当前位置:文档之家› 氢氧燃料电池反应原理及工作原理

氢氧燃料电池反应原理及工作原理

氢氧燃料电池反应原理及工作原理

氢氧燃料电池反应原理及工作原理

氢氧燃料电池是以氧气作为氧化剂,以氢气作为燃料,然后通过燃料的各种化学反应,进而将产生的化学能转化为电能有一种电池。氢氧燃料电池具有容量大、比能量高、转化效率高和功率范围广等多个优点。氢氧燃料电池和一般电池有着很大区别,一般电池的活性物质是被存放在电池的内部的,所以储存的活性物质的量的多少决定电池的容量。而燃料电池的活性物质是可以被源源不断地输入的。今天小编就来给大家介绍一下氢氧燃料电池的一些知识。

氢氧燃料电池的分类氢氧燃料电池按电池结构和工作方式分为离子膜、培根型和石棉膜三类。

1、离子膜氢氧燃料电池

用阳离子交换膜作电解质的酸性燃料电池,现代采用全氟磺酸膜。电池放电时,在氧电极处生成水,通过灯芯将水吸出。这种电池在常温下工作、结构紧凑、重量轻,但离子交换膜内阻较大,放电电流密度小。

2、培根型燃料电池

属碱性电池。氢、氧电极都是双层多孔镍电极(内外层孔径不同),加铂作催化剂。电解质为80%~85%的苛性钾溶液,室温下是固体,在电池工作温度(204~260C)下为液体。这种电池能量利用率较高,但自耗电大,起动和停机需较长的时间(起动需24小时,停机17小时)。

3、石棉膜燃料电池

也属碱性电池。氢电极由多孔镍片加铂、钯催化剂制成,氧电极是多孔银极片,两电极夹有含35%苛性钾溶液的石棉膜,再以有槽镍片紧压在两极板上作为集流器,构成气室,封装成单体电池。放电时在氢电极一边生成水,可以用循环氢的办法排出,亦可用静态排水法。这种电池的起动时间仅15分钟,并可瞬时停机。比磷酸铁锂电池要更环保。

氢氧燃料电池的优点1、材料价廉

燃料电池种类工作原理及结构

燃料电池 燃料电池(FuelC el l)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置.燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。 燃料电池含有阳阴两个电极,分别充满电解液,而两个电极间则为具有渗透性的薄膜所构成.氢气由阳极进入供给燃料,氧气(或空气)由阴极进入电池. 电池经由催化剂的作用,使得阳极的氢原子分解成氢质子(pro to n)与电子(electro n),其中质子进入电解液中,被氧“吸引"到薄膜的另一边,电子经由外电路形成电流后,到达阴极。在阴极催化剂之作用下,氢质子、氧及电子,发生反应形成水分子。这正是水的电解反应的逆过程,因此水是燃料电池唯一的排放物. 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,为一种 "发电机"。 阳极反应 - 阴极反应 总反应 伴随着电池反应, 电池向外输出电能。只要保持氢气和氧气的供给,该燃料电池就会连续不断地产生电能。 燃料电池的分类 1 按燃料电池的运行机理分 根据燃料电池的运行机理的不同,可分为酸性燃料电池和碱性燃料电池.例如磷酸燃料电池(PA FC)和液态氢氧化钾燃料电池(LPH FC)。 2按电解质种类分 根据燃料电池中使用电解质种类的不同,可分为酸性、碱性、熔融盐类或固体电解质的燃料电池。即碱性燃料电池(AFC )、磷酸燃料电池(PAFC )、熔融碳酸盐燃料电池(MCF C)、固体氧化物燃料电池(SOF C)和质子交换膜燃料电池(PEMFC )等。在燃料电池中,磷酸燃料电池(PAFC )、质子交换膜燃料电池(PEMFC )可以冷起动和快起动,可以用作为移动电源,适应燃料电池电动汽车(FCEV)使用的要求,更加具有竞争力。 3按燃料类型分 燃料电池的燃料有氢气、甲醇、甲烷、乙烷、甲苯、丁烯、丁烷等有机燃料和汽油、柴油以及天然气等气体燃料,有机燃料和气体燃料必须经过重整器“重整”为氢气后,才能成为燃料电池的燃料。根据燃料电池使用燃料类型的不同,可分为直接型燃料电池、间接型燃料电池和再生型燃料电池。 4按工作温度分 e H H 222+→+O H O e H 222122→+++O H O H 22222=+

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

【完整版】2020-2025年中国氢燃料电池行业经营发展战略及规划制定与实施研究报告

(二零一二年十二月) 2020-2025年中国氢燃料电池行业经营发展战略制定与实施研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业经营发展战略概述 (9) 第一节企业经营发展战略的重要性及意义 (9) 一、是决定企业经营活动成败的关键性因素 (9) 二、是实现企业快速、健康、持续发展的需要 (9) 三、是企业实现自己的理性目标的前提条件 (10) 四、是企业长久地高效发展的重要基础 (10) 五、是企业充满活力的有效保证 (10) 六、是企业及其所有企业员工的行动纲领 (11) 七、是企业扩展市场、高效持续发展的有效途径 (11) 八、是执行层行动的指南 (11) 第二节制定实施企业经营发展战略的作用 (11) 一、有助于企业准确判断外在危机和机遇 (12) 二、有助于明确企业核心竞争力 (12) 三、有利于提升企业的持久竞争力 (12) 四、有助于企业找准市场定位 (12) 五、有助于企业内部控制、管理与执行 (13) 六、有助于优化资源,有利于实现资源价值最大化 (13) 七、有助于增强企业的凝聚力和向心力 (13) 八、有助于优化整合企业人力资源,提高企业效率 (13) 九、有助于建立品牌形象,明确目标市场 (14) 十、有助于激励员工积极主动地完成目标 (14) 第三节企业经营发展战略的特性 (14) 一、全局性 (14) 二、纲领性 (14) 三、长远性 (15) 四、导向性 (15) 五、保证性 (15) 六、超前性 (15) 七、竞争性 (15) 八、稳定性 (16) 九、风险性 (16) 第二章市场调研:2018-2019年中国氢燃料电池行业市场深度调研 (17) 第一节氢燃料电池概述 (17) 第二节我国氢燃料电池行业监管体制与发展特征 (18) 一、主管部门及管理体制 (18) 二、行业经营模式及盈利模式 (18) 三、燃料电池是一种非常有前景的能源技术 (18) 四、国内外政府出台政策支持 (19) (一)国外政府纷纷出台支持政策 (19) (二)中国政府重视燃料电池发展,大力支持发展 (22) 第三节2018-2019年中国氢燃料电池行业发展情况分析 (24)

