当前位置:文档之家› 线性代数第五章练习及解答

线性代数第五章练习及解答

线性代数第五章练习及解答
线性代数第五章练习及解答

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

线性代数第四章练习题集答案解析

第四章 二 次 型 练习4、1 1、写出下列二次型的矩阵 (1)),,(321x x x f =32312 221242x x x x x x -+-; (2)),,,(4321x x x x f =434131212222x x x x x x x x +++。 解:(1)因为 ),,(321x x x f =),,(321x x x ????? ??---01211020 2??? ?? ??321x x x , 所以二次型),,(321x x x f 的矩阵为:??? ? ? ??---01211020 2。 (2)因为 ),,,(4321x x x x f =),,,(4321x x x x ?? ? ?? ?? ??010********* 1110 ?????? ? ??4321x x x x , 所以二次型),,,(4321x x x x f 的矩阵为:?? ? ? ? ? ? ? ?010********* 1110。 2、写出下列对称矩阵所对应的二次型:

(1)??? ??? ?? ??--- - 22 2 12021 212 11; (2)?????????? ? ??---1212102102112121 12101210。 解:(1)设T 321),,(x x x X =,则 ),,(321x x x f =X T AX =),,(321x x x ?????? ? ? ?? --- - 22 2 12021212 11????? ??321x x x =3231212 32142x x x x x x x x -+-+。 (2)设T 4321),,,(x x x x X =,则 ),,,(4321x x x x f =X T AX =),,,(4321x x x x ????????? ? ? ? ?---121210 210211************??????? ??4321x x x x =43423231212 4222x x x x x x x x x x x x +++-++-。 练习4、2 1、用正交替换法将下列二次型化为标准形,并写出所作的线性替换。 (1)),,(321x x x f =32212 221442x x x x x x --+; (2)),,(321x x x f =322122x x x x -; (3)),,(321x x x f =32212 322214432x x x x x x x --++。

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

线性代数第五章习题

第五章 相似矩阵及二次型 一、判断题 1.线性无关的向量组必是正交向量组.( ) 2.正交矩阵的列向量组和行向量组都是单位正交向量组.( ) 3.正交矩阵一定是可逆矩阵.( ) 4.若n 阶矩阵A 与B 相似,则A 与B 不一定等价.( ) 5.若n 阶矩阵A 有n 不同的特征值,则A 相似于对角矩阵.( ) 6.实对称矩阵一定可以相似对角化.( ) 7. 相似矩阵的行列式必相同.( ) 8.若n 阶矩阵A 和B 相似,则它们一定有相同的特征值.( ) 9.n 阶实对称矩阵A 的属于两个不同特征值的两个特征向量一定正交.( ) 10. 若A 是正定矩阵,则A 的特征值全为正.( ) 二、单项选择题 1. 设001010100A ?? ?= ? ??? ,则A 的特征值是( ). (A) -1,1,1 (B) 0,1,1 (C) -1,1,2 (D) 1,1,2 2. 若12,x x 分别是方阵A 的两个不同的特征值对应的特征向量,则1122k x k x +也是A 的特征向量的充分条件是( ). (A) 1200k k ==且 (B) 1200k k ≠≠且 (C) 120k k = (D) 1200k k ≠=且 3. 若n 阶方阵,A B 的特征值相同,则( ). (A) A B = (B) ||||A B = (C) A 与B 相似 (D) A 与B 合同 4. 设A 为n 阶可逆矩阵, λ是A 的特征值,则*A 的特征根之一是( ). (A) 1||n A λ- (B) 1||A λ- (C) ||A λ (D) ||n A λ 5. 矩阵A 的属于不同特征值的特征向量( ). (A)线性相关 (B)线性无关 (C)两两相交 (D)其和仍是特征向量 6. ||||A B =是n 阶矩阵A 与B 相似的( ). (A)充要条件 (B)充分而非必要条件

