当前位置:文档之家› 浅谈变电站电压及无功的综合控制

浅谈变电站电压及无功的综合控制

浅谈变电站电压及无功的综合控制
浅谈变电站电压及无功的综合控制

龙源期刊网 https://www.doczj.com/doc/cd2094415.html,

浅谈变电站电压及无功的综合控制

作者:任丽萍

来源:《中国新技术新产品》2011年第02期

摘要:以变电站为单位,自动调节电压和无功功率就地平衡,变电站电压和无功控制主要是采用有载调压变压器和补偿并联电容器组,通过调节有载调压变压器分接开关和投切并联电容器组,实现调节电压合格和无功平衡的目的。

关键词:变电站;电压;无功

中图分类号:TM4文献标识码:B

实现电压及无功综合控制对于提高电压合格率和降低网损有很大的作用,在电网建成后,主要以无功功率交换最少为目标对电网运行方式进行优化,目前主要是以变电站为单位,自动调节电压和无功功率就地平衡,变电站电压和无功控制主要是采用有载调压变压器和补偿并联电容器组,通过调节有载调压变压器分接开关和投切并联电容器组,实现调节电压合格和无功平衡的目的。

1目前的电压及无功控制方式。目前变电站电压及无功综合控制装置的控制判据,大多采用图1所示的“井”字法,即根据电压、无功的上、下限值将电压、无功平面分为9个区域,根据实时电压和无功功率的测量结果判断所处区域的位置,并据此建立相应的控制规则。

1区:电压、无功均合格,不动作。2区:电压越上限,无功合格,调节分接开关降压。

3区:电压、无功均越上限,先调节分接开关降压后再投入电容器组。4区:电压合格,无功越上限,投入电容器组。5区:电压越下限,无功越上限,投入电容器组。6区:电压越下限,无功合格,调节分接开关升压。7区:电压、无功均越下限,先调节分接开关升压后切除电容器组。8区:电压合格,无功越下限,切除电容器组。9区:电压越上限,无功越下限,先切除电容器组后调节分接开关降压。

2存在问题

关于变电站无功补偿容量的确定

关于变电站无功补偿容量的确定 摘要:合理进行无功补偿是保证电压质量和电网稳定运行的必要手段,对提高输送能力和降低电网损耗具有重要意义。本文首先分析了无功功率补偿的目的,进而阐述了变电站补偿容量的确定原则,最后论述了按调压要求并联电容器补偿容量的选择,以供参考。 关键词:变电站无功补偿;容量;确定 随着电力负荷的增加,必然要求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,将会影响发电机的输出功率;降低有功功率的输出;影响变电、输电的供电能力;降低有功功率的容量;增加电力系统的电能损耗;增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。当前,随着电力网的发展而引起的无功潮流的变化,以及用户无功补偿水平的提高,变电站的无功补偿要随时相应的进行调整,有的时候甚至需要拆迁。因此,在确定变电站的补偿容量时,要兼顾近期与远期。 1 无功功率补偿的目的 电网中的无功功率负荷部分属于感性负荷,如异步电动机、输电线路、变压器;而无功功率的电源主要有发电机、并联电容器、同步调相机、静止补偿器。无功功率的产生基本不消耗能源,但是无功功率沿电力网传输却要引起有功功率损耗和电压损耗。合理配置变电站无功功率补偿容量,可改善功率因数,尽量避免发电机降低功率因数运行,减少网络中的有功功率损耗和电压损耗;可改善电压调节,使用户端的供电电压维持在规定范围内;可调节负载的平衡性,使不平衡负载变成平衡负载等。 在具体设置补偿装置时,应遵循分散补偿和降低网损的原则,根据电网电压、系统稳定性、有功分配、无功平衡、调相调压,以及限制谐波电压、潜供电流、暂时过电压等因素,须经过电网计算才能合理的确定补偿位置和补偿容量,以达到节约投资降低网损的效果。 2变电站补偿容量的确定原则 2.1 35kV及以上电压等级的变电站,其无功功率补偿主要在于补偿主变压器的无功功率损耗(包括空载无功功率损耗和负载无功的损耗),因此,35~63kV变电站的补偿容量,一般可按主变压器的10%~15%确定;110kV变电站的补偿容量,一般可按变压器容量的15%~20%确定。 2.2 35kV变电站的无功补偿容量的确定应遵循以下原则:1)变电站的无

