当前位置:文档之家› 金属陶瓷梯度热障涂层

金属陶瓷梯度热障涂层

金属陶瓷梯度热障涂层
金属陶瓷梯度热障涂层

不锈钢表面金属陶瓷涂层技术

摘要 近年来,随着现代化工业的不断进步与发展,人们对于材料的性能要求越来越高,其中较为重要的一点便是材料的耐磨性。众所周知,磨损现象不论在科研实践还是日常生活中都是很常见的,并且若不及时更换调整便极有可能造成严重的安全事故。因此,如何提高易磨损材料的耐磨性能便显得尤为重要。 锌锅沉没辊是热浸镀锌设备中一种重要零件,我国锌锅沉没辊的辊轴与辊套需要从国外进口,不仅价格昂贵而且磨损严重,平均一周就需要更换一次设备,导致轧制的成本很高。所以锌锅沉没辊辊轴与辊套的耐磨性是一个越来越受到重视的问题。本设计旨在制备316L不锈钢表面的耐磨陶瓷涂层来缓解锌锅沉没辊的辊轴与辊套过于严重的磨损,以此延长锌锅沉没辊的辊轴与辊套的寿命,提高生产效率。 我们通常用表面合金化、表面形变强化、表面涂层强化等方法来提高材料耐磨性。本设计借助钎涂原理,分别以氧化铝和碳化钨作为陶瓷增强相材料,Ni82CrSiB合金为钎料,利用真空钎涂的方法制作出较为耐磨的陶瓷涂层,从而达到提高不锈钢表面耐磨性的要求。试验结果表明:氧化铝与钎料的润湿效果不够理想,在涂层中没能发现氧化铝相,即以氧化铝作为陶瓷增强相材料无法达到预期目标;而碳化钨颗粒在涂层中分布较均匀,涂层表面光滑,有金属光泽,并且与不锈钢表面冶金结合良好,硬度达到了不锈钢基体的6倍以上,有望大幅提高材料的耐磨性能。 关键词:金属陶瓷涂层;钎涂技术;硬度

Brazing Process of Metal-ceramic Coating on Stainless Steel Abstract In recent years, with the continuous progress and modernization of industrial development, people are increasingly demanding high-performance materials, one of the important points is the wear resistance. As we all know, the wear phenomena both in research and practice is still very common in daily life, and if not timely replacement of adjustments it is very likely result in serious accidents. Therefore, how to improve the wear resistance of the material is particularly important. The zinc pot sink roll is one of the important parts of hot dip galvanizing equipments. The bush of zinc pot sink rolls needs to be imported from abroad, and it is not only expensive but also badly worn., it needs to be replaced once per week, and that would lead to the high cost of rolling. Therefore, the wear resistance of the zinc pot sink roller bearing is a question with more and more attention. This design is in order to prepare the surface of 316L stainless steel wear-resistant ceramic coating to solve the zinc pot sink roll shaft and insert wear too serious problem to extend the life of the equipment and The main methods of improving the wear resistance for material are surface strain hardening, surface alloying, surface coating strengthened and so on. In this design, we use the braze coating principle, and make the Al2O3 and WC as ceramic reinforcement materials, Ni82CrSiB as the brazing. The method of using the vacuum braze coating to produce more wear-resistant ceramic coating, so as to improve wear resistance of the stainless steel surface requirements. The results showed that: The wetting effect of Al2O3 and brazing filler is not satisfactory, and we could not find alumina phase in the coating, that is to say, Al2O3 as the ceramic reinforcement materials can not achieve the desired goal. However, WC particles in the coating are distributed more evenly. The coating surface is smooth, with a metallic luster, and it is a good metallurgical bond with the stainless steel surface. Its hardness is more than 6 times the stainless steel substrate, and it can be required to improve the wear resistance. Key Words:metal-ceramic coating; braze coating process; hardness

喷漆废气处理工程设计方案

公司喷漆废气处理方案 一、概况 公司在生产过程中产生一定量的喷漆废气,为消除环境污染,对废气进行治理,喷漆处理采用水帘喷淋过滤、漆雾毡过滤、活性碳吸附工艺和净化设备,使经处理后的喷漆废气最终达到《大气污染物综合排放标准》(GB16297-1996)中相关标准后再排放。 二、设计依据、标准 1、《中华人民共和国环境保护法》; 2、《中华人民共和国大气污染防治法》 3、《大气污染物综合排放标准》(GB16297-1996) 4、《环境空气质量标准》(GB3096-1996) 5、《通风空调工程施工及验收规范》。 三、设计原则 ⑴严格执行有关环保规定,废气处理后确保长期、稳定达标排放; ⑵采用成熟、可靠的废气处理工艺;最大限度降低废气处理运行费用; ⑶工艺设计与设备选型能够在运行过程中具有较大的调节余地; ⑷废气处理工艺设备操作要求简单,运行管理及维护方便。 四、设计范围和规模 (1)喷漆生产现场工艺设施分析与改造 (2)设备设计及选型; (3)废气治理平面布置及工艺设计; (3)设计总气量:8600m3/h; (4)工程概算48.5万元。 1

五、设计标准 1.设计污染物浓度 设计有机污染物浓度见表1: 2.排放标准 执行《大气污染物综合排放标准》(GB16297-1996)第二时段一级标准; 执行《工业企业设计卫生标准》(TJ39-76),具体执行排放标准见表2; 六、工艺设施分析 工艺流程简介:在喷漆房产生的废气,由风机吸力形成负压进入水帘喷淋系统,在喷淋室中废气以缓慢速度通过。喷淋室内水经过水幕形成层水膜,废气中的细微颗粒(油漆颗粒、甲苯颗粒、二甲苯颗粒)被水捕获,形成较重的大颗粒沉降,固气得到分离,气体得到净化,收集的有机废气由四个风机吸力抽风汇入风道主管,经干式漆雾毡室过滤后再进入活性炭吸附塔,活性炭吸附塔内装有高效吸附性能的活性炭填料。通过活性炭填料充分吸收废气中的有害物质。处理达标后的气体最后由离心风机送出排放口。 具体工艺流程图如下:见图1 七、工艺原理 本工艺适用于中等浓度污染物的废气治理,在喷漆房产生的废气,由风机吸力形成负压进入水帘喷淋系统,在喷淋室中废气以缓慢速度通过。喷淋室内水经过水幕形成层水膜,废气中的细微颗粒(油漆颗粒、甲苯颗