青海成立年产xx套氢燃料电池公司可行性报告

青海成立年产xx套氢燃料电池公司 可行性报告 规划设计/投资方案/产业运营

报告摘要说明 氢燃料电池是一种非燃烧过程的能量转换装置,通过电化学反应将阳极的氢气和阴极的氧气(空气)的化学能转化为电能。燃料电池结构单元主要由膜电极组件和双极板构成,其中膜电极组件是由质子交换膜、催化剂与气体扩散层组合而成的,为反应发生场所;双极板是带流道的金属或石墨薄板,其主要作用是通过流场给膜电极组件输送反应气体,同时收集和传导电流并排出反应产生的水和热。 xxx科技公司由xxx集团(以下简称“A公司”)与xxx科技发展公司(以下简称“B公司”)共同出资成立,其中:A公司出资170.0万元,占公司股份75%;B公司出资60.0万元,占公司股份25%。 xxx科技公司以氢燃料电池产业为核心,依托A公司的渠道资源和B公司的行业经验,xxx科技公司将快速形成行业竞争力,通过3-5年的发展,成为区域内行业龙头,带动并促进全行业的发展。 xxx科技公司计划总投资2505.98万元,其中:固定资产投资1823.70万元,占总投资的72.77%;流动资金682.28万元,占总投资的27.23%。 根据规划,xxx科技公司正常经营年份可实现营业收入6395.00万元,总成本费用4930.85万元,税金及附加53.64万元,利润总额1464.15万元,利税总额1719.74万元,税后净利润1098.11万元,纳

税总额621.63万元,投资利润率58.43%,投资利税率68.63%,投资 回报率43.82%,全部投资回收期3.78年,提供就业职位101个。 2018年2月的《关于调整完善新能源汽车推广应用财政补贴政策的通知》指出,我国燃料电池汽车补贴力度保持不变,燃料电池乘用车按燃料 电池系统的额定功率进行补贴,燃料电池客车和专用车采用定额补贴方式。除此之外,在2018年我国各省市政府部门也相继出台了一系列燃料电池补 贴和扶持政策,可以看出我国各级部门开始重视氢燃料电池车的基础设施 建设。但就从现阶段我国电动车消费者的反应来看,我国电动汽车行业仍 存在着4个痛点,而国内各级政府部门关于燃料电池的一系列补贴及扶持 就是为了解决这几个痛点。根据氢能与燃料电池白皮书内容,未来我国燃 料电池技术将朝4个方向发展。

(完整版)试简述五大类燃料电池的工作原理和各自的特点

三、试简述五大类燃料电池的工作原理和各自的特点 燃料电池按燃料电解质的类型来分类的,可分为碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PENFC)五大类。 3.1 碱性燃料电池(AFC) 碱性燃料电池是该技术发展最快的一种电池,主要为空间任务,包括航天飞机提供动力和饮用水。 3.1.1原理 使用的电解质为水溶液或稳定的氢氧化钾基质,且电化学反应也与羟基(OH)从阴极移动到阳极与氢反应生成水和电子略有不同。这些电子是用来为外部电路提供能量,然后才回到阴极与氧和水反应生成更多的羟基离子。 负极反应:2H2 + 4OH-→ 4H2O + 4e- 正极反应:O2 + 2H2O + 4e- → 4OH- 碱性燃料电池的工作温度大约80℃。因此,它们的启动也很快,但其电力密度却比质子交换膜燃料电池的密度低十来倍,在汽车中使用显得相当笨拙。不过,它们是燃料电池中生产成本最低的一种电池,因此可用于小型的固定发电装置。 如同质子交换膜燃料电池一样,碱性燃料电池对能污染催化剂的一氧化碳和其它杂质也非常敏感。此外,其原料不能含有一氧化碳,因为一氧化碳能与氢氧化钾电解质反应生成碳酸钾,降低电池的性能。 3.1.2 特点 低温性能好,温度范围宽,并且可以在较宽温度范围内选择催化剂,但是才用的碱性电解质易受CO2的毒化作用因此必须要严格出去CO2,成本就偏高。 3.2 磷酸燃料电池(PAFC) 磷酸燃料电池(PAFC)是当前商业化发展得最快的一种燃料电池。正如其名字所示,这种电池使用液体磷酸为电解质,通常位于碳化硅基质中。磷酸燃料电池的工作温度要比质子交换膜燃料电池和碱性燃料电池的工作温度略高,位于