变电站电压无功功率控制原理

随着无人值班变电站的不断增加,变电站综合自动化系统也在不断完善,功能亦不断强大。在监控后台机上利用变电站综合自动化的监控系统,应用软件实现变电站的电压无功功率控制(VQC), 已经成为监控后台的强大功能之一。在监控后台利用软件进行VQC, 比起传统利用专门硬件进行电压无功控制,具有节省投资,编程灵活,升级方便等优点。下面简单介绍一下在监控后台进行VQC的原理及VQC的逻辑原理。 1.VQC在监控后台的实现。 在监控后台实现VQC, 如图1所示: 图1监控后台实现VQC原理图 综合自动化测控系统将在变电站所采集到的一次设备的数据通过各种网络(如can网,以太网等)发到SCADA 后台机上,然后后台监控机上的VQC软件从SCADA取得电压电流功率因数等数据,经过计算和逻辑分析,对测控系统作出调节指令,综自测控系统将接到的指令执行,控制相应的一次设备,如有载调压变压器分接头和电容器,将变电站的电压及无功功率控制在一个合格的X围内,从而达到电压无功控制的目的。2.VQC逻辑原理。 变电站中一般有几台变压器,VQC根据主变的运行方式的不同选择不同调节方式。对于两绕组的变压器,取高压侧的无功功率作为无功调节的依据,取低压侧电压作为电压调节的依据。电压的调节主要靠调节主变的档位来实现,无功功率的调节主要靠无功设备的投切来实现。 2.19区图的定义 以U为纵坐标,无功功率Q为横坐标,组成U-Q坐标系,如图2所示,

图2VQC 9区图 在第一象限中,将区域分为9个,分别从1~9编上号。只有系统运行点, 即系统实时的电压和无功功率值,落在Umin

电压自动控制系统

自动电压控制系统 姓名:张晓玲学号:1020111139班级:电力1103班 摘要:介绍了变电站电压和无功控制的方法和调控原则,以及电压无功自动控制装置(VQC)的原理以及应用。 引言: 随着对供电质量和可靠性要求的提高,电压成为衡量电能质量的一个重要指标,电压质量对电网稳定及电力设备安全运行具有重大影响。无功是影响电压质量的一个重要因素,保证电压质量的重要条件是保持无功功率的平衡,即要求系统中无功电源所供应的无功功率等于系统中无功负荷与无功损耗之和,也就是使电力系统在任一时间和任一负荷时的无功总出力(含无功补偿)与无功总负荷(含无功总损耗)保持平衡,以满足电压质量要求。 1概述 变电站调节电压和无功的主要手段是调节主变的分接头和投切电容器组。通过合理调节变压器分接头和投切电容器组,能够在很大程度上改善变电站的电压质量,实现无功潮流合理平衡。调节分接头和投切电容器对电压和无功的影响为:上调分接头电压上升、无功上升,下调分接头电压下降、无功下降(对升档升压方式而言,对升档降压方式则相反);投入电容器无功下降、电压上升,切除电容器无功上升、电压下降。 2 VQC的基本原理 简单系统接线图如图2.1所示,Us为系统电压;U1、U2为变电站主变高低压侧电压,U L为负荷电压,P L,Q L分别为负荷有功和无功功率,K T为变压器变比,Qc为补偿无功功率,Rs,Xs,R L,X L分别为线路阻抗参数,R T,X T为变压器阻抗参数。