金属陶瓷

金 属 陶 瓷 材 料 2014级材料一班 王倩文 1430140512

目录 一、金属陶瓷的定义 (3) 二、金属陶瓷的特点 (4) 1.金属对陶瓷相的润湿性好。 (4) 2.金属相与陶瓷相应无剧烈的化学反应 (4) 3.金属相与陶瓷相的膨胀系数相差不会过大 (4) 三、金属陶瓷的行业现状 (5) 1.中国硬质合金工业产业分布、生产企业和研发机构 (5) 2.碳化钛基金属陶瓷 (5) 2.1 切削加工领域的应用 (6) 2.2 航天航空工业方面的应用 (6) 2.3 其他方面的应用 (7) 3.碳氮化钛基金属陶瓷 (8) 3.1 Ti(C,N)基金属陶瓷组分和成分设 (8) 3.2 晶粒细化 (9) 3.3 Ti(C,N)基金属陶瓷的应用 (9) 4.三元硼化物金属陶瓷 (10) 四、金属陶瓷的发展趋势 (11) 1.新材料的研究与开发。 (11) 2.超细晶粒和纳米级金属陶瓷。 (12) 3.梯度金属陶瓷的应用开发。 (12) 4.金属陶瓷回收再利用问题。 (12) 5.基础研究的发展。 (13)

材料是人类文明的里程碑,是人类赖以生存和得以发展的重要物质基础。正是材料的使用、发现和发明,才使人类在与自然界的斗争中,走出混沌蒙昧的时代,发展到科学技术高度发达的今天。当今世界,能源、信息、材料已成为人类现代文明进步的标志,继金属、有机高分子材料以后,金属陶瓷材料正以其卓越的性能、繁多的品种和广泛的用途进入各行各业,其发展之快,作用之大,令世人瞩目。金属陶瓷材料具有比强度高、比模量高、耐磨损、耐高温等优良性能,在众多场合已被作为新材料的代名词,成为现代高新技术、新兴产业和传统工业技术改造的物质基础,也是发展现代国防所不可缺少的重要部分,引起了世界各国尤其是发达国家的高度重视,纷纷投入巨资进行研究开发,把金属陶瓷材料作为本国高技术发展的一个重要领域。 一、金属陶瓷的定义 金属陶瓷是由陶瓷硬质相与金属或合金粘结相组成的结构材料。从金属陶瓷英文单词Cermets来,是由Ceramic(陶瓷)和Metal(金属)结合构成的。金属陶瓷既保持了陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又具有较好的金属韧性和可塑性。由于“金属陶瓷”和“硬质合金”两个学科术语没有明确的分界,所以具体材料也很难划分界线,从材料的组元看,“硬质合金”应该

TBC热题目背景介绍讲解

一、概述 国内外研究状况 燃气涡轮发动机的主要发展方向是提高发动机涡轮前燃烧温度、增加推重比和提升涡轮发动机部件在包括腐蚀和氧化等严酷服役环境下的热效率。随着发动机燃烧温度、推重比和热效率的提高,发动机热端部件,特别是燃烧室中的燃气温度和燃气压力不断提高,而现有的高温合金和冷却技术难以满足需要,热障涂层(Thermal Barrier Coatings,TBCs)技术[1, 2]得到了广泛的重视。热障涂层是金属缓冲层或粘结层和耐热性、隔热性好的陶瓷热保护功能涂层组成的“层和型”金属陶瓷复合涂层系统。表面陶瓷工作层是借助于基体和陶瓷层之间的金属粘结层与高温基体结合。此中间过渡层具有优异的耐高温、抗氧化性能,热膨胀系数介于基体金属与表面陶瓷层之间,减少了陶瓷涂层与合金基体之间热实配问题,可减缓界面应力,提高涂层结合强度、抗热震性能和工作寿命。随着燃气温度的不断提高,如何获得性能更优异、寿命更持久的热障涂层已经成为研究人员迫切需要解决的重大难题。 热障涂层主要包括双层系统、多层系统和梯度系统[1]。这三种结构形式各有特点,针对不同的环境要求,可以采用不同的结构体系。多数实际应用的热障涂层采用双层结构如图1(a)所示,这种结构制备工艺相对简单、耐热性强,但由于涂层热膨胀系数在界面跃变较大,在热载荷作用下涂层内容易积聚较大的应力,因此抗热震性能难以得到进一步提高。为了缓解涂层内的热效应匹配问题,提高涂层整体抗氧化及热腐蚀能力,发展了多层结构系统(图1(b))。其每一层都具有各自的特定功能,外层封闭层和阻挡层主要用于阻挡燃气腐蚀产物的侵蚀,扩散阻挡层则用于降低氧原子进一步向涂层内扩散。多层体系结构的力学行为更为复杂,制备也相对困难,付诸实际运用很少。日本学者新野正之、平井敏和渡边龙三等于1987年首次提出了两种或多种金属与陶瓷材料复合[3],制备一种在结构和组分上呈连续梯度