2020年燃料电池行业分析报告

2020年燃料电池行业 分析报告 2020年3月

目录 一、国内:商业化早期阶段,长远规划可期 (4) 1、产业情况:商业化早期阶段,有望与锂电形成互补 (4) 2、政策引导:借鉴锂电池发展经验,搭建规划框架雏形 (6) (1)高层重视程度持续提升,重磅氢能发展规划即将出台 (6) (2)国补维持较高水平,新补贴标准值得期待 (6) (3)地方政策顺势跟进,氢能产业蓬勃发展 (7) 二、海外:他山之石,以日本氢能发展经验为鉴 (8) 1、起因:能源自给率低,倒逼氢能革命 (8) 2、规划:三步走战略目标明确,未来氢能社会可期 (9) 3、研发:产学研一体化,掌握全产业链核心技术 (10) 4、能源供应:打造海外氢能供应体系 (12) 5、应用:优先开拓车用市场,完善加氢站等配套设施 (13) 6、应用:积极探索多元化应用场景 (14) 三、地方:多点开花,培育氢能产业集群 (15) 1、长三角:以长三角一体化为契机,打造氢能产业集群 (16) 2、环渤海:张家口基地“以点带面”,迎合北方商用车市场 (18) 3、珠三角:广东多城联动,省级层面加强顶层设计 (19)

政策框架初成,长远规划可期。燃料电池已初步达到产业化标准,而当前氢能基础设施短板是限制燃料电池汽车产业快速发展的主要 因素之一。国家对氢能/燃料电池的重视程度不断提升,发改委要求在2021年前完成氢能发展的标准规范和支持政策。未来随着国家级氢能规划的出台,有望引导行业有序、健康发展,进一步推动绿色能源转型,为燃料电池产业发展提供有力保障。补贴层面,纯电动汽车珠玉在前,我国已形成了“购置补贴为主、税收减免为辅”的补贴模式,国补与地补相结合,推动新能源汽车产业发展。 借鉴日本发展经验,推动产业健康成长。日本政府首先在国家层面明确了氢能源战略定位,随后配合推出了氢能产业战略方向和目标,并不断更新发布实现战略目标的路线图,一系列“组合拳”对氢能产业的前期培育和健康发展具有重要的指引作用。研发方面,大力支持产学研一体化,掌握全产业链核心技术;氢能支持方面,打造海外氢能供应体系,完善国内加氢站等配套设施;应用领域,优先开拓车用市场,积极探索多元化应用场景。 全国多点开花,培育区域产业集群。近年地方政府对氢燃料电池汽车产业的扶持也在加速推进,已有17个省/直辖市出台了针对氢燃料电池的扶持政策,从产业规划、地方补贴、技术进步等多维度全方位推动氢能产业发展。产业初期投资额大、经济效益慢,政府需提供财政支持、终端运营订单、基金直投、研发平台建设等多维度支持,因此国内氢能产业主要集中在经济发达的东部沿海地区,现已形成了长三角、环渤海、珠三角三大氢能产业集群。

氢燃料电池项目可研报告 (2)

氢燃料电池项目 可研报告 规划设计/投资分析/实施方案

摘要说明— 燃料电池汽车是目前氢能源的主要应用领域之一。国际汽车制造商协会数据显示,2017年全球销售乘用车接近0.71亿辆,而势银智库数据显示2017年全球FCV(燃料电池汽车)销量3260辆(燃料电池汽车大多使用氢能源作为燃料,极少数使用其他燃料,若假设这些FCV都使用了氢气做燃料),2017年氢能源在汽车领域的渗透率也仅为0.0046%,可见在汽车应用领域氢能源产业化尚处于导入期。 该氢燃料电池项目计划总投资12676.47万元,其中:固定资产投资10300.42万元,占项目总投资的81.26%;流动资金2376.05万元,占项目总投资的18.74%。 达产年营业收入20688.00万元,总成本费用16168.24万元,税金及附加227.55万元,利润总额4519.76万元,利税总额5370.73万元,税后净利润3389.82万元,达产年纳税总额1980.91万元;达产年投资利润率35.65%,投资利税率42.37%,投资回报率26.74%,全部投资回收期5.24年,提供就业职位336个。 报告内容:项目概论、背景和必要性研究、产业分析预测、产品规划分析、选址方案、项目工程设计研究、工艺分析、项目环保研究、企业安全保护、风险防范措施、节能方案分析、实施安排、投资计划方案、项目经营效益分析、项目综合结论等。

规划设计/投资分析/产业运营

氢燃料电池项目可研报告目录 第一章项目概论 第二章背景和必要性研究 第三章产品规划分析 第四章选址方案 第五章项目工程设计研究 第六章工艺分析 第七章项目环保研究 第八章企业安全保护 第九章风险防范措施 第十章节能方案分析 第十一章实施安排 第十二章投资计划方案 第十三章项目经营效益分析 第十四章招标方案 第十五章项目综合结论

氢氧燃料电池性能测试实验分析报告

氢氧燃料电池性能测试实验报告 冯铖炼 实验目的 1. 了解燃料电池工作原理 2. 通过记录电池的放电特性,熟悉燃料电池极化特性 3. 研究燃料电池功率和放电电流、燃料浓度的关系 4. 熟悉电子负载、直流电源的操作 , 匚作原理 氢氧燃料电池以氢气作燃料为还原剂, 氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将 化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、 氧气在电极上的催化 剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电, 在氧电极上由于缺少电子 而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。 工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分 解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接 在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。 这正是水的电 解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂 全部储藏在电池内的装置氢氧燃料电池的反应物都在 电池外部它只是提供一个反应的容器 学号: 1141440057 指导老师: 索艳格 姓名:

氢气和氧气都可以由电池外提供燃料电池是一种化学电池, 它利用物质发生化学反应时释出的能量, 直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是, 于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间 的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成, 2013年正发展为直接使 用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气),。氢在负极 分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载 就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。 这 正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有 异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,-所以也可称它为一种"发电机"。 i 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。 发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢一氧燃料电池有酸式和碱式两种: 'I 若电解质溶液是碱、盐溶液则 负极反应式为:,2H2 + 4OH- - 4e~二4场0 正极反应式为:+ 2H2 O + 4广二4OH ■ 若电解质溶液是酸溶液则 负极反应式为:2H2 _ 4牴 —4H 正极反应式为:°2 + 4广+ 4H*二2H2O 总反应方程式为: 2H2 + 02二2H2 O 在碱溶液中,不可能有H+出现,在酸溶液中,不可能出现 0H —。 实验步骤 ① 连接电子负载,测量开路电压 它工作时需要连续地向其供给反应物质 燃料和氧化剂,这又和其他普通化学电池不大一样。由 在正、负极上

2015年燃料电池汽车行业分析报告

2015年燃料电池汽车行业分析报告 2015年1月

目录 一、FCEV是未来汽车发展的最理想方向 (5) 1、节能减排压力巨大 (5) 2、汽车多技术轨道并行 (6) 3、FCEV兼具传统汽车和新能源汽车优点,是未来汽车发展的最理想方向.. 7 二、燃料电池汽车概况 (8) 1、燃料电池汽车工作原理 (8) 2、燃料电池 (9) 3、燃料电池汽车发展历史 (11) (1)技术创新阶段(1959年~1993年) (11) (2)技术验证阶段(1994~2007年) (12) (3)商业化前夕(2008年~) (14) 三、燃料电池汽车产业链解析 (16) 1、燃料电池产业链分析 (17) (1)质子交换膜 (18) (2)催化剂 (18) (3)扩散层 (19) (4)双极板(阴、阳极板) (19) 2、氢产业链分析 (20) (1)制氢 (21) ①电解水 (21) ②甲烷蒸汽重整 (22) (2)储氢 (22) (3)加氢站 (23) 3、产业链上的优势企业 (23) 4、产业链上的中国企业 (24) (1)新源动力:中国燃料电池领域规模最大的企业 (24)

(2)神力科技:中国燃料电池技术研发和产业化的领先者 (25) (3)中科同力:致力于质子膜燃料电池中质子膜的研制与生产 (26) (4)贵研铂业:燃料电池催化剂提供商 (26) 四、国内外燃料电池汽车发展现状 (27) 1、各国政府大力发展燃料电池汽车 (28) (1)日本:FCCJ计划2015年实现燃料电池汽车商业化 (28) (2)德国:欧洲氢燃料电池汽车最活跃的国家 (30) (3)英国:H2 Mobility Roadmap (31) (4)美国:以加州为代表的零排放汽车计划(Zero Emission Vehicles) (33) (5)中国:扶持力度相对较弱,尚处于技术验证阶段 (34) 2、各大汽车制造商致力于燃料电池汽车的研究与推广 (35) (1)戴姆勒(DAIMLER):率先将PEMFC应用于汽车 (35) (2)福特(FORD):与燃料电池汽车若即若离 (36) (3)通用(GM):在燃料电池汽车领域研究历史最长 (37) (4)本田(Honda):推出世界第一辆商业化燃料电池汽车FCX Clarity (38) (5)现代(Hyundai):全球率先批量生产燃料电池汽车——ix35 FECV (38) (6)日产(Nissan):进入燃料电池汽车领域相对较晚,电池技术领先 (39) (7)丰田(Toyota):燃料电池汽车领域投入力度最大、技术最先进 (40) (8)大众(Volkswagen):近年开始涉足燃料电池汽车 (41) (9)上汽集团(SAIC):中国目前唯一可产业化燃料电池汽车的企业 (41) 3、三大燃料电池汽车集团联盟 (42) (1)戴姆勒/福特/雷诺-日产联盟 (43) (2)宝马/丰田联盟 (43) (3)通用/本田联盟 (43) 五、燃料电池汽车产业化黎明到来 (44) 1、技术:现有燃料电池汽车性能与传统汽车相当 (45) 2、成本:燃料电池系统成本持续下降 (45) 3、基础设施:加氢站建设先行,加速建设中 (47)