图2.1 变电站等值电路图 (1) 调节有载调压器的变比 由于12T U U K =为可控变量,当负荷增大,降低K T 以提高U 2,从而以提高U 2 来补偿线路上的电压损耗,反正亦然。 (2) 改变电容组的数目 当投入电容量Q c 后,有: 2222()()()S T C S T S P R R Q Q X X U U U ++-+=- (2.1) 比较以上两式可见Qc 的改变会影响系统中各点电压值和无功的重新分配,当负荷增大,通过降低从系统到进站线路上的电压降△U S 以亦可增大U T2,以抵消△U L 的增大。 投入Qc 后网损为: 222222222222() ()()()C C S T S T P Q Q P Q Q S R R j X X U U +-+-?=+++ (2.2) 可见网损随222()C Q Q Q =-,即主变低压侧无功功率的平方而变化,在输送 功率一定的情况下,Q 2越小,网损越小。理论上,当Q 2=0时功率损耗最小,因此,对于简单的辐射形网络,提高功率因数是降低网损的有效措施。 3 VQC 的控制目标 (1) 保证电压合格 主变低压母线电压以必须满足:U L ≤U 2≤U H (U H 、U L 既是规定的母线电压上

电力系统无功电压综合控制

电力系统无功电压综合控制 【摘要】本文通过对无功功率对用户和电力系统安全稳定电能质量经济运行至关重要性;电力系统无功电源及无功补偿原则;电压--无功调节实现方法、实现方式和控制调整策略及泉州地区无功电压调整和控制分析。泉州地区的电压无功控制采用ACV智能控制系统,此系统可对电压、功率因数和网损进行优化控制。 【关键词】无功电压无功电源VQC A VC调整方法调整策略 无功功率对用户和电力系统安全稳定、电能质量和经济运行至关重要。从电力系统潮流计算和电力系统综合负荷电压静态特性得知,电压与无功功率密切关系。无功功率不足系统电压将下降,反之将上升。过高电压和过低电压将影响到用户和电力系统本身的正常工作。电压过高,用户的用电设备的绝缘将受到威胁;电压过低,用户的电器设备的正常工作受到影响。特别是电动机负荷,电压过低,电动机的转矩将成平方级的下降,正在运行的电动机可能停转,带重负荷的电动机可能起动不了,严重影响到用电设备的正常工作。对于电力系统本身,电压过低除了影响到电力系统的发电厂辅机正常工作外,还影响到电力系统电压的稳定问题。故电力系统电压保持在质量范围里至关重要。 1.电力系统无功电源及无功补偿原则 1.1电力系统无功电源 电力系统无功电源有同步发电机、电力电容器、同步调相机、静止补偿器及电力线路。发电机通过改变励磁电流改变发电机无功的输出。根据发电机P Q曲线图得知,同步发电机要多发无功功率,势必要少发有功功率。对于小电力系统或孤立运行的电力系统的调压很有效,对大电力系统一般只作为辅助的调压措施。电力电容器并网只能发出无功,不能吸收无功,调压是有级的,但它价廉实用,它广泛应用于电力系统变电站母线的调压和负荷侧的调压。同步调相机也是靠改变其励磁电流为过励或欠励来改变输出或吸收无功大小,它既能发出无功又能吸收无功,调压是连续的,但旋转的无功补偿设备需要大量的维护,故应用较少。静止补偿器是对电力电容器的改进,它可通过可控的电抗元件来调节无功功率,它既能发出无功又能吸收无功,调压也是连续的,它是新型的无功功率补偿设备,补偿成本较高,主要是设备贵重,目前泉州供电公司有两个变电站采用此无功补偿设备。 1.2电力系统无功补偿原则 电力系统无功功率补偿原则是分层分区就地平衡。对于220kV以上电网是分层平衡,对于110kV以下是分区就地平衡。从潮流计算或从功率损耗计算可知,电力系统无功功率不远距离输送,远距离输送将增加有功损耗。

