感器结合了高级的微电机技术,薄膜镀金属。还能为高水准模拟输出信号提供一个均衡压力。在0℃-85℃的温度下误差不超过1.5%,温度补偿是-40℃-125℃。

基于51单片机压力检测课程设计报告书

单片机原理与接口技术课程设计 成绩评定表 设计课题基于89c51的自身断电保护系统设计 学院名称:电气工程学院 专业班级:自动1002 学生:秦凯新 学号: 7

指导教师:王黎臧海河周刚 设计地点:31-505 设计时间:2012-12-17~2012-12-28

单片机原理与接口技术课程设计 课程设计名称:基于89c52的压力监测系统设计 专业班级:自动1002 学生姓名:秦凯新 学号: 7 指导教师:王黎臧海河周刚 课程设计地点:31-505 课程设计时间:2012-12-17~2012-12-28

单片机原理与接口技术课程设计任务书

目录 1 引言 (6) 2 总体方案设计 (6) 2.1硬件组成 (6) 2.2 方案论证 (6) 2.3 总体方案 (7) 3 硬件电路设计 (9) 3.1 时钟电路 (9) 3.2复位电路 (10) 3.3 AD简介与原理分析 (10) 3.4 声光报警接口电路 (15) 3.5 显示及键盘接口电路 (15) 3.7 电源电路 (2) 4 系统软件设计 (3) 4.1 主程序设计 (3) 4.3 部分主要子程序的设计 (6) 5 系统调试与总结 (6) 5.1 系统功能测试 (6) 5.2 技术指标测试 (6) 6心得体会 (7) 6.1 为何不采用8255了? (7) 6.2为何不采用A/D0809? (7) 6.3在帮助同学的过程中我学到了什么? (7) 6.4在单片机领域我的规划? 7 参考文献 (8) 附录A 系统原理图 (9) 附录B 源程序 (10)

1 引言 压力监测普遍用于工业领域,并对国家的发展产生了深厚的影响,小到体重计,大到工业中反应炉的气压声电报警。甚至航空航天,智能仪表。以及机器人。本设计就是工业中最普遍的气压监测报警系统。所以,这个系统采用自动检测反应炉中的压力大小,通过传感器,并实时进行在液晶1602上进行显示,还有在液晶上进行参考上限电压值的设置和参考下限电压值的的设置。并通过在单片机部进行比较计算,来实现整个压力监测系统的声光电报警。 本系统的设计基于A/D0804芯片和AT89C52单片机,并采用液晶1602作为显示输出,系统虽小却包含了工业要求的各个方面,作为声电报警模块,主要用到蜂鸣器和发光二极管。当监测压力低于下限值和高于上限值就会进行声光报警。此次系统设计就是针对工业的反应炉的压力监测,甚至可做体重计到最小的方面。 本设计纯为个人设计。程序也在开发板验证成功,如有任何疑问,都可通过实验调试验证。 2 总体方案设计 2.1硬件组成 1.控制器。控制器是系统的核心部分,可以用工业计算机 PLC、或者单片机。 2. A /D转换器。A/D转换器可以把测得的模拟量转换成数 字量输出,可以直接读取。 3.继电器。继电器在电路中起到断电保护作用,是系统的 安全保障。其种类很多,有电流继电器、电压及电器、速度继电器 等等。 4.键盘。通过键盘可以设置限制电流大小。 5.液晶显显示。液晶可以显示设置电流以及实时电流值大 小。 2.2 方案论证

系统压力测试方案

网吧系统压力测试方案文档修改历史

目录 1.文档介绍 (3) 1.1.测试目的 (3) 1.2.读者对象 (3) 1.3.参考资料 (3) 1.4.术语与解释 (3) 2.测试环境 (3) 2.1.测试环境 (4) 2.2.测试工具 (4) 3.测试需求 (5) 3.1.测试功能点 (5) 3.2.性能需求 (5) 4.准备工作 (5) 4.1 并发用户数计算 (6) 4.2 业务分配 (7) 4.3 脚本和环境 (7) 5.测试完成准则 (7) 6.测试风险 (8) 7.测试设计策略 (8) 7.1.组合测试用例策略 (8) 7.2.测试执行策略 (8) 8.业务模型 (9) 8.1场景启用模式 (9) 8.2 测试目标 (9) 8.3 场景设计 (9) 9.测试报告输出 (12)