线性代数第六章练习题

第六章练习题 一、 填空题 1. 设110100100000110,011,010,020003013000003A B C D ????????????????====???????????????????????? , 在,,B C D 中, 与A 等价的有 ; 与A 相似的有 ;与A 合同的有 . 2. 二次型123113(,,)361139T f x x x X X ?? ?= ? ??? ,它的矩阵是 ,它是 定二次型. 3. 设112 3 32000000,000000a a A a B a a a ????????==???????????? , 则当C = 时, .T C AC B = 4. 参数a 的取值范围是 时,二次型 222123123121323(,,)23224f x x x x ax x x x x x x x =++-+-是正定的二次型. 二、计算与证明题 1. 设二次型123121323(,,),f x x x x x x x x x =+- 1) 写出二次型123121323(,,)f x x x x x x x x x =+-的矩阵; 2) 二次型123(,,)f x x x 是不是正定二次型? 3) 用非退化线性替换X CY =化二次型123(,,)f x x x 为标准形, 并写出所用的线性替换. 2. 已知二次型2212313121323(,,)33484f x x x x x x x x x x x =++++, (1) 写出二次型的矩阵A ; (2)用正交线性替换X QY =, 化二次型123(,,)f x x x 为标准形; (3) 求实对称矩阵B , 使得3 .A B = 3. 实二次型222123123121323(,,)55266f x x x x x ax x x x x x x =++-+-的秩是2, 1)写出二次型123(,,)f x x x 的矩阵表示; 2)求参数a 及二次型123(,,)f x x x 的矩阵特征值;

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

线性代数课后习题

第四章 向量组的线性相关性 1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T =(1-0, 1-1, 0-1)T =(1, 0, -1)T . 3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T . 2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1321a a a a -+= ])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[6 1T T T --+= =(1, 2, 3, 4)T . 3. 已知向量组 A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由

????? ? ?-=312123111012421301402230) ,(B A ????? ??-------971820751610402230421301 ~r ????? ??------531400251552000751610421301 ~r ????? ? ?-----000000531400751610421301 ~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示. 由 ?? ?? ? ??-????? ??---????? ??-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示. 4. 已知向量组 A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ; B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明 由 ??? ? ??-???? ??-???? ??--=000001122010311112201122010311011111122010311) ,(~~r r A B , 知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.

线性代数练习册习题及答案本

第四章 线性方程组 §4-1 克拉默法则 一、选择题 1.下列说法正确的是( C ) A.n 元齐次线性方程组必有n 组解; B.n 元齐次线性方程组必有1n -组解; C.n 元齐次线性方程组至少有一组解,即零解; D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B ) A.当0D ≠时,非齐次线性方程组只有唯一解; B.当0D ≠时,非齐次线性方程组有无穷多解; C.若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题 1.已知齐次线性方程组1231231 230020 x x x x x x x x x λμμ++=?? ++=??++=?有非零解, 则λ= 1 ,μ= 0 . 2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠, 则方程组有唯一解i x = i D D . 三、用克拉默法则求解下列方程组 1.832623x y x y +=??+=? 解: 8320 62 D = =-≠ 1235 32 D = =-, 28212 63 D = =- 所以,125,62D D x y D D = ===-

2.123123123 222310x x x x x x x x x -+=-?? +-=??-+-=? 解: 2131 12112122 130 3550111 01 r r D r r ---=--=-≠+--- 11222 10051 1321135 011011D r r ---=-+-=---, 2121215 052 1322 1310 10 1 101 D r r --=-+-=-----, 3121225 002 1122 115 1 1 110 D r r --=+=--- 所以, 3121231,2,1D D D x x x D D D = ===== 3.21 241832x z x y z x y z -=?? +-=??-++=? 解: 13201 0012 412041200 183 583 D c c --=-+-=≠- 13110110014114020 283285D c c -=-+=, 2322 11 2 102 112100 123 125 D c c -=-+=--, 313201 01 2 4120 4120 182 582 D c c =-=-- 所以, 3121,0,1D D D x y z D D D = =====