浅谈变电站电压及无功的综合控制

浅谈变电站电压及无功的综合控制 发表时间:2019-07-02T14:04:29.703Z 来源:《防护工程》2019年第6期作者:梁华银李毛根 [导读] 通过调节有载调压变压器分接开关和投切并联电容器组,实现调节电压合格和无功平衡的目的。 国网安徽省电力有限公司宿州供电公司安徽省 234000 摘要:以变电站为单位,自动调节电压和无功功率就地平衡,变电站电压和无功控制主要是采用有载调压变压器和补偿并联电容器组,通过调节有载调压变压器分接开关和投切并联电容器组,实现调节电压合格和无功平衡的目的。 关键词:变电站;电压;无功;控制 1电力系统调压的措施 1.1利用发电机调压 发电机的端电压可以通过改变发电机励磁电流的办法进行调整,这是一种经济,简单的调压方式。在负荷增大时,电网的电压损耗增加,用户端电压降低,这时增加发电机励磁电流,提高发电机的端电压;在负荷减小时,电力网的电压损耗减少,用户端电压升高,这时减少发电机励磁电流,降低发电机的端电压。按规定,发电机运行电压的变化范围在发电机额定电压的-5%~+5%以内。 1.2电压无功自动控制装置 在以往的变电站运行中,常常是采用人工的方式进行相关的电压无功调控,这种陈旧老套的控制方法不但需要耗费变电站值班人员的大量精力,加重了其负担,增大了工作量,同时也不能很好的实现电压无功控制的目的。这是因为人工调节的主观因素太大,如果值班人员的判断或操作失误,就会严重影响到调控的合理性,不利于变电站的稳定电力供应。随着人们对供电质量的要求更高,大多数变电站都是采用的无人值班变电站,这样以来,人工操控电压无功就很难实现。 1.3利用无功功率补偿调压 改变变压器分接头调压虽然是一种简单而经济的调压手段,但改变分接头位置不能增减无功功率。当整个系统无功功率不足引起电压下降时,要从根本改变系统电压水平问题,就必须增设新的无功电源。无功功率补偿调压就是通过在负荷侧安装同步调相机、并联电容器或静止补偿器,以减少通过网络传输的无功功率,降低网络的电压损耗而达到调压的目的。 1.4改变输电线路的参数调压 从电压损耗的计算公式可知改变网络元件的电阻R和电抗X都可以改变电压损耗,从而达到调压的目的。变压器的电阻和电抗已经由变压器的结构固定,不宜改变。一般考虑改变输电线路的电阻和电抗参数以满足调压要求。但减少输电线路的电阻意味着增加导线截面。多消耗有色金属。所以一般不采用此方法。 2 变电站电压无功控制方式 目前,变电站电压无功控制方式主要有3种:集中控制方式、分散控制方式和关联分散控制方式。 2.1 集中控制方式 集中控制是指在调度中心根据采集的各项数据,通过遥控装置对各个变电站的调压设备、无功补偿设备统一进行控制。从理论上讲,集中控制方式应该是保持配电网电压合格、无功平衡的最佳方案。