1.文档介绍 1.1.测试目的 本次压力测试的目的是检测网吧系统的核心业务的性能情况。为了保证后期在业务量不断增长的情况下系统后能够稳定运行,需要对核心业务场景的压力情况有充分了解。因此,希望在模拟生产环境的情况下,模拟用户并发数,对系统核心业务进行压力测试,收集相应的系统参数,并最终作为系统稳定运行的依据,同时为系统调优提供指导。 编写本方案的目的是指导本次性能测试有序的进行,相关人员了解本次压力测试。1.2.读者对象 本方案的预期读者是:项目负责人、测试人员和其他相关人员。 1.3.参考资料 1.4.术语与解释 ?系统用户数:使用该系统的总用户数; ?同时在线用户数:在一定的时间范围内,最大的同时在线用户数; 2.测试环境 模拟客户使用环境(最好模拟客户实际使用的配置环境)。具体如下:

数字式压力表设计

实习报告 课程名称:数字式电压表 学生姓名: 学号: 专业班级: 指导教师: 完成时间: 报告成绩: 评阅意见: 评阅教师日期

数字式压力表的设计 1.课程设计的目的 压力表是指以弹性元件为敏感元件,测量并指示高于环境压力的仪表,它几乎遍及所有的工业流程和科研领域。利用ICL7107构成数字式压力表。 2.课题要求 (1)测压范围:0—60Mpa,主要分为四个量程段:0.04—0.6Mpa;0.1—6Mpa;1—25Mpa;1—60Mpa; (2)测量精度:1.0级。 (3)具有显示、变送、报警等功能,可同时两路输入; (4)模拟输出:可同时提供两组4-20mA或0-10V输出。 3.设计原理 主要器件由芯片ICL7106和液晶显示器LCD组成 关键词:芯片ICL7106 液晶显示器LCD 图一为简易原理方框图。 由于7106是把模拟电路与逻辑电路集成在一块芯片上,属于大规模CMOS 集成电路,因此本方案主要有以下特点:(1)采用单电源供电,可使用9V迭层电池,有助于实现仪表的小型化。(2)芯片内部有异或门输出电路,能直接驱动LCD显示器。(3)功耗低。芯片本身消耗电流仅1。8mA,功耗约16mW。(4)输入阻抗极高,对输入信号无衰减作用。(5)能通过内部的模拟开关实现自动调零和自动显示极性的功能。(6)噪声低,失调温标和增益温标均很小。具有良好的可靠性,使用寿命长(7)整机组装方便,无须外加有源器件,可以很方便地进行功能检查。 本文设计的电压表,电压值显示稳定,读数方便,能测量正、负电压且能自动切换量程,使用方便。系统框图(如图 1 所示)。本系统可分为测试电压转换、模拟电压通道、数据电压通道(A/D 转换及译码锁存)、数码显示、小数点

(完整版)液压传动课程设计-液压系统设计举例

液压系统设计计算举例 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式单面多轴钻孔组合机床动力滑台液压系统为例,介绍液压系统的设计计算方法。 1 设计要求及工况分析 1.1设计要求 要求设计的动力滑台实现的工作循环是:快进 → 工进 → 快退 → 停止。主要性能参数与性能要求如下:切削阻力F L =30468N ;运动部件所受重力G =9800N ;快进、快退速度υ1= υ3=0.1m/s ,工进速度υ2=0.88×10-3m/s ;快进行程L 1=100mm ,工进行程L 2=50mm ;往复运动的加速时间Δt =0.2s ;动力滑台采用平导轨,静摩擦系数μs =0.2,动摩擦系数μd =0.1。液压系统执行元件选为液压缸。 1.2负载与运动分析 (1) 工作负载 工作负载即为切削阻力F L =30468N 。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 N 196098002.0s fs =?==G F μ 动摩擦阻力 N 98098001.0d fd =?==G F μ (3) 惯性负载 N 500N 2.01 .08.99800i =?=??= t g G F υ (4) 运动时间 快进 s 1s 1.0101003 11 1=?==-υL t 工进 s 8.56s 1088.010503 322 2=??==--υL t 快退 s 5.1s 1.010)50100(3 3 2 13=?+=+= -υL L t 设液压缸的机械效率ηcm =0.9,得出液压缸在各工作阶段的负载和推力,如表1所列。