线性代数第五章课后习题

习题五 (A) 1. 求下列矩阵的特征值与特征向量: (1) 123213336?? ?= ? ???A ; (2) ()121,2,33?? ?= ? ??? A ; (3) 310410482?? ?=-- ? ?--??A ; (4) 563101121-?? ?=- ? ??? A . 2. 已知0是矩阵10102010t ?? ?= ? ??? A 的特征值,求参数t 以及A 的特征值和特征向量. 3. 已知2103??= ? ?? A ,问T 130(,)=x ,T 212(,)=x 是否是矩阵A 的特征向量,并说明理由. 4. 设2 32-+=0A A E ,证明A 的特征值只能是1或2. 5. 已知三阶矩阵A 的特征值为102,,-,求323-+A A E . 6. 证明n 阶矩阵A 与它的转置矩阵T A 具有相同的特征值. 7. 设矩阵A 与Λ相似,其中 1241 242 1x --?? ?=-- ? ?--? ?A ,5 4y ?? ?= ? ?-? ? Λ. 求y x ,. 8. 设矩阵20131405x ?? ?= ? ??? A 可相似对角化,求x . 9. 设A 与B 都是n 阶矩阵,且0≠A ,证明矩阵AB 与矩阵BA 相似. 10. 试求一个可逆的相似变换矩阵,将下列对称矩阵化为对角矩阵: (1) 22225424 5-?? ?=- ? ?--? ?A ; (2) 2 202 1202 0-?? ? =-- ? ?-? ? A ; (3)3 242 0242 3?? ?= ? ??? A . (B) 1. 设三阶实对称矩阵A 的特征值为1,1321==-=λλλ,1λ对应的特征向量为T 1)1,1,0(=x ,求矩阵A . 2. 已知T 1)1,1,1(-=x 是矩阵2125312a b -?? ?= ? ?--?? A 的一个特征向量. (1) 试确定参数b a ,及特征向量1x 所对应的特征值; (2) 问矩阵A 能否相似于对角阵?说明理由. 3. 设A 是n 阶方阵,n 2,,4,2 是矩阵A 的n 个特征值,E 是n 阶单位阵,计算行列式3-A E .

线性代数1-2章精选练习题

第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n (C) k n 2 ! (D)k n n 2)1( 3. n 阶行列式的展开式中含1122a a 的项共有( )项. (A) 0 (B)2 n (C) )!2( n (D) )!1( n 4. 001001001001 000( ). (A) 0 (B)1 (C) 1 (D) 2 5. 0 001100000100100( ). (A) 0 (B)1 (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f 中3x 项的系数是( ). (A) 0 (B)1 (C) 1 (D) 2 7. 若2 1 33 32 31 232221 131211 a a a a a a a a a D ,则 32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4 (C) 2 (D) 2 8.若 a a a a a 22 2112 11,则 21 11 2212ka a ka a ( ).

(A)ka (B)ka (C)a k 2 (D)a k 2 9. 已知4阶行列式中第1行元依次是3,1,0,4 , 第3行元的余子式依次为 x ,1,5,2 , 则 x ( ). (A) 0 (B)3 (C) 3 (D) 2 10. 若5 7 3 4 111113263478 D ,则D 中第一行元的代数余子式的和为( ). (A)1 (B)2 (C)3 (D)0 11. 若2 23 5 1 011110403 D ,则D 中第四行元的余子式的和为( ). (A)1 (B)2 (C)3 (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1 (B)2 (C)3 (D)0 二、填空题 1. n 2阶排列)12(13)2(24 n n 的逆序数是. 2.在六阶行列式中项261365415432a a a a a a 所带的符号是. 3.四阶行列式中包含4322a a 且带正号的项是 . 4.若一个n 阶行列式中至少有12 n n 个元素等于0, 则这个行列式的值等于 .