燃料电池的基本工作原理及主要用途

简述燃料电池的基本工作原理及主要用途 1.燃料电池的工作原理 燃料电池是一种按电化学原理,即原电池的工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能的能量转换装置。其单体电池是由电池的正极(即氧化剂发生还原反应的阴极)、负极(即还原剂或燃料发生氧化反应的阳极)和电解质构成,燃料电池与常规电池的不同之处在于,它的燃料和氧化剂不是贮存在电池内,而是贮存在电池外部的贮罐内,不受电池容量的限制,工作时燃料和氧化剂连续不断地输入电池内部,并同时排放出反应产物。 以磷酸型燃料电池为例,其反应式为: 燃料极(阳极) H2→2H++2e- 空气极(阴极) 1/2O2+2H++2e-→H2O 综合反应式H2+1/2O2→H2O 以上反应式表示:燃料电池工作时向负极供给燃料(氢),向正极供给氧化剂(空气),燃料(氢)在阳极被分解成带正电的氢离子(H+)和带负电的电子(e-),氢离子(H+)在电解质中移动与空气极侧提供的O2发生反应,而电子(e-)通过外部的负荷电路返回到空气极侧参与反应,连续的反应促成了电子(e-)连续地流动,形成直流电,这就是燃料电池的发电过程,也是电解反应的逆过程。 2. 燃料电池的应用 2.1能源发电 燃料电池电站的每一套设备都包括了一整套采用天然气发电的电力系统。分为以下几个分单元:①燃料电池组②燃气制备③空气压缩机④水再生利用⑤逆变器⑥测量与控制系统。燃料电池组产生的直流电通过逆变器转换成电力系统所需的交流电。各国工业界人士普遍对于燃料电池在发电站的应用前景看好。 2.2汽车动力 目前,各国的汽车时用量均在不断增加,其排放的尾气已成为城市环境的主要污染源之一,特别是发展中国家,由于环境治理的力度不够,这一问题更加突出。于是人们要求开发新型的清洁、高效的能源来解决这一问题。质子交换膜燃料电池的出现,解决了燃料电池在汽车动力成本和技术方面存在的若干问题,使燃料电池电动车的开发和使用成为可能。这种电池具有室温快速启动、无电解液流失、水易排出、寿命长、比功率与比能量高等特点,适合做汽车动力,是目前世界各国积极开发的运输用燃料电池。 2.3家庭用能源 天然气作为一种洁净的能源已经在家庭中被广泛使用,但其主要被用于炊事和生活热水,以天然气为燃料的燃气电池在家庭中的广泛应用在开辟了天然气在家庭中一种新的用途的同时也将解决目前高峰用电紧张的状况。家庭的一切用电无论是电视机、冰箱、空调等家用电气还是电脑等办公设备都可以通过燃料电池来提供电源,作为家庭使用的分散电源,并可同时提供家庭用热水和采暖,这样可将天然气的能量利用率提高到70%~90%。 2.4其它方面的应用 碱性燃料电池和质子交换膜燃料电池运行时基本没有红外辐射,而且噪音小,用做潜艇动力,可大大提高其隐蔽性;同时由于它们可在常温下启动工作,且能量密度高,还是理想的航天器工作电源。此外,质子交换膜燃料电池还可用作野外便携式电源。 总之,燃料电池的用途将越来越广泛,它将遍布我们身边的每个角落,成为我们生活中不可缺少的能量来源。

燃料电池分类及工作原理

一、燃料电池的工作原理 燃料电池是用一种特定的燃料,通过一种质子交换膜(PEMProtonExchangeMembrane)和催化层(CLCatalystLayer)而产生电流的一种装置,这种电池只要外界源源不断地供应燃料(例如氢气或甲醇),就可以提供持续电能。它的工作原理,是利用一种叫质子交换膜的技术,使氢气在覆盖有催化剂的质子交换膜作用下,在阳极将氢气催化分解成为质子,这些质子通过质子交换膜到达阴极,在氢气的分解过程中释放出电子,电子通过负载被引出到阴极,这样就产生了电能。 在阳极经过质子交换膜和催化剂的作用,在阴极质子与氧和电子相结合产生水。也就是说燃料电池内部的氢与空气中的氧进行化学反应,生成水的过程,同时产生了电流,也可以理解为是电解水的逆反应。 燃料电池在阳极除供应氢气外,同时还收集氢质子(H+),释放电子;在阴极通过负载捕获电子产生电能。质子交换膜的功能只是允许质子H+通过,并与阴极中的氧结合产生水。这种水在反应过程中的温度作用下,以水蒸气的形式散发在空气中(对汽车用的大功率燃料电池就要设置水的回收装置)。注意,用氢作燃料电池所生成的是纯净水可以饮用,而用甲醇作燃料生成的水溶液中可能产生甲醛之类有毒物质不能饮用。图1为燃料电池工作原理的示意图。

二、燃料电池的分类 由于人们是从不同角度来研究和开发燃料电池的,所以其种类也繁多,但目前主要有3种。 1 质子交换膜技术 质子交换膜技术(或者称聚合物电解液膜技术)——简称PEMFC (ProtonExchangeMembreneFuelCell)。由于它能提供比传统锂离子电池大约高出5~10倍的能量密度,比甲醇燃料电池也有更高的能量密度,所以,人们都看好质子交换膜技术的氢燃料电池,虽然它还存在着储存及安全等问题,但人们正在克服它,最终有望在3~5年实现可存储在像打火机大小的容器中,充一次氢气发电可供手机使用几天,它将是未来便携式电子产品供电系统的首选。 2 直接甲醇燃料电池 直接甲醇燃料电池——简称DMFC(DirectMethanolFuelCell)。它是以甲醇为燃料,通过与氧结合产生电流的,优点是直接使用甲醇,省去了氢的生产与存储,因为,在汽车上早已使用甲醇溶液作为挡风玻璃的刮洗液了,故不存在安全问题。但甲醇存在泄漏问题,虽然用水稀释可以解决,但是电解效率却大大降低,目前正在解决渗漏问题。 3 直接乙醇燃料电池 直接乙醇燃料电池——简称DEFC(DirectEthanolFuelCell)。为避免甲醇的渗漏问题,而采用乙醇,它也是由两个电极、燃料及电解液组成的。

最新燃料电池行业分析报告

【智拓精文】最新燃料电池行业分析报告 最新燃料电池行业分析报告 简单地说,燃料电池是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。它是一种电池,但不需用昂贵的金属而只用便宜的燃料来进行化学反应。这些燃料的化学能也通过一个步骤就变为电能,比通常通过两步方式的能量损失少得多。于是,可以为人类提供的电量就大大地增加了。 按照国民经济分类标准,燃料电池行业是电气机械及器材制造业(代码:39)下面的电池制造行业(代码:3940 )的子行业之一。