压力测量仪 单片机课程设计

目录 第 1章课程设计简介 (1) 1.1 设计要求 (1) 1.2 要求分析 (1) 第 2章总体设计 (2) 2.1 压力测量仪框图 (2) 2.2 原理 (2) 恒压源供电不能消除温度影响。 (4) 第 3章模块电路设计 (5) 3.1 电桥测量电路 (5) 3.2 模数转换 (6) 3.3 放大电路 (7) 第 4章硬件电路设计 (8) 4.1 模数转换器 (8) 4.2 金属箔应变片 (9) 第五章电路调试与说明 (11) 心得体会 (12) 参考文献 (13) 附录系统原理图 (14)

第 1章课程设计简介 1.1 设计要求 (1) 设计一个电子天平,量程为0 ~ 1.999Kg,传感器采用悬臂梁式的称重传感器(悬臂梁上贴有应变片)。显示电路采用共阳极数码管。3位半A/D转换电路。 (2) 安装、调试电路。首先对电路进行调零、定标,然后再对电路进行稳定性、漂移(零漂、温漂)、重复性、线性等参数的测试和分析。 1.2 要求分析 压力测量仪设计在于其精度高、显示时间快、操作方便、易读数、价格低廉等优点。此次设计通过使用电桥测量传感器采集模拟信号,仪用放大电路对微弱信号进行放大,送入MC14433A/D 转换器进行模数转换,然后进行BCD码的译码,再经驱动电路送入LED显示电路显示,完成了压力测量仪的基本设计。能够实现对0到1.999Kg物体的测量。 需掌握金属箔应变片组成的称重传感器的正确使用方法、放大电路、A/D转换电路等

第 2章总体设计 2.1 压力测量仪框图 2.2 原理 压力测量仪由以下五个部分组成:传感器、传感器专用电源、信号放大系统、模数转换系统及显示器等组成。 (1) 传感器测量电路 称重传感器的测量电路通常使用电桥测量电路,它将应变电阻值的变化转换为电压的变化,这就是可用的输出信号。 电桥电路由四个电阻组成,如图2所示:桥臂电阻R 1,R 2 ,R 3 和R 4,其中两对角点AC接电源电压U SL =E(+10V),另两个对角点 BD为桥路的输出U SC ,桥臂电阻为应变电阻。 R 1R 4 =R 2 R 3 时,电桥平衡,则测量对角线上的输出U SC 为零。当传 感器受到外界物体重量影响时,电桥的桥臂阻值发生变化,电桥

通用液密技术方案-油井防喷器计算机智能压力测试系统IPT

油井防喷器计算机智能压力测试系统IPT-2000A V3.0通用技术方案 (液密封部分) 保定市合力综合技术有限公司

前言 油井防喷器计算机智能压力测试系统IPT-2000A V3.0可以完成井控设备检测系统中的所有压力测试功能。 此系统由保定市合力综合技术有限公司(原名保定市合力综合技术研究所)在1998年首家开发研制成功,并成功地用于华北石油第二机械厂的出厂检验,从此把井控检测系统由单板机时代推向工控计算机时代。 我公司为适应客户的需求,通过不断的硬件改进和软件升级,系统性能日臻完善,现在油井防喷器计算机智能压力测试系统软件已升级到V3.0+版本。 2000年,我公司率先把系统集成技术用于油井防喷器计算机智能压力测试系统的建设。以其先进的设计思想,一切为客户着想的经营理念赢得了石油系统中大量的客户,市场占有率遥遥领先,并以其先进的技术独领风骚。 由于每位客户的现状不同,设备配置千差万别,我们有心为客户按照系统集成的技术思路提供一套压力测试系统方案,但很难适用于所有客户,为此我们提供一套通用技术方案,供广大用户了解系统整体概况,明确设计思路,以便我们能够更好地沟通交流,更好地利用系统集成的方法建设压力测试系统,实现在最短的时间内、最低的投入情况下达到最佳的效果。