线性代数第五章习题答案

思考题5-1 1. 1123123100,000=?+?+?=?+?+?a a a a 0a a a . 2.不一定。例如,对于123101,,012?????? ===???????????? a a a ,它们中的任两个都线性无关,但 是123,,a a a 是线性相关的。 3. 不一定。也可能是2a 能由13,a a 线性表示,还可能是3a 能由12,a a 线性表示。 4. 不一定。例如,对于12121100,;,0012-???????? ====???????????????? a a b b 。12,a a 和12,b b 这两个 向量组都线性相关,但1122,++a b a b 却是线性无关的。 5. 向量组121,,,,n n +a a a a 线性无关。根据定理5-4用反证法可以证明这一结论。 习题5-1 1.提示:用行列式做。 (1)线性无关。 (2)线性相关。. 2. 0k ≠且1k ≠。 3.证:1212,,,1,,,,n n ==∴e e e E e e e 线性无关。 设[]12,,,,T n b b b =b 则1122.n n b b b =+++b e e e 4. 证法1:因为A 可逆,所以方程组=Ax b 有解。根据定理5-1,向量b 能由A 的列向量组12,,,n a a a 线性表示,所以向量组12,,,,n a a a b 线性相关. 证法2:通过秩或根据m n >时m 个n 元向量一定线性相关也可马上证明。 5. .证: (1)因为A 的列向量组线性相关,所以齐次线性方程组=Ax 0有非零解,设≠u 0是它的非零解,则.=Au 0 由=B PA ,得.=Bu 0可见=Bx 0有非零解,所以B 的列向量组线性相关。 (2)若P 可逆,则1-=A P B 。由(1)的结论可知,B 的列向量组线性相关时,A 的列向量组也线性相关,所以A 和B 的列向量组具有相同的线性相关性。 注:该题也可根据性质5-6和性质5-3来证明。 6. 证:由A 可逆知,A 的列向量组线性无关。根据定理5-6,增加两行后得到的矩阵B 的列向量组也线性无关.

线性代数练习题

线性代数练习题 第二章 矩 阵 系专业班 姓名学号 §2.4 逆矩阵 一.选择题 1 . 设 * A 是n 阶矩阵 A 的伴随矩阵,则 [ B ] (A )1-*=A A A (B )1 -* =n A A (C )**=A A n λλ)( (D )0)(=**A 2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B | 3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ] (A )A A λλ= (B )A A λλ= (C )A A n λλ= (D )A A n λλ= 4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 二、填空题: 1.已知A B AB =-,其中??? ? ??-=1221B ,则=A 2.设??? ? ??=???? ??12643152X ,则X = 3.设A ,B 均是n 阶矩阵,2=A ,3-=B ,则1 2-* B A = 46 n - 4.设矩阵A 满足042 =-+E A A ,则= --1 )(E A 22 A E + 三、计算与证明题: 1. 设方阵A 满足022 =--E A A ,证明A 及E A 2+都可逆,并求1 -A 和1 2-+)(E A 答案: 2. 设??? ? ? ??---=14524 3121A ,求A 的逆矩阵1-A 答案:

(完整版)线性代数课后习题答案第1——5章习题详解

第一章 行列式 4.计算下列各行列式: (1)???? ????? ???71 10 025********* 4; (2)????????????-26 52321121314 1 2; (3)????????---ef cf bf de cd bd ae ac ab ; (4)????? ???? ???---d c b a 1 00 110011001 解 (1) 71100251020214 214 34327c c c c --0 10014 2310202110 214---=3 4)1(1431022 11014+-?---=14 31022110 14-- 3 21132c c c c ++14 171720010 99-=0 (2) 260 5232112131 412-24c c -2605032122130 412-24r r -0412032122130 412- 14r r -0 000032122130412-=0 (3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4 (4) d c b a 100 110011001---21ar r +d c b a ab 1 001 100 110 10---+=12)1)(1(+--d c a ab 1011 1--+