但它对调度中心的要求相对较高,在软件方面要求配备实时控制软件,在硬件方面要求配电中心达到“三遥”的水平,最好在各个配电中心针对这一环节配备单独的智能模块。目前,各地变电站的基础设施条件和智能化水平参差不齐:有的地方相对发达一些,设备比较先进,智能化水平较高;有的地方相对落后一些,设备比较陈旧,基本没有自动化装置;有的地方变电站各方面建设虽然比较先进,但是缺少相关操作人才,也难以实现集中控制。因此,当前要想实现整个电力系统全部采用集中控制方式还是比较困难的,只能在相对发达的地区先建设一部分,逐步在其他地区循序渐进地推开。 2.2 分散控制方式 分散控制方式是指在每个变电站专门建设一台电压无功自动控制平台,该装置根据采集的数据,自动调节分接头位置或投切并联电容器组,从而实现对电压调节装置和无功补偿设备的控制,当主变压器负荷发生变化时,保证该变电站供电半径内配电网电压质量合格、无功功率合格。分散控制的优点是控制简易、投入较小,符合当前我国大部分地区的基本情况;缺点是难以实现整个地区大面积的统一操控。随着计算机、通信技术在电力行业的应用越来越广泛,实现对整个地区进行集中控制是大势所趋,分散控制装置由于其自身的条件所限,逐步会被淘汰,但在局部地区其使用还具有一定的优越性。 2.3 关联分散控制方式 集中控制方式理论上能够及时掌握整个地区变电站的相关情况并进行最好的集中控制,但是此控制方式对变电站的软硬条件的要求比较高,需要投入更多资金,并且由于多个变电站在一个调度中心进行集中操作管理,控制系统比较复杂,操作难度较大,一旦发生问题,影响很大。目前,国内大部分地区应用比较广泛的是分散控制方式,但此控制方式不能实现整个地区的集中管理。关联分散控制方式是指在正常运行情况下,由安装在各变电站的控制装置根据编好的控制程序进行调控。在保障整个系统安全可靠运行的前提下,分别计算出正常运行、紧急情况、系统运行方式发生大变动时的调控范围,由调度中心根据采集的数据情况直接进行操作或修改变电站母线电压和无功功率值,以满足辖区内电力系统安全、可靠运行的要求。关联分散控制的最大优点是无论在正常情况下还是在紧急状态下,都能有效保障辖区内的供电可靠性和经济性。关联分散控制装置要求必须满足对受控厂站分析、判断和控制的强大通信功能,以及时将采集到的信息报告给调度中心,并执行好调度中心下达的各项调控命令。 3 变电站电压无功综合控制方式调节判据 变电站电压无功综合控制调节判据分为以下5个方面:1)按功率因数控制;2)按电压控制;3)按电压综合控制有载分接开关和电容器组;4)按电压和功率因数复合控制;5)按电压、时间序列复合控制。 3.1 按功率因数控制 根据功率因数的大小,来确定投切并联电容容量。如果功率因数低于确定值则通过自动控制装置投入电容,如果高于确定值则通过自动控制装置切除电容。此办法没有把电容对母线电压的影响考虑进来,并且当变压器负荷较小时,可能存在自动控制装置动作频繁的问