目录 1概述 2 系统设计 2.1 系统总体设计 2.2子系统组成及功能 2.2.1试压检测控制子系统 2.2.2加压控制子系统: 2.2.3电—气/液控制子系统 2.2.4工业电视监视子系统 2.2.5 试压及控制软件系统 3 系统特点 3. 1数据采集快速准确 3. 2试压过程自动化程度高 3.3控制方式灵活 3.4超压保护 3.5各种设备集中控制 3.6监视图像清晰 3.7对讲系统 3.8网络功能 3.9 安全措施齐全 3.10 控制软件 3.11试压过程符合相关标准 4方案实施步骤和要求 5 系统设备明细 6 附件 6.1计算机智能压力测试系统IPT-2000A V3.0+设备外形图 6.2 软件产品测试报告和登记证书

检测技术及仪表课程设计报告

第一章绪论 1.1 课程设计目的 针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。 通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 1.2课题介绍 本课设题目以多功能动态实验装置为对象,要求综合以前所学知识,完成此实验装置所需参数的检测。设计检测方案,包括检测方法,仪表种类选用以及需要注意事项,并分析误差产生的原因等等。 1.3 实验背景知识 换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界十分关注而又至今未能解决的难题之一。 1.4 实验原理 1.4.1 检测方法 按对沉积物的监测手段分有:热学法和非传热量的污垢监测法。 热学法中又可分为热阻表示法和温差表示法两种; 非传热量的污垢监测法又有直接称重法、厚度测量法、压降测量法、放射技术、时间推移电影法、显微照相法、电解法和化学法。 这些监测方法中,对换热设备而言,最直接而且与换热设备性能联系最密切的莫过于热学法。这里选择热学法中的污垢热阻法。

1.4.2 热阻法原理简介 表示换热面上污垢沉积量的特征参数有:单位面积上的污垢沉积质量mf , 污垢层平均厚度δf 和污垢热阻Rf 。这三者之间的关系由式表示: (1-1) 图1-1 清洁和有污垢时的温度分布及热阻 通常测量污垢热阻的原理如下: 设传热过程是在热流密度q 为常数情况下进行的,图1a 为换热面两侧处 于清洁状态下的温度分布,其总的传热热阻为: (1-2) 图1b 为两侧有污垢时的温度分布,其总传热热阻为: (1-3) 忽略换热面上污垢的积聚对壁面与流体的对流传热系数影响,则可认为 (1-4) 于是两式相减得: (1-5) 该式表明污垢热阻可以通过清洁状态和受污染状态下总传热系数的测量而间接测量出来。 实验研究或实际生产则常常要求测量局部污垢热阻,这可通过测量所要求部位的壁温表示。为明晰起见,假定换热面只有一侧有污垢存在,则有: ( 1-6) f f f f f f m R δλλρ1==c w c c R R R U 21/1++=f f w f f f R R R R R U 2211/1++++=f c f c R R R R 2211,==c f f f U U R R 1121-=+q T T R R R R U b f s f f w c f /)(/1,121-=+++=

压力测试设计方案.doc

压力测试方案 一.目的 本次压力测试的目的是检测轰趴趴系统的核心业务的性能情况。为了保证后期在业务量不断增长的情况下系统能够稳定运行,需要对核心业务场景的压力情况有充分了解。因此,希望在产线环境下,模拟用户并发数,对系统核心业务进行压力测试,收集相应的系统参数,并最终作为系统稳定运行的依据,同时为系统调优提供参考。 二.测试环境及工具 产线环境,loadrunner11。 三.测试需求 1.测试功能点: 进入主页面 查询订单 2.性能要求 进入主页面,系统平均响应时间小于等于3秒 订单查询响应时间小于等于3秒 3.最大并发用户数量上下限估值 取系统目标期望最大在线用户需求数量的百分之五到百分之二十来计算。 四.测试前置条件 1.将轰趴趴H5抽离出来单独部署测试性能,并屏蔽掉与微信交互的内容(如支付、认证),保留区别用户账户身份的参数,以便于在制作压力测试脚本时方便参数化、达到不同用户多用户并发测试。 2.为方便压力测试中多用户并发查询订单的测试,还要有对应的测试数据。 五.测试实施 1.利用loadrunner对手机页面脚本录制的原理:需要保证手机终端和电脑在公司同一无线网络内,手机终端可以通过代理将请求信息通过电脑进行转发。 2.对功能点事先录制好脚本,包括设置集合点、参数化等等,并且调试好,脚本能够成功回放,保证在测试时能顺利运行。 3.创建测试场景,并配置好每个场景的设置。 4.测试过程中保存完好脚本和分析结果,并规范的对脚本和分析结果等进行命名。 5.并发数量大于单台PC测试机运行性能时,部署其它pc机作为负载机一起测试。 6.并发访问有ip限制时,在测试工具中设置ip欺骗。 六.测试完成准则 1.符合上面列出的性能要求 2.期望值下的多人用户同时在线,脚本长时间运行后,系统不崩溃,各功能正常;服务器监 控cpu、内存、响应时间等参数保持稳定。场景运行停止后,一段时间内占用的资源能够正 常释放。(注:服务器端监控需要运维官担当)