2 3dc c +0 10111-+-+cd c ad a a b =23)1)(1(+--cd ad ab +-+111=1++++ad cd ab abcd 5.证明: (1)1 11222 2b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3 3+; (3)0)3()2()1()3()2()1()3()2()1()3()2()1(2 2222222 2 2222222 =++++++++++++d d d d c c c c b b b b a a a a ; (4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?; (5)1 22 110000 0100001a x a a a a x x x n n n +-----ΛΛΛΛΛΛ ΛΛΛΛn n n n a x a x a x ++++=--11 1Λ. 证明 (1)0 0122222221 312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a (2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开 按第一列 左边 bz ay by ax x by ax bx az z bx az bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分 bz ay y x by ax x z bx az z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分

3,4章线性代数练习题

一. 1.设行列式a a a a 111221 22=m ,a a a a 131123 21=n ,则行列式a a a a a a 11121321 2223 ++等于( ) A. m+n B. -(m+n) C. n -m D. m -n 2.设矩阵A =100020003?? ?? ? ??,则A -1等于( ) A. 13000 12000 1?? ?? ?????? B. 1000 12000 13?? ?? ?? ???? C. 130********?? ? ?????? D. 1 2000 130001?? ?? ? ???? ? 3.设矩阵A =312101214---?? ?? ? ??,A *是A 的伴随矩阵,则A *中位于(1,2)的元素是( ) A. –6 B. 6 C. 2 D. –2 4.设A 是方阵,如有矩阵关系式AB =AC ,则必有( ) A. A =0 B. B ≠C 时A =0 C. A ≠0时B =C D. |A |≠0时B =C 5.设n 维向量组,1α,2α,3α…s α(n s ≤≤3)线性无关的充分必要条件是___________。 (A) 存在一组不全为0的常数k 1,k 2,…k s 使得k 11α+ k 22α+…k s s α0≠; (B) 该组中的任意两个向量都线性无关; (C) 该组中存在一个向量,他不能由其它向量线性表出; (D) 该组中任意一个向量都不能由其它向量线性表出 6. 设 A 为三阶矩阵,A 的三个特征值为-1,3,4,则A 的逆矩阵A -1的特征值为___________。 (A) -1,3,4 (B) -1,4 1 , 31 (C) 1,9,16 (D) -1,1,1 7. 若1α,2α是齐次方程组AX=0的两个线性无关的解,A 为5阶方阵,k 1,k 2为任意常数,若k 11α+ k 22α为AX=0的通解,则R (A )=___________。 (A) 1 (B) 2 (C) 3 (D) 4 8、设12λ=是可逆阵A 的一个特征值,则矩阵1 213A -?? ??? 有一个特征值等于( )。 ()()()()43113424 A B C D 9、设矩阵A 的秩为r ,则A 中( ) (A).所有r -1阶子式都不为0 (B).所有r -1阶子式全为0 (C)至少有一个r 阶子式不等于0 (D).所有r 阶子式都不为0 10、已知矩阵34A ?的行向量组线性无关,则矩阵34T A ?的秩等于( ) ()()()()1234A B C D