按燃料电池工有低温型,温度低于200 C;中温型,温度为200?750 C; 作温度分高温型,温度高于750 C 数据来源:世经未来 一、燃料电池在国内外的发展情况 迄今,燃料电池已经历了一个多世纪的发展历程。现代对燃料电池的研究和开发始于20世纪50年代,并以XX年代美国将燃料电池成功地应用到载人航天飞行器为标志,使燃料电池在这一特殊领域步入实用化阶段。XX年代以后,燃料电池从空间运用转入 民用。进入XX年代,由于全球性能源紧缺问题日趋突出以及环境保护和可持续发展的迫切要求,燃料电池因其突出的优越性得到了蓬勃的发展,洁净电站、便携式电源即将进入商业化阶段燃料电池动力汽车进入实验阶段(奔驰、丰田)。 如今,在北美、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继火电、水电、核电后的第四代发电方式。燃料电池技术在国外的迅猛发展必须引起我们的足够重视,现在它已是能源、电力行业不得不正视的课题。 早在20世纪XX年代,我国就开展燃料电池方面的研究,在燃料电池关键材料、关键技术的创新方面取得了许多的突破。政府十分注重燃料电池的研究开发,陆续开发出30kW级氢氧燃料电极、燃料电池电动汽车等。燃料电池技术特别是质子交换膜燃料电池技术也得到了迅速发展,相继开发出60kW、75kW等多种规格的质子交换膜燃料电池组;开发出电动轿车用净输出40kW、城市客车用净输出100kW燃料电池发动机,使中国的燃料电池技术跨入世界先进国家行列。 二、行业发展环境稳定 20XX年X-YY月,国内生产总值397983.20亿元,同比增长10.30%,高于20XX 年的9.20%。分季度看,一季度增长11.9%,二季度增长11.1%,三季度增长10.6%,

燃料电池的工作原理

燃料电池的工作原理 作者:佚名来源:不详录入:Admin更新时间:2008-8-18 10:07:07点击数:8 【字体:】 燃料电池的一般结构为:燃料(负极)|电解质(液态或固态)|氧化剂(正极)。在燃料电池中,负极常称为燃料电极或氢电极,正极常称为氧化剂电极、空气电极或氧电极。燃料有气态如氢气、一氧化碳、二氧化碳和碳氢化合物,液态如液氢、甲醇、高价碳氢化合物和液态金属,还有固态如碳等。按电化学强弱,燃料的活性排列次序为:肼>氢>醇>一氧化碳>烃>煤。燃料的化学结构越简单,建造燃料电池时可能出现的问题越少。氧化剂为纯氧、空气和卤素。电解质是离子导电而非电子导电的材料,液态电解质分为碱性和酸性电解液, 固态电解质有质子交换膜和氧化锆隔膜等。在液体电解质中应用微孔膜,0.2mm~0.5mm厚。固体电解质为无孔膜,薄膜厚度约为20μm。 燃料电池的反应为氧化还原反应,电极的作用一方面是传递电子、形成电流;另一方面是在电极表面发生多相催化反应,反应不涉及电极材料本身,这一点与一般化学电池中电极材料参与化学反应很不相同,电极表面起催化剂表面的作用。 在氢氧燃料电池中,氢和氧在各自的电极反应。氧电极进行氧化反应,放出电子,氢电极进行还原反应,吸收电子,总反应为: O2+2H2→2H2O 反应结果是氢和氧发生电化学燃烧,生成水和产生电能。由热力学变量可得到以下理论电动势和理论热效率公式: Eo=-(ΔG/2F)=1.23V η=ΔG/ΔH=83.0% 式中,ΔG和ΔH分别为自由能变化和热焓变化,F是法第常数。

燃料电池工作的中心问题是燃料和氧化剂在电极过程中的反应活性问题。对于气体电极过程,必需采用多孔气体扩散电极和高效电催化剂,提高比表面,增加反应活性,提高电池比功率。 氢在负极氧化是氢原子离解为氢离子和电子的过程,若用有机化合物燃料,首先需要催化裂化或重整,生成富氢气体,必要时还要除去毒化催化剂的有害杂质。这些反应可在电池内部或外部进行,需附加辅助系统。正极中的氧化反应缓慢,燃料电池的活性主要依赖正极。随着温度升高,氧的还原反应有相当的改善。高温反应有利于提高燃料电池反应活性。 对于燃料电池发电系统,核心部件是燃料电池组,它由燃料电池单体堆集而成,单体电池的串联和并联选择,依据满足负载的输出电压和电流,并使总电阻最低,尽量减小电路短路的可能性。其余部件是燃料预处理装置、热量管理装置、电压变换调整装置和自动控制装置。通过燃料预处理,实现燃料的生成和提纯。燃料电池的运行或起动,有的需要加热,工作时放出相当的热量,由热量管理装置合理地加热或除热。燃料电池工作时,在碱性电解液负极或酸性电解液正极处生成水。为了保证电解液浓度稳定,生成的水要及时排除。高温燃料电池生成水会汽化,容易排除,水量管理装置将实现合理的排水。燃料电池与化学电池一样,输出直流电压,通过电压变换成为交流电送到用户或电网。燃料电池发电系统通过自控装置使各个部件协调工作,进行统一控制和管理。