涂层废气处理方案设计

涂层废气处理设计方案 二〇〇五年三月

1. 概述 喷漆车间在生产过程中排放出大量的涂层烘干废气,废气中含有较高浓度的甲苯。该废气若不经处理直接排入大气,不仅会污染周围的环境,而且导致了极大的原物料消耗,同时对企业的形象也会造成一定的影响,为此,必须进行处理。***公司根据现场调查和研究分析,就涂层废气中的甲苯治理和回收工艺制定可行性方案,以供企业和环保管理部门参考,为今后工程的正式实施提供准备。 2. 设计依据 2.1废气中所含污染物种类、浓度及温度 污染物种类:甲苯 污染物排放量:甲苯为270 kg/h,废气排放量为33000 m3/h 烘箱出口温度:70~80℃ 通过计算可得甲苯浓度为:8182mg/m3,故属于高浓度高风量型。 2.2 设计规模 废气处理量:33000 m3/h;甲苯排放量为270 kg/h(最大值) 备注:本方案按最大值设计。 2.3 设计范围 从车间排气管汇合后出口开始,经装置入口至排风机出口之间,所有工艺设备、连接管道、管件、阀门、风机、电气装置、自动控制设备等。 2.4 处理后气体排放浓度

废气排放标准应执行GB16297-1996 《大气污染物综合排放标准》中的二级标准,具体见表1。 2.5 设计参考资料以及法规标准 《涂装作业安全规程——涂漆工艺通风净化》 GB 6515-86 国家标准局 1986《通风除尘技术》 《工业通风》 《环保设备材料手册》 《建设项目环境保护管理条例》 中华人民共和国国务院令第253号 1998 2.6 控制系统 采用可编程逻辑控制器(PLC)系统的自动控制,以实现治理系统的操作最优化,降低运行费用,增加设备运行的可靠性。 3. 工艺设计 3.1 设计原则 1. 严格执行国家环境保护有关法规,按规定的排放标准,使处

激光制备陶瓷热障涂层的研究和发展_张罡

2000年3月 沈阳工业学院学报 Vol.19No.1第19卷第1期 JO URN AL OF SHENY ANG IN STITU T E OF TECHNO LOGY M ar.2000文章编号:1003-1251(2000)01-0001-07 激光制备陶瓷热障涂层的研究和发展 张 罡1,梁 勇2 (1.沈阳工业学院材料工程系,沈阳110015;2.中国科学院金属研究所) 摘 要:论述了激光制备陶瓷热障涂层的研究和发展状况.激光制备陶 瓷热障涂层包括激光重熔和激光熔覆两种方法.激光重熔等离子喷涂热障 涂层可获得等离子喷涂涂层所不具备的外延生长致密的柱状晶组织,提高 涂层应变容限及热震性能.激光熔覆可获得自动分层的梯度热障涂层成分 及柱状晶组织,改善涂层的高温氧化及热震性能.通过激光工艺参数的优化 及涂层体系成分及性能的合理设计,可获得优于等离子喷涂,接近电子束物 理气相沉积的热障涂层性能. 关键词:热障涂层;激光重熔;激光熔覆;等离子喷涂 中图分类号:TN249;TQ174.75+8.16 文献标识码:A 随着航空燃气涡轮机向高流量比、高推重比、高涡轮进口温度方向发展,燃烧室的燃气温度和燃气压力不断提高,如军用发动机涡轮前温度已达1800℃,预计燃烧室温度将达到2000~2200℃.这样高的温度已超过现有高温合金的熔点,因此必须采用相应措施.除了改进冷却技术外,在高温合金热端部件表面制备热障涂层(TBCs)也是有效手段,它可达到170℃或更高的隔热效果,以满足高性能发动机降低温度梯度、热诱导应力和基体材料服役稳定的要求[1~2]. 热障涂层系统要求涂层不但有良好的隔热效果,而且抗高温氧化及热冲击.针对在腐蚀介质的特殊要求,还要满足高温耐蚀性能.实际应用的热障涂层制备方法主要是等离子喷涂(PS)和电子束-物理气相沉积(EB-PVD)两种方法[3~4]. 等离子喷涂方法主要包括空气等离子喷涂(APS)、真空等离子喷涂(V PS)、低压等离子喷涂(LPPS)等方法.沉积的陶瓷层需要相对粗糙的粘结层表面以得到良好的机械结合;应变容限靠陶瓷层中大量的气孔(气孔率可达20%)和微裂纹获得.抗氧化和热腐蚀性能由粘结层实现. EB-PV D方法在光洁的粘结层表面和正确的涂层涂覆温度条件下,可获得完整、致密的陶瓷层柱状晶组织,陶瓷层与粘结层通过涂层制备时产生热增长氧化层(TGO)以化学键形式连 收稿日期:1999-11-25 基金项目:国防科技重点实验室基金资助项目(ZK0601). 作者简介:张罡,男,37岁,讲师,博士研究生.

喷漆废气处理方案

喷漆废气处理设计方案 1. 概述 喷漆车间在生产过程中排放出大量的涂层烘干废气,废气中含有较高浓度的甲苯。该废气若不经处理直接排入大气,不仅会污染周围的环境,而且导致了极大的原物料消耗,同时对企业的形象也会造成一定的影响,为此,必须进行处理。杭州一达环保技术咨询有限公司根据现场调查和研究分析,就涂层废气中的甲苯治理和回收工艺制定可行性方案,以供企业和环保管理部门参考,为今后工程的正式实施提供准备。 2. 设计依据 2.1废气中所含污染物种类、浓度及温度 污染物种类:甲苯 污染物排放量:甲苯为270 kg/h,废气排放量为33000 m3/h 烘箱出口温度:70~80℃ 通过计算可得甲苯浓度为:8182mg/m3,故属于高浓度高风量型。 设计规模 废气处理量:33000 m3/h;甲苯排放量为270 kg/h(最大值) 备注:本方案按最大值设计。 设计范围 从车间排气管汇合后出口开始,经装置入口至排风机出口之间,所有工艺设备、连接管道、管件、阀门、风机、电气装置、自动控制设备等。