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为1%~2%。因此励磁损耗为 0/100Ty TN Q I S =V (Mvar) (5-1-1) 另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S =V (Mvar) (5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综

变电站电压无功综合控制策略的分析

变电站电压无功综合控制策略的分析 发表时间:2019-03-13T14:42:09.377Z 来源:《河南电力》2018年18期作者:李亚雄苏力[导读] 电压是衡量电网电能质量的重要指标之一。电压过高或者过低,都会影响到电力系统中各类电力设备的正常运行。 (华电电力科学研究院有限公司中南区域中心湖北武汉 430000)摘要:电压是衡量电网电能质量的重要指标之一。电压过高或者过低,都会影响到电力系统中各类电力设备的正常运行。而电力系统的电压水平与无功功率有着十分密切的关系,故维持电网中的无功功率平衡可以有效地提高电能质量,并保证电力系统的安全、可靠、经济运行。本文结合智能变电站中电压无功综合控制子系统的目标,介绍了一些学者提出的电压无功控制综合策略的内容,分析它们各自所 具有的特点,最后结合已有成果对这一领域的发展进行了展望。 关键词:电压无功控制;无功补偿;控制策略;智能变电站 引言 我国国民经济不断发展,工业贡献了其中非常重要部分。工业的发展离不开合格的电能质量。改善电压质量可以有效地节约能源,防止电力系统电压出现崩溃以及提高电网的安全运行水平。由于电力系统中无功功率与电压水平紧密相关,变电站往往通过补偿无功功率实现系统中无功功率的平衡。 无功补偿的作用主要有以下几点[1]: 1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗。 2)稳定受电端及电网的电压,提高供电质量。在长距离输电线中合适的地点设置动态无功补偿装置还可以改善输定系统的稳定性,提高输电能力。 3)在电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。 1 无功补偿的方法 电网无功补偿方案有以下4种:变电站集中补偿、低压集中补偿、配电线路固定补偿和用户终端分散补偿。 变电站集中补偿的装置包括同步调相机、并联电容器、静止补偿器等。这种补偿方式一般将装置集中接在变电站的10kV母线上,其优点是便于实现自动投切,利用率高,降低了事故出现的概率,有效减少电网的无功负荷。但是该方式不能解决下一级电网的网损或线损,因此10kV配电网降损不能采取这种补偿方案。 目前无功补偿的方式主要是220kV、110kV、35kV变电站低压侧集中补偿,以及在配电台区装设固定联接的电容器补偿和高压配电线路分散补偿。220kV变电站、110kV变电站配置的无功补偿容量较大,而35kV变电站及配电台区配置无功补偿容量偏小,大部分无功补偿装置采用的是手动投切[2]。 2 变电站自动化 变电站在电力系统中占有非常重要的地位。变电站是否正常运行,对电力系统的安全、稳定运行起到决定性的作用。在当今我国大力提倡智能电网的背景下,进一步提高变电站自动化和发展变电站智能化已成为电力系统研究中的热点。 在IEC61850标准中,对变电站自动化系统SAS的定义为:变电站自动化系统就是在变电站内提供包括通信基础设施在内的自动化。 变电站自动化系统中的子系统有监控子系统,继电保护子系统,自动控制子系统等。 3 变电站电压无功综合控制子系统 变电站自动化系统需要保证设备的安全、可靠运行以及提高电能质量。为此,在变电站自动化系统中,需要电压无功综合控制子系统,低频低压减负荷控制子系统,单相接地选线控制子系统,备用电源自投控制子系统等。这些系统均采用了独立的自动装置。 3.1 电压无功综合调控的意义 电压无功综合调控的目的是:维持供电电压在给定范围内;保持电力系统达到合适的无功平衡;在保证电压质量合格的前提下尽量降低电能损耗。 目前,在我国变电站应用最广泛的调压方式是结合并联补偿电容器组与有载调压变压器来对电压和无功功率进行调节。对补偿电容器进行投切操作,可以改变电力系统中的无功分布,从而提高电能质量,改善功率因数,减少网络中的电能与电压损耗。而通过切换有载调压变压器的分接头位置就可以改变变压器的变比,从而对电压进行调整。 3.2 电压无功综合控制的实现 目前我国变电站主要使用基于微机技术的电压无功综合控制系统(VQC)来解决电压和无功的调节问题。常用的VQC有两类:变电站监控系统实现的电压无功控制和独立的VQC成套装置。 利用变电站监控系统实现电压无功控制,是通过在变电站自动化系统站控层监控机中装设VQC控制软件实现的。该软件通过RTU远动装置获取到模拟量、开关量等信息后对所得信息进行分析和计算,从而确定所采取的调控决策,发出调控指令交由RTU远动装置进行执行,故而这种VQC也被称为基于RTU的VQC控制系统。 独立的VQC成套装置则包括独立的微计算机系统和模拟量采集、信号采集I/O系统以及控制输出回路,同时具有测量、显示、统计、打印功能和专门的控制软件,故其可以独立地对变电站的电压和无功进行控制。 4 变电站电压无功综合控制策略 对电压无功进行控制时,采用传统的功率因数补偿法容易对电网造成过补偿。经过理论研究和实践证明后,变电站的电压无功综合控制选取无功功率Q为无功控制量。因此,所谓电压无功综合控制,即根据电压和无功功率这两个判别量来对电压和无功进行综合调节。 变电站电压无功综合控制的目标是在保证电压合格和无功功率基本平衡的前提下,尽可能少地对并联电容器进行投切以及对有载分接开关进行调节。为了更好地实现这个目标,不断有学者对现有电压无功综合控制策略进行修正,从而提出新的策略。 4.1 基于区域图的控制策略