【氢燃料电池的工作原理(详细)】氢燃料电池的工作原理

【氢燃料电池的工作原理(详细)】氢燃料电池 的工作原理 以质子交换膜燃料电池(PEMFC)为例,其工作原理如下: (1)氢气通过管道或导气板到达阳极; (2)在阳极催化剂的作用下,1个氢分子解离为2个氢质子,并 释放出2个电子,阳极反应为: H2→2H++2e。 (3)在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,在阴极催化剂的作用下,氧分子和氢离子与通过外电路到达阴 极的电子发生反应生成水,阴极反应为:1/2O2+2H++2e→H2O 总的化学反应为:H2+1/2O2=H2O 电子在外电路形成直流电。因此,只要源源不断地向燃料电池阳极和阴极供给氢气和氧气,就可以向外电路的负载连续地输出电能。 3PEMFC的特点及研发应用现状 燃料电池种类较多,PEMFC以其工作温度低、启动快、能量密度高、寿命长等优点特别适宜作为便携式电源、机动车电源和中、小 型发电系统。 PEMFC发电机由本体及其附属系统构成。本体结构除上述核心单 元外,还包括单体电池层叠时为防止汽、水泄漏而设置的密封件, 以及压紧各单体电池所需的紧固件等。附属系统包括:燃料及氧化 剂贮存及其循环单元,电池湿度、温度调节单元,功率变换单元及 系统控制单元。图2是一个典型的PEMFC发电系统示意图[4]。 (1)PEMFC作为移动式电源的应用 PEMFC作为移动式电源的应用领域分为两大类:一是可用作便携 式电源、小型移动电源、车载电源等。适用于军事、通讯、计算机

等领域,以满足应急供电和高可靠性、高稳定性供电的需要。实际 应用是手机电池、笔记本电脑等便携电子设备、军用背负式通讯电源、卫星通讯车载电源等。二是用作自行车、摩托车、汽车等交通 工具的动力电源,以满足环保对车辆排放的要求。从目前发展情况看,PEMFC是技术最成熟的电动车动力电源。 国际上,PEMFC研究开发领域的权威机构是加拿大Ballard能源 系统公司。美国H-Power公司于1996年研制出世界上第一辆以PEMFC发电机为动力源的大巴士[5]。近年来,我国对燃料电池电动 车的研发也极为重视,被列入国家重点科技攻关计划。上海神力公司、富原燃料电池有限公司、清华大学、中科院大连化物所已分别 研制出游览观光车、中巴车样车,其性能接近或达到国际先进水平。 (2)PEMFC作为固定式电源的应用 PEMFC除适用于作为交通电源外,也非常适合用于固定式电源。 既可与电网系统互联,用于调峰;也可作为独立电源,用作海岛、 山区、边远地区、或作为国防(人防)发供电系统电源。 采用多台PEMFC发电机联网还可构成分散式供电系统。分散式供电系统有很多优点:①可省去电网线路及配电调度控制系统;②有 利于热电联供(由于PEMFC电站无噪声,可就近安装,PEMFC发电 所产生的热可进入供热系统),可使燃料总利用率高达80%以上; ③受战争和自然灾害等影响比较小,尤其适宜于现代战争条件下的 主动防护需要;④通过天燃气、煤气重整制氢,可利用现有天燃气、煤气供气系统等基础设施为PEMFC提供燃料;通过再生能源制氢 (电解水制氢、太阳能电解制氢、生物制氢)则可形成循环利用系 统(这种循环系统特别适用于边远地区、人所),使系统建设成本 和运行成本降低。国际上普遍认为,随着燃料电池的推广应用,发 展分散型电站将是一个趋势。 (3)氢能电源的军事应用前景 由于PEMFC发电机工作温度低,红外辐射少,无震动,没有噪音,因此特别适合用作为现代军用电源。1998年8月,美国国防部在向 国会国防委员会呈递的报告中指出:移动电力是永久性防御设施最

2018年氢能源行业深度分析报告

2018年氢能源行业深度分析报告

氢能源:绿色零排放,或是能源终极形式。从历史变迁的纵向角度看,人类利用能源的发展历史是不断走向清洁化的过程,氢能源是目前已知最绿色清洁的能源,其反应产物只有水,因此有望成为能源的终极形式。从横向对比角度看,氢能源相较于其他形式的能源具有功率密度优势,在发电领域具有建设成本优势。目前氢能源应用的主要阻碍在于分布式应用场景利用综合成本高,并且氢气使用的便利性和其他能源相比有较大差距。以全球氢能源乘用车发展为例,氢能源产业化应用尚处于导入期,需要政策支持。我们认为,在各国产业政策及补贴的推动下,氢能源产业发展有向好趋势,国内市场也有望真实进入导入期,但产业链仍需完善。 从氢能源非工业应用看:燃料电池是使用氢能源的理想方式,下游交通运输需求渐成主流。氢能源应用有多种方式,可以通过传统热机也可以通过燃料电池。由于燃料电池跳出了热循环的限制,因而具有更少的能量损失,能量利用效率更高。同时,燃料电池利用氢能源具有噪音小等优点。因此燃料电池是氢能源利用的理想形式。氢能源燃料电池下游有便携设备、固定式应用和交通运输式应用,据国外研究机构Fuel Cell Today和E4tech数据显示,交通运输装载的氢燃料电池量逐年增长,2017年全球燃料电池装机中,交通运输需求占比68.05%。 交运需求已经成为燃料电池的主要需求,也是氢能源非工业应用的主要需求。 氢能源产业链:日益完善,整装待发。氢能源产业链包括上游制氢产氢、氢气储存运输、加氢站运营、中游燃料电池系统及零部件生产制造、下游氢燃料电池应用等众多环节。同时,围绕氢气展开的主产业链条需要大量高技术含量机械设备支持,主要集中在制氢和压缩领域。 我们认为,制氢路径会按照制氢地的资源禀赋不同而有所变化,储氢环节主要还是气态储氢,但合金储氢前景较好,加氢站环节会呈现中央制氢与分布式制氢共存互补的格局,燃料电池环节的机会在于质子交换膜、低成本催化剂以及储氢瓶,下游应用环节中汽车市场最大,汽车应用市场中,我们预计氢燃料电池商用车市场最先爆发。 总结与展望:看好配套设施市场。我们认为未来应该关注的投资机会有三点:1)氢能源的生产及其设备等附属产业;2)加氢站运营服务产业;3)燃料电池核心技术的突破和氢能源商用车生产制造产业链。在国内目前的发展状况下,配套设施先行是大概率事件,之后是商用车制造。 重点关注环节:我们看好配套设施及制造装备和核心技术有壁垒的环节:

氢燃料电池项目申请报告

氢燃料电池项目 申请报告 一、项目提出的理由 把创新作为引领转型发展的第一动力,激发各类人才创造活力, 推动以科技创新为核心的全面创新。对标国际先进水平,打造国际化、法治化、便利化的营商环境,构筑支撑我市转型发展新的竞争优势。 强化科技创新的引领作用,大力拓展网络经济。营造良好的创新创业 环境,推动大众创业万众创新,健全创新创业的体制机制,推进人才 等创新要素集聚,打造区域创新高地。 (一)强化科技创新引领作用 推动重点领域创新。瞄准重点产业技术瓶颈和产业竞争力提升需求,推进实施联合技术攻关。加快突破电子信息、新能源、新材料、 高端装备制造、生物医药、海洋开发利用等前沿领域关键技术,提升 基础材料、核心零部件和先进工艺水平。 提升创新支撑能力。围绕发展战略性新兴产业和改造提升传统产业,构建运行高效、开放共享、引领发展的创新支撑体系,加快布局、提升一批工程(技术)研究中心、工程(重点)实验室、企业技术中

心、公共技术服务平台,依托高校、科研院所和企业组建产业技术创 新联盟或协同创新中心。 (二)大力拓展网络经济 夯实互联网应用基础。促进互联网深度广泛应用,带动产业变革 和商业模式、服务模式、管理模式创新,拓展网络经济空间。鼓励互 联网骨干企业开放平台资源,围绕重点领域加强行业云服务平台建设,支持行业信息系统向云平台迁移。加快关键技术突破,推进物联网感 知设施统一规划布局。 加快多领域互联网融合发展。加快推进基于互联网的产业组织、 商业模式、供应链、物流链等各类创新,培育新兴业态和新增长点。 培育互联网生态体系,加快互联网创新要素向经济社会发展各领域渗透,形成网络化协同分工新格局。引导大型互联网企业向小微企业和 创业团队开放创新资源,鼓励建立基于互联网的开放式创新联盟。促 进“互联网+”新业态创新,鼓励搭建资源开放共享平台,积极发展 分享经济形态。 (三)推动大众创业万众创新 建设创新创业公共服务平台。实施双创行动计划,构建低成本、 便利化、全要素、开放式的服务平台。加强信息资源整合和政策集中

燃料电池种类工作原理及结构

燃料电池(FuelCell)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。 燃料电池含有阳阴两个电极,分别充满电解液,而两个电极间则为具有渗透性的薄膜所构成。氢气由阳极进入供给燃料,氧气(或空气)由阴极进入电池。 电池经由催化剂的作用,使得阳极的氢原子分解成氢质子(proton)与电子(electron),其中质子进入电解液中,被氧“吸引”到薄膜的另一边,电子经由外电路形成电流后,到达阴极。在阴极催化剂之作用下,氢质子、氧及电子,发生反应形成水分子。这正是水的电解反应的逆过程,因此水是燃料电池唯一的排放物。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,为一种 "发电机"。 阳极反应 - 阴极反应 总反应 伴随着电池反应,电池向外输出电能。只要保持氢气和氧气的供给,该燃料电池就会连续不断地产生电能。 燃料电池的分类 1 按燃料电池的运行机理分 根据燃料电池的运行机理的不同,可分为酸性燃料电池和碱性燃料电池。例如磷酸燃料电池(PAFC)和液态氢氧化钾燃料电池(LPHFC)。 2按电解质种类分 根据燃料电池中使用电解质种类的不同,可分为酸性、碱性、熔融盐类或固体电解质的燃料电池。即碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PEMFC)等。在燃料电池中,磷酸燃料电池(PAFC)、质子交换膜燃料电池(PEMFC)可以冷起动和快起动,可以用作为移动电源,适应燃料电池电动汽车(FCEV)使用的要求,更加具有竞争力。 3按燃料类型分 燃料电池的燃料有氢气、甲醇、甲烷、乙烷、甲苯、丁烯、丁烷等有机燃料和汽油、柴油以及天然气等气体燃料,有机燃料和气体燃料必须经过重整器“重整”为氢气后,才能成为燃料电池的燃料。根据燃料电池使用燃料类型的不同,可分为直接型燃料电池、间接型燃料电池和再生型燃料电池。 4按工作温度分 根据燃料电池工作温度的不同,可分为低温型,温度低于200℃;中温型,温度为200-750℃;高温型,温度高于750℃。质子交换膜燃料电池(PEMFC)在常温下可以正常工作,这类燃料电池需要采用贵金属作为催化剂,燃料的化学能绝大部分都能转化为电能,只产生少量的废热和水,不产生污染大气环境的氮氧化物。熔融碳酸盐燃料电池(M C F C)和固体氧化物燃料电池(SOFC)在高温下作,这类燃料电池不需要采用贵金属作为催化剂。但由于工作温度高,需要采用复合废热回收装置来利用废热,体积大。

相关主题
文本预览
相关文档 最新文档