处理后气体排放浓度 废气排放标准应执行GB16297-1996 《大气污染物综合排放标准》中的二级标准,具体见表1。 设计参考资料以及法规标准 《涂装作业安全规程——涂漆工艺通风净化》 GB 6515-86 国家标准局 1986 《通风除尘技术》 《工业通风》 《环保设备材料手册》 《建设项目环境保护管理条例》 中华人民共和国国务院令第253号 1998 控制系统 采用可编程逻辑控制器(PLC)系统的自动控制,以实现治理系统的操作最优化,降低运行费用,增加设备运行的可靠性。 3. 工艺设计 设计原则 1. 严格执行国家环境保护有关法规,按规定的排放标准,使处 理后的废气各项指标达到且优于标准指标。

陶瓷_金属梯度热障涂层圆筒的传热与热应力有限差分分析

第26卷 第3期2002年6月 武汉理工大学学报(交通科学 与工程版 ) Journal of Wuhan University of Technolo gy (T r anspo rtat ion Science&Engineer ing) V ol.26 N o.3 June2002 陶瓷/金属梯度热障涂层圆筒的传热 与热应力有限差分分析* 刘 杰 肖金生 覃 峰 崔东周 (武汉理工大学能源与动力工程学院 武汉 430063) 摘要:推导了多层陶瓷梯度涂层圆筒模型的温度和热应力分布,对变物性材料的差分解法进行了 分析,并与实际的工程模型进行了对比计算,有限差分解和有限元解能够很好地吻合. 关键词:热障涂层;功能梯度材料;有限差分;热应力 中图法分类号:U664.12;O241.84 基于提高内燃机的经济性和可靠性的考虑, 近年来陶瓷/金属梯度热障涂层及其在内燃机中 的应用研究受到了广泛的重视[1,2].梯度热障涂层 可充分利用两种材料的优良特性,提高内燃机性 能.但涂层在交变热应力作用下仍易脱落破坏,所 以研究涂层工作条件下不同时刻不同涂层材料的 热应力分布有重要的意义[3],文中着重对热应力 的差分解与解析解、有限元解进行比较研究. 1 陶瓷/金属梯度热障涂层圆筒的 传热分析 1.1 陶瓷/金属梯度热障涂层的多层圆筒模型 图1所示为涂层在内的四层圆筒模型,层1 为纯陶瓷层,层2为陶瓷/金属梯度层,层3为过 渡金属层,层4为基体金属层.采用柱坐标系,r 为径向,z为轴向. 1.2 陶瓷/金属梯度圆筒传热分析的解析解 对图1所示的四层圆筒模型,假设圆筒为无 限长,两端绝热,且处于稳态温度场中.所以圆筒 内各点的温度T与z及时间t无关.由傅里叶热 传导方程写出多层圆筒模型的稳态热传导方程为 d d r [r i(r) d T i(r) d r ]=0 R i-1≤r≤R i,i=1,2,3,4( 1) 图1 陶瓷梯度涂层的多层圆筒模型 将圆筒沿半径方向分成n个薄层,各层厚度 任意,但要求每层内的物性可近似取为常数.假设 内边界的表面传热系数为h a,流体的温度为T f a; 外边界的换热系数为h b,流体的温度为T f b.如果 是第一类边界条件,可将相应的换热系数取为近 似无限大即可.因为每层可以认为是均质的,所以 导热系数在每一层内是常数.设第i层的导热系 数为 i,则由各层界面间的热流连续条件,可导出 圆筒模型内的温度分布为 T(r)=T f a+A(T f b-T f a)( 1 R0h a + ∑s i=1 ln(r i/r i-1) i+ ln(r/r s) s+1)(2)式中 A=[ 1 R0h a+ ∑n i=1 ln(r i/r i-1) i+ 1 R4h b] -1 收稿日期:20020401 刘 杰:男,25岁,硕士,主要研究领域为陶瓷/金属梯度热障涂层、轮机工程仿真与CAD *交通部重点科技项目资助(批准号:95040332)

MOCVD法制备金属陶瓷功能梯度材料的研究

第30卷 第4期西南师范大学学报(自然科学版)2005年8月Vol.30 No.4Journal of S outhwest China Normal University(Natural Science)Aug.2005 文章编号:10005471(2005)04068205 MOCV D法制备金属陶瓷功能梯度材料的研究① 章娴君1, 郑慧雯1,2, 张庆熙1, 王显祥3 11西南师范大学化学化工学院,重庆400715;21巴蜀中学,重庆400013; 31四川农业大学生命科学与理学院,四川雅安625014 摘要:利用金属有机化学气相沉积(MOCVD)方法,以Mo(CO)6,Si(OC2H5)4为物源,在Al2O3陶瓷基片上制备了金属陶瓷功能梯度材料,并用XPS,XRD,SEM等技术对其成分分布,物相组成和表面形貌进行测试和表征.结果表明:材料的组成沿厚度方向呈连续梯度变化,符合功能梯度材料的变化规律. 关 键 词:功能梯度材料(F GM);金属有机化学气相沉积(MOCVD);X射线光电子能谱(XPS);表面形貌 中图分类号:TB34文献标识码:A 金属陶瓷功能梯度材料(F GM)是针对高温、热循环和大温度落差的工作条件而开发的一类新型超耐热材料[14].材料一侧为耐高温、耐热冲刷特性的陶瓷材料,另一侧为具有高强度、高韧性的金属材料,其间为金属/陶瓷过渡层.由于材料微观结构沿某一个或某几个特定的方向呈连续变化,从而消除了由于金属和陶瓷物性参数的巨大差异而在材料内部产生的热应力界面,达到缓和热应力和耐热隔热的目的.因而,金属陶瓷功能梯度材料(F GM)是一类很有希望用于宇航、核能等高技术领域的新型复合材料[5].目前国内外已制备出的金属/陶瓷F GM有TiN2TiC,ZrO22Ni,TiAl2Cu,ZrO22Ti6Al4,SiC2Al,TiC2Ni,YSZ2 Ni,YSZ2Ni2Nb等[6].但还未见用化学气相沉积的方法制备Mo/SiO2功能梯度材料的相关报道. 本文以Mo(CO)6,Si(OC2H5)4为物源,采用功能梯度材料(F GM)的设计思想,利用MOCVD技术,通过改变沉积温度,沉积气压和反应气源中各组分的成份比来调节和控制薄膜的组织和成份,使之发生连续变化来制备Mo/SiO2功能梯度材料,并以XPS,XRD,SEM等技术研究该材料的成分分布,物相组成和表面形貌. 1 实 验 111 材料的成分设计 SiO2和Mo的热学和物理性能如表1.由表1可见,SiO2和Mo物理性质相差很大,尤其是热性能不匹配,会使不连续的梯度层间产生很大热应力.采用功能梯度材料(F GM)的逆设计思想,能获得合理组分构成的梯度层设计,有利于材料结构性能的平缓过渡,即可解决上述难题.设计中,假定Mo/SiO2功能梯度材料由5层组成,每层梯度材料是由均匀的SiO2和Mo构成,表面层为纯金属Mo,最底层为纯陶瓷SiO2,中间为过渡层.采用公式C=(x/d)p计算不同梯度层各成分的含量[7],其中:C为体积分数,x为各梯度层与表面层之间的距离,d为样品的厚度,p为成分分布指数.在本实验中,经理论分析p=1为最佳取值,计算所得各梯度层的最佳成份分布如图1所示. ①收稿日期:20040725 基金项目:重庆市攻关资助项目. 作者简介:章娴君(1944),女,四川成都人,教授,主要从事有机新材料研究.