脉 动 压 力 测 试 系 统

脉动压力测试系统 成都泰斯特所做的脉动压力测试系统主要由四部分组成:传感器、信号调理器、数据采集器、应用软件。数据采集器型号为TST6300,应用软件安装在上位机,通过以太网进行数据交换:Puls 1.0压力脉动监测、DAP6.0多功能通用测试软件 根据我们为高校实验室和科研单位组建系统经验和广东水利科学研究院的需要,推荐以下硬件方案供选择。 压阻传感器 TST63000动态数据采集系统 上位机(带网络接口的计算机) TST6300将传感器供电、信号放大、采集等功能全集成于一体,接上传感器即可测试。TST6300有一个嵌入式CPU,通过TCP/IP协议与主控机行通讯,一台主控机可同时控制16个采集设备。 下面分别是各部分主要技术指标: 一、压阻传感器 根据实验室需要配置不同量程的水工专用传感器: 量程:1Kpa、5Kpa 10Kpa 50Kpa 过载:200% 二、TST6300动态数据采集系统 TST6300动态数据采集系统每台8/16个并行采集通道,每通道最高200K,集信号放大、滤波、传感器供电、数据采集、数据存储为一体,参数程控设置,直接接收毫伏级信号。数据通过RJ45以太网口或USB接口与上位机进行通讯,TST6300与应变式/压阻式传感器连接,通过上位机安装的DAP6.X系统程序,组成动态测试系统,方便地完成速度、加速度、位移、力、压力等物理量的信号采集。系统小巧、结构紧凑、连接简便,为现场测试和实验室测试人员提供了高性能的测试解决方案。

产品特点: 1. 适用范围广:每通道最高达到200K的采样率(向下可调),可满足机械振动、机构响应、脉动等较低频率的速度、加速度、位移、压力等进行连续实时监测。 2. 扩展方便:每台采集器有8/16个并行通道,一台上位机可同时控制16台并行采集器,即单台计算机就可同时控制256个通道。既可单机使用,又可多机组成基于局域网的多通道测试系统。 3. 系统稳定可靠:TST6300的系统软件DAP6.0是我公司自行配套设计的,运行稳定、可靠。全中文操作平台操作简单。数据格式开发,支持用户专用程序开发。支持EXCEL、Matlab、Word数据格式调用。 技术指标: 1、通道数:并行16CH/台 2、输入量程:±5mV~±5V,多档可调 3、输入方式:差分/单端(±5V) 4、采样率:200K sps/CH,向下多档可调 3、存储深度:128K样点/CH(瞬态模式),海量(监测模式) 4、工作模式:瞬态在线、瞬态离线、在线连续 5、触发方式:内触发、外触发、手动触发 6、AD精度:16bit 7、带宽(-3dB):0~100KHz 8、综合误差:±0.3% F2S 9、适用电桥电阻:60Ω~5kΩ 10、供桥电压:2V,4V,6V,10V(电流50mA) 11、平衡方式:自动平衡 12、低通滤波器(-3dB):1k Hz ~100k Hz,多档程控可调 14、工作温度:-10°C ~ +50°C 15、电源:220V/50Hz 16、通讯接口:RJ45 三、软件部分: 运行平台:winxp/win98 1、脉动压力监测 Puls1.0脉动监测软件对低速动态信号进行连续不间断采集功能,同时进行FFT计算,可长时间的监测并存储数据。检测后可同时调出两组数据进行分析或相关计算。 频域窗 时 域 窗 1、通讯功能:设定需要使用的采集器个数并与上位机相连。

相关主题
文本预览
相关文档 最新文档