线性代数课后习题答案 1.3

习题1.3 1. 设11 1213 21 22233132330a a a D a a a a a a a ==≠, 据此计算下列行列式(要求写出计算过程): (1) 31 3233 21 2223111231a a a a a a a a a ; (2) 11 1312 1221232222313332 32 235235235a a a a a a a a a a a a ---. 分析 利用行列式得性质找出所求行列式与已知行列式的关系. 解 (1) 31 323321 222311 12 31 a a a a a a a a a 13 R 111213 21 222331 3233 a a a a a a a a a -=a -. (4) 方法一 11 13121221 23222231 333232 235235235a a a a a a a a a a a a ---23 5C C +111312212322313332 232323a a a a a a a a a 提取公因子 11 13122123223133 32 6a a a a a a a a a 23 C 111213 21 222331 32 33 6a a a a a a a a a -=6a -. 方法二 注意到该行列式的第二列均为2个数的和, 可用行列式的性质5将该行列式分成2个行求和, 结果与方法一相同. 2. 用行列式性质计算下列行列式(要求写出计算过程): (1) 19981999 20002001 20022003200420052006; (2) 1 11 a b c b c a c a b +++; (3) 11121321 22233132 33 x y x y x y x y x y x y x y x y x y ; (4) 10 010220 033040 04 --; (5) 111112341410204004; (6) 111011 01101101 11 ; (7) 2 11 4 1 120110299 ---; (8) 222222a b c a a b b c a b c c c a b ------. 分析 第(1)至第(4)小题可利用行列式性质求解; 第(5)至第(9)小题是采用归结化简为上 (下)三角行列式求解.

上海交通大学线性代数第一、二章复习题附答案

代数第一、二章复习 2005-10-31 6 A 2 B = 54 、填空题 1、设 ,则 A 中元素a i2的代数余子式等于-11; Q A 12 1) 1 2、设 3A 3、设 3n A 33 3阶方阵A t ,且 AB 0, 3 -7 a 1 4 ?设 A = a ? a 3 b 1 b 2 b s C 1 a 1 C 2 C 3 a 2 a 3 b 1 b 2 b 3 d 1 d 2 d 3 ,且 A =4, B =1,则 3a 1 3D C 1 2d 1 a 1 bi C 1 2d 1 3a 2 3b 2 2d 2 32 a 2 b 2 C 2 2d 2 3a 3 3b 3 C 3 2d 3 a 3 b 3 C 3 2d 3 A 2 B = a 1 b 2d 1 a ? b 2 C 2 9 a 2 b 2 2d 2 a 3 b a 3 b 3 2d 3 9 9[4 2 1] 54 ; a 1 b 1 a 1b 2 ab _ azd a 2b 2 a 2b n 0 , b )i 0, i 1, 2, ,n , 6.设A ,其中a i anb a n b 2 a n b n 则 r(A) = 1 5已知A 是秩为2的4阶矩阵,则 A j 7 、设A , B , C 都是行列式等于3的3阶方阵,则行列式 r(A )= o

B D 1 ! 27 (-A) 2C 3 Q 由于(1)9| B|( -A) 1 ; 3 B 3A 1 B ( 3)- A 1 27 8、已知A 为三阶方阵,且 A 4 , A 2 E 8 ,则 A A 1 = __2__ ; o 阶方阵,且行列式|A| a ,则|2A| _|2A| 25a 、选择题 *11 *12 *13 4 *11 2 *11 3*12 *13 1、如果D *21 *22 *23 1 ,则 D 1 4 *21 2*21 3*22 *23 *31 *32 *33 4 *31 2 *31 3*32 *33 1 1 1 1 1 1 0 3 9、设 A ,则第 1 1 1 0 1 2 1 1 10、设A 为n 阶可逆矩阵 5 B 是 将 矩阵,则 AB 1 Pii 。 11 ?设A 为5阶方阵, 且 A < =-4 4行各元素的代数余子式之和为 A 中的第i 行与第j 行元素对调后的 则行列式|AA 46 a 11 a 12 a 13 5*11 3*12 *13 12如果D 821 *22 *23 3,则 D 1 5*21 3*22 *23 *31 *32 *33 5*31 3*32 *33 a 21 a 22 14 .已知行列式 A 12 元素(2, 321X 1 *22 X 2 b 1 b 2 的解必 素(1, 2)的 代数余子式 1)的代数余子式A 21的值 15 .已知A 为5 =-45 a 12 811X 1 a 12X 2 13.如果 线性方程组 a 11

相关主题
文本预览
相关文档 最新文档