梯度功能材料讲稿

梯度功能材料 一、引言 许多结构件会遇到各种服役条件,因此,要求材料的性能应随构件中的位置而不同。例如,民用或军用刀具都只需其刃部坚硬,其它部位需要具有高强度和韧性;一个齿轮轮体必须有好的韧性,而其表面则必须坚硬和耐磨;涡轮叶片的主体必须高强度、高韧性和抗蠕变,而它的外表面必须耐热和抗氧化。诸如此类,可以发现现在应用的许多材料都是属于这个范畴。众所周知,构件中材料成分和性能的突然变化常常会导致明显的局部应力集中,无论该应力是内部的还是外加的。但人们同样知道,如果从一种材料过渡到另一种材料是逐步进行的,这些应力集中就会大大地降低。为了减少材料的应力集中,提高材料的性能,人们发展了一种新型的功能梯度材料(Functionaily Gradient Materials,简称FGM)。虽然FGM 产生的时间不长,但很快引起世界各国科学家的极大兴趣和关注。日本、美国、德国、俄罗斯、英国、法国、瑞士等许多国家相继开展FGM的研究。其应用已扩展到宇航.核能源、电工材料、光学工程、化学工业、生物医学工程等各个领域中。 二、梯度功能材料的发展 梯度功能材料(FGM)是一种集各种组分(如金属、陶瓷、纤维、聚合物等)一体的新型材料,其结构、物性参数和物理、化学、生物等单一或综合性能都呈连续变化,以适应不同环境,实现某一特殊功能。 梯度功能材料其实早就出现在自然界中。神奇的大自然早制造出多种梯度材料。例如,竹子是一种典型的梯度功能材料,人类和动物身体中的骨骼也是一种梯度材料,其特点是结构中的最强单元承受最高的应力。但是,在生命体中的梯度结构与人造梯度结构之间存在很大的差异。有生命的“FGMs”也是“有智能的”,它们能够感受所处环境的变化(包括局部的应力集中),产生相应的结构修改,而人造梯度材料至少在目前还缺乏这种功能。 人造梯度功能材料并不是新的事物,只不过人们没有意识到而已。人类制造的钢制器件实质就是一种功能梯度材料。1900年,美国的伍德用明胶作成了光折射率沿径向连续变化的圆柱棒,称之为梯度折射材料。由于制作工艺没有解决,未能得到实际应用,没有引起人们的注意。1969年,日本板玻璃公司的北野等人用离子交换工艺制成玻璃梯度折射棒材和光纤,达到了实用水平,梯度折射率材料的研究才迅速发展起来,研究的国家也从美国和日本扩展到二十几个国家。 1972年,Bever和Duwez提出了功能梯度这个概念。功能梯度材料作为一个规范化正式概念于1984由日本国力宇航实验室提出。由于航天飞机中,燃烧室内外表面的温差达到1000K以上,普通的金属材料难以满足这种苛刻的使用环境。一系列政府报告论述了日本在以太空飞机为重点的航天研究中所预计的材料需求,结论是鉴于对高温结构件的许多严格要求,需要在结构中仔细地引入成分和微观结构梯度,不但能最全面地利用已有材料去生产所需要的构件,还能避免由于外加应力或温度变化而在不同材料的锐利界面上引起的应力和(或)应变集中。1987年,日本平井敏雄、新野正之和渡边龙三人提出使金属和陶瓷复合材料的组分、结构和性能呈连续性变化的热防护梯度功能材料的概念。同年,日本科技厅制定了有关FGMs的一项庞大计划,主要研究一边处于冷却而另一边处于炙热环境下的部件的特殊要求。1990

涂装行业废气治理、VOCs治理解决方案

涂装行业有机废气治理项目解决案 一、涂装行业有机废气治理目概况简述 涂装车间的废气主要是涂料中含有的有机溶剂和涂膜在喷涂及烘干时的分解物,统称为挥发性有机化合物(VOC),其成份主要有甲苯和二甲苯。这些成份对人的健康和生活环境有害,并且有恶臭,人如果长期吸入低浓度的有机废气,会引发咳嗽、胸闷、气喘甚至肺气肿等慢性呼吸道疾病,是目前公认的强烈致癌物。 有机废气对光化学烟雾、酸雨的形成起着非常重要的作用。为减少涂料中的VOC,开发了水性涂料和粉末涂料,但水性涂料中仍含有一定比例的有机溶剂。为此,各国颁布了相应的法令,限制该类气体的排放,我国于1997年颁布并实施的GB16297《大气污染综合排放标准》,限定了33种污染物的排放限值,其中包括苯、甲苯、二甲苯等挥发性有机溶剂。近年来,随着人们环保意识提高,环保法规不断完善与执法力度不断提高,汽车生产厂在新建涂装线中需配置废气处理设备,对老的涂装线也在逐步补充废气处理装置,废气经过处理达标后才能排放。针对不同的涂装废气,不同的厂家采用了不同的法,下面就汽车涂装废气处理技术进行初浅的分析探讨。 根据汽车涂装生产工艺,涂装废气主要来自于喷涂、干燥过程。所排放的污染物主要为:喷漆时产生的漆雾和有机溶剂,干燥挥发时产生的有机溶剂。漆雾主要来自于空气喷涂作业中溶剂型涂料飞散的部分,其成分与所使用的涂料一致。有机溶剂主要来自于涂料使用过程中的溶剂、稀释剂,绝大部分属挥发性排放,其主要的污染物为二甲苯、苯、甲苯等。故涂装中排放的有害废气的主要发

生源为喷漆室、晾干室、烘干室。 二、涂装行业有机废气治理工艺技术比较 对有机溶剂废气的处理法有多种,但每种处理法都有其适用性和局限性,因此有机废气处理工艺的选择,需要结合有机溶剂的物理化学特征。常见的处理工艺有两类:一类是破坏性法,如燃烧法等主要用于处理无回收价值或有一定的毒性的气体;另一类是非破坏性的,即吸收法,吸附法、冷凝法,以及新发展的生物膜法、脉冲电晕法、臭氧分解法、等离子体分解法等。 ①燃烧法 燃烧法是应用比较广泛的有机废气治理法,特别是对低浓度有机废气。燃烧法可分为直接火焰燃烧和催化燃烧。燃烧法的优点是:VOC处理效率高,一般在90%以上。但是对于低浓度有机废气不能满足燃烧所维持的温度,需要投加其它燃料,在不具备综合处理的情况下,废气处理设施运转费用较高。 ②吸收法 吸收法是利用有机溶剂的物理和化学性质,使用水或化学吸收液进行吸收。吸收装置种类很多,如喷淋塔、填充塔、气泡塔、筛板塔、各类洗涤器等。考虑到吸收效率,设备本身阻力以及操作难易程度选择塔器种类,有时可选择多级联合吸收。着重考虑不造成二次污染和废弃物的再处置问题。 ③吸附法

EB-PVD制备热障涂层完整介绍

电子束物理气相沉积(EB-PVD)技术制备热障涂层技术 黄升 摘要:本文介绍电子束物理气相沉积(EB-PVD)制备热障涂层技术,结合发展历程综述其技术原理、设备构造及工艺特点。 关键词:电子束物理气相沉积(EB-PVD)热障涂层 1 引言 当今航空涡扇发动机正朝高流量比、高推重比和高涡轮进口温度方向发展,这就使得发动机叶片所承受温度不断升高,据报道目前商用飞机燃气温度达1500 °C、军用飞机燃气温度高达1700 °C[1]。而当前所使用镍基高温合金最高工作温度只能达到1200 °C,并几乎已达到其使用温度上限,提升空间极其有限。面对发动机使用的高温障碍,降低发动机叶片温度就成了极其关键的任务。热障涂层就是一种降温的有效途径(见图1),自20世纪70年代初问世以来[2],受到广泛重视并迅速发展成为高温涂层研究的热点[3-8]。 图1 涡轮叶片承温能力 所谓热障涂层(Thermal Barrier Coatings, TBCs)是指由金属缓冲层或者黏结层和耐热性好、隔热性好的瓷热保护功能层组成的层合型金属瓷复合涂层系统[9]。一般由具有一定厚度和耐久性的瓷涂层、金属粘结层和承受机械载荷的合金组成。目前根据不同设计要求热障涂层具有如图2所示双层、多层、梯度系统三种结构形式。 图2 热障涂层结构示意图 而电子束物理气相沉积(Electron bean-physical vapor deposition EB-PVD)制备热障涂层(TBCs)是在20世纪80年代开发,近年来不断发展成熟起来的新技术,其使用高能

电子束加热并汽化瓷源,瓷蒸汽以原子形式沉积到基体上而形成涂层。EB-PVD法制备的TBCs涂层表面光洁,有良好的动力学性能;涂层/基体的界面以冶金结合为主,结合力强,稳定性好。特别是其制备涂层组织为垂直基体表面柱状晶结构,具有很高的应变容限,较热喷涂制备涂层热循环寿命提升巨大。另外EB-PVD工艺技术精密,具有良好的可重复性。 简而言之,EB-PVD法制备热障涂层是兼具优良性能和巨大应用潜力的前沿技术。 2 EB-PVD技术发展历程 EB-PVD技术是伴随着电子束与物理气相沉积技术的发展而发展。直到上世纪中叶,电子束与物理气相沉积技术结合并成功地用于材料焊接及镀膜(或涂层)的制备。20世纪80年代,美国、德国等西方国家开始利用EB-PVD工艺制备热障涂层,但由于该设备在西方国家价格昂贵,且制备成本高,这使得对EB-PVD 技术的开发曾经一度停止[10, 11]。 20世纪50年代,前联对EB-PVD设备和工艺的投入全部集中在乌克兰巴顿焊接研究所,该所设计制造了30多台各种类型的EB-PVD设备。前联解体后,在科学院院士B A Movchen 的领导下,乌克兰巴顿焊接研究所成立了电子束国际中心(International Center for Electron Beam Technologies, ICEBT),并将EB-PVD设备的成本降低到接近西方国家同类设备的1/5。该中心成功地在叶片上制备出热障涂层,现已得到应用。到了上世纪九十年代中期,随着乌克兰巴顿焊接研究所研制的低成本的EB-PVD设备在世界各国的推广,从而掀起了EB-PVD技术的开发的新热潮[12-14]。 鉴于等离子喷涂(APS)涂层表面粗糙度大、孔隙多,难以适应气动性要求高的飞行器发动机涡轮转子叶片,加之APS涂层热稳定性和抗热冲击、热腐蚀性差。因此自20世纪70年代开始国外对EB-PVD制备TBCs开展了大量研究,自20世纪80年代美国、德国均获得可成功的应用[15]。由于EB-PVD TBCs柱状组织结构,能非常牢固地粘接在金属基体上,当基体受热膨胀时,柱状瓷晶体在水平方向具有大膨胀系数与基体匹配,在平面的氏模量较低,可更多地释放热应力,具有较好的抗热冲击性。正是这种高应力容限,使这种TBCs在高应力发动机上成功工作而不致剥落。这种特性是等离子喷涂TBCs不具备的。EB-PVD制备的TBCs在航空航天领域得到了广泛应用并发挥了巨大作用,正常情况下,TBCs可降低金属表面温度50~80 °C,个别高温点降温可达140 °C。 以EB-PVD技术在梯度热障涂层的研究历程中起的作用为例,为了解决金属与瓷热膨胀系数不匹配造成瓷层过早剥落现象,德国和加拿大研究人员最先提出了梯度热障涂层的设想。梯度热障涂层(图3)顶层YSZ(Yttria Stabilized Zironia)瓷层,底层为NiCoCrAlY金属粘接层,在二者之间引入了Al2O3-YSZ 梯度过渡层[16, 17]。该系统中金属粘接层到瓷层为连续过渡,消除了层状结构的明显层间界面,使涂层力学性能由基体向瓷层连续过渡。B A Movchan等人[18]选用Al-Al2O3-YSZ作为梯度过渡材料,利用EB-PVD采用单源多组分蒸发技术制备梯度热障涂层。采用EB-PVD方法制备梯度热障涂层,将在YSZ瓷层形成柱状晶结构,极提高瓷层的容应变能力。当Al2O3和ZrO2共同蒸发时,将在基体上得到具有微观多孔结构的Al2O3-YSZ混合层,可以降低材料的热导率。EB-PVD制备梯度TBC的抗热震性能得到了提高,在1135 °C (24 h)风冷至50 °C的热循环试验条件下,涂层能持续1500 h。

功能梯度材料分层法研究

功能梯度材料分层法研究 摘要 功能梯度材料具有随空间位置呈梯度变化的材料属性,这一性能引起了材料科学家和工程师研究的兴趣。基于分层法,将功能梯度材料平面结构划分成若干层,每层的材料参数按函数形式变化。在此分层模型基础上得到同一层的材料参数为常数,然后各层按照常规的有限元方法进行网格划分,建立有限元模型进行功能梯度材料平面结构的力学分析。通过设计组分材料弹性模量的三种工况,讨论了弹性模量梯度系数对有限元计算结果的影响,有一定的误差。 于是引入线性分层法,该模型基于任意一条连续曲线可用一系列的分片连续直线段来逼近的事实,将梯度材料层分成若干子层,在各子层界面处材料参数连续并且等于实际值。将此模型应用于实际问题推导,我们发现与指数模型结果吻合的很好。 关键词:功能梯度材料;分层法;梯度系数;线性分层法 1 FGM研究背景 FGM概念是在1984年前后,由在日本仙台地区的二位材料科学家,日本航天技术研究所的新野正之博士、东北大学的平井敏雄教授和渡边龙三教授首先提出的。当初提出FGM概念的目的是为了解决在设计制造新一代航天飞机的热保护系统中出现的许多问题。据估计,航天飞机工作时,机体外部有些部位最高温度将达1800℃,因此对航天飞机表面的材料要求是要能耐高达1800℃的温度和1600℃的温度落差。已知的工业材料没有能忍受如此苛刻的热机负载的,能用于这种环境条件的材料必须具备以下三个特征:材料的高温表面层能耐热和抗氧化,低温侧具有力学韧性及整个材料中能有效地缓和热应力。面对这种材料要求,FGM这一新概念被提了出来。 这种新材料的高温侧是能耐热的陶瓷,低温侧是具有高热导率的韧性金属,并具有从陶瓷到金属的梯度成分变化。这种FGM的特征其热膨胀系数可以通过控制两个表面之间的成分、微结构、微孔的比率来加以调节。FGM概念一提出就受到日本和世界材料界的高度重视。日本科技厅授予此概念的发明者特别奖。FGM也被列入各种国际国内会议的报告范围。 1.1 FGM定义及原理

喷涂废气处理设计方案

某喷涂公司 喷涂废水处理工程 设 计 方 案 3吨/日废水 ×××××××涂装设备有限公司

二00六年月 喷涂废水处理工程设计方案设计方案 目录 第一章概述 3 一、项目概述 3 二、设计原则 3 三、设计依据 3 四、设计范围 4 五、设计水量、水质及治理目标 4 第二章工艺设计5 一、工艺选择 5 二、工艺流程 5 三、工艺特点 6 四、主要设计参数 6 五、构筑物设备清单7 第三章土建设计8 一、土建设计原则8 二、土建工程结构类型设计8

三、建构筑物设计要点9 四、总平面布置9 五、新建构筑物一览表9 第四章配电及自动控制9 一、设计范围9 ××××××涂装设备有限公司第1页 喷涂废水处理工程设计方案设计方案 二、电源要求9 三、电缆及敷设10 四、用电负荷表10 第五章运行成本10 第六章保修期与售后服务10 第七章工程估算 11 一、土建部分估算11 二、工艺及电气设备及材料估算11 三、总估算 12

××××××涂装设备有限公司第2页喷涂废水处理工程设计方案设计方案 第一章概述 一、项目概述 某喷涂有限公司位于。该公司主要从事对塑料半成品的表面喷涂处理,该公司的喷涂生产车间每天排放3吨的喷涂废水。喷涂废水主要含酮类,醇类,苯,若不经过处理后排放会对其周围环境带来不良影响。该公司领导为了执行国家及省、市有关环保规定,促进经济建设与环境保护协调发展,拟对该喷涂废水进行治理。受该公司委托,

我公司现编制该公司废水治理设施工程方案。 二、设计原则 ●严格执行国家和地方有关环境保护的各项规定,确保各项出水指标达到国家及地方有关污染物排放标准。 ●采用目前成熟、实用的处理工艺,稳定可靠地达到治理目标。 ●在上述要求前提下,达到操作管理方便、工程费用省、运行成本低等目的。 三、设计依据 ●《中华人民共和国环境保护法》(1989年12月) ●《中华人民共和国水污染防治法》(1984年5月) ●《污水综合排放标准》(GB8978-96) ●《室外排水设计规范》GBJ14-87(1997年版) ●广东省地方标准《水污染物排放限值》(DB44/26-2001)第 二时段一级标准 ××××××涂装设备有限公司第3页 喷涂废水处理工程设计方案设计方案 四、设计范围 本设计包括废水处理站场地范围内的工艺安装、基础以上的土建、电气及自控等所有内容,以及废水处理站内

功能梯度热障涂层热震表面裂纹_柳彦博

功能梯度热障涂层热震表面裂纹 柳彦博,王全胜,王富耻,马 壮,李东荣 (北京理工大学材料科学与工程学院,北京100081) 摘 要:作为发动机热端部件上使用的功能梯度热障涂层,其热震性能的好坏直接关系到涂层的使用寿命,涂层内部的裂纹在热震环境下的变化是影响其热震性能乃至使用寿命的直接因素。采用YSZ与NiCr CoA lY等离子喷涂制备了功能梯度热障涂层试样,采用扫描电子显微镜对不同次数热震后的涂层表面不同位置进行了观察比较。结果表明,随试样位置及热震次数的不同,表面裂纹存在显著不同;除主裂纹外,会产生二次裂纹;主裂纹与二次裂纹的宽度存在差异。 关键词:功能梯度;热障涂层;热震;表面裂纹;等离子喷涂;隔热 中图分类号:T G166 文献标识码:A 自20世纪80年代,功能梯度材料出现之后,因其具有普通均质材料所不具备的优越物理化学性能而迅速成为世界各国材料研究的焦点之一。采用等离子喷涂技术制备的热障涂层(TBCs)已在热机中获得广泛使用。在实际应用中,热障涂层最显著的特性是要求他在热冲击作用及恶劣工作环境下的耐久性能[1]。热障涂层强调的是隔热能力,而功能梯度材料强调的是从陶瓷到金属的梯度变化,从而实现热学、力学、电学性能的梯度变化,将二者的设计概念结合起来,即可得到既具有较强隔热性能又能大幅度缓和热应力的梯度复合涂层结构[2]。对于热障涂层而言,其抗热震性能是非常重要的性能指标,决定着该涂层的使用寿命。研究发现,导致热障涂层失效的因素有很多,其中主要包括:热应力、涂层制备时的残余应力、ZrO2相变及高温氧化等[3]。热障涂层的失效形式多种多样,有的在涂层表面出现龟裂裂纹,有的出现局部剥落、层间剥落等,其中,大多数失效的根本原因是涂层中的裂纹扩展造成的。控制涂层中裂纹的扩展即可提高涂层的使用寿命,因此,热震环境下涂层裂纹的研究成为重点。在热障涂层的裂纹中,表面裂纹会对涂层隔热能力及使用寿命产生很大影响,研究热震条件下涂层表面裂纹扩展的情况及其机理,对涂层设计及制备具有重要意义。 1 试验方法 1 1 试样制备 本试验中的试样基体材料采用LY12铝合金,其外形尺寸为 36mm 10m m,数量为3组6个,并且配有一定的喷涂夹具。涂层制备利用PRAX-A IR-T AFA公司生产的SG-100等离子喷枪制备,各层喷涂参数如表1所示,喷涂所用主气为氩气(Ar),辅气为氦气(H e)。试验中采用的陶瓷粉末是ZrO2(PSZ),粒度分布范围40~60 m,采用的金属粉末为NiCr CoA lY合金粉,粒度分布范围20~80 m。涂层采用6层梯度结构,涂层总厚度2mm,各层成分及厚度分布参见表2。 表1 功能梯度热障涂层喷涂参数 第1层第2层第3层第4层第5层第6层电流/A800800850850900900 主气(%)1001001001009090 辅气(%)000202030 表2 功能梯度热障涂层结构 第1层第2层第3层第4层第5层第6层ZrO20%20%40%60%80%100% NiCrC oAlY100%80%60%40%20%0%厚度0 3mm0 3mm0 3mm0 3mm0 3mm0 5mm 1 2 热震试验 热震试验采用自行研制的FGM热性能测试仪,该设备采用氧-乙炔火焰喷枪加热,试样表面冷却采用压缩空气,试样底部采用流动自来水连续冷却,表面温度采用红外测温仪测量,基体温度则通过热电偶测量。具体规范为:首先采用氧-乙炔火焰喷枪加热试样表面,当红外测试仪显示涂层表面温度达到1100 时,立即停止加热,移走氧-乙炔火焰喷枪,并且立即采用压缩空气冷却涂层表面,当热电偶显示基体温度降至300 时,停止冷却,1次表面热震试验结束,如要继续进行,则马上采用氧-乙炔火焰喷枪重新加热试样表面,进行上述循环,直到所需热震次数。采用的火焰枪为PRAXAIR公司生产的FP-73型火焰喷枪。本试验中,对3组试样分别进行了30次、50次、100次的单面热震。 1 3 涂层观察 在对3组试样进行温度范围为300~1000 的单面热震后,将试样放置于JSM-5600扫描电镜下对涂层表面观察,观察位置由边缘向中心延伸,观察放大倍数为35倍。 2 试验结果与分析 在对试样进行不同次数的热震后,均未出现剥落现象,说明在该试验条件下未达到涂层的失效极限。涂层表面通过扫描电镜观察发现以下特点: 50 新技术新工艺 热加工工艺技术与装备 2006年 第7期

相关主题
文本预览
相关文档 最新文档