110KV 变电站无功补偿规格书

华恩机械有限责任公司35kV变电所SVG无功补偿装置 技术规格书 山西金鹤电力设计有限公司 2011年12月18日

1总则 1.1 本设备技术规格书适用于华恩机械35kV变电所的2套10kV无功补偿装置(SVG)。规格书提出设备的功能、设计、结构、性能、安装和试验等方面的技术要求。供方提供的设备应是符合本技术要求、完整的设备。 1.2本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,供方应提供符合工业标准和本规格书要求的优质产品。 1.3若供方没有以书面形式对本技术条件提出异议,则意味着卖方提供的设备完全符合本技术条件和国家标准要求;如有异议,不管多小,都应在投标书中以“对技术条件的意见和同技术条件的差异”为标题的专门章节中说明 1.4本技术规范书经双方确认后,作为商务合同的附件,与商务合同具有同等的法律效力,随合同一起生效。 1.5本技术规格书未尽事宜,由供需双方协商确定。 1.6供方须执行现行国家标准和行业标准。应遵循的主要现行标准如下。下列标准所包含的条文,通过在本技术规范中引用而构成为本技术规范的条文。本技术规范出版时,所示本均为有效。所有标准都会被修订,供需双方应探讨使用下列标准最新版本的可能性。有矛盾时,按现行的技术要求较高的标准执行。 (1) DL/T672 《变电所电压无功调节控制装置订货技术条件》 (2) DL/T597 《低压无功补偿控制器订货技术条件》 (3) GB11920 《电站电气部分集中控制装置通用技术条件》 (4) GB1207 《电压互感器》 (5) SD325 《电力系统电压和无功电力技术导则》 (6) SD205 《高压并联电容器技术条件》。 (7) DL442 《高压并联电容器单台保护用熔断器订货技术条件》。 (8) GB50227 《高压并联电容器装置设计规范》。 (9) GB311.2~311.6 《高电压试验技术》。 (10)GB11 024 《高电压并联电容器耐久性试验》。

电压综合无功控制

1.电压、无功综合控制的目标 电力系统中电压和无功功率的调整对电网的输电能力、安全稳定运行水平和降低电网损耗有极大的影响。因此,要对电压和无功功率进行综合调控,保证实现包括电力企业和用户在内的总体运行技术指标和经济指标达到最佳。其具体的调控目标如下: (1)维持供电电压在规定的范围内,根据前能源部颁发的《电力系统电压和无功电力技术导则》(简称《导则》)规定,各级供电母线电压的允许波动范围(以额定电压为基准)规定如下: 1)500(330)kv变电站的220kv母线,正常时0%~+10%,事故时-5%~+10%。 2)220kv变电站的35~110kv母线,正常时-3%~+7%,事故时±10%。 3)配电网的10kv母线,电压合格范围为10.0~10.7kv。 (2)保持电力系统稳定和合适的无功功率。主输电网络应实现无功分层平衡;地区供电网络应实现无功分区就地平衡,才能保证各级供电母线电压(包括用户入口电压)在《导则》规定范围内。 (3)保证在电压合格的前提下使电能损耗最小。为了达到以上目标,必须增强对无功功率和电压的调控能力,充分利用现有的无功补偿设备和调压设备(调压机、静止补偿器、补偿电容器、电抗器、有载调压变压器等)的作用,对他们进行合理的优化调控,本文中我们主要用到静止无功补偿器。 电力系统的长期运行经验和研究、计算的结果表明,造成系统电压下降的主要原因是系统的无功功率不足或无功功率分布不合理。所以,对发电厂而言,主要的调压手段是调整发电机的励磁;对变电站来说,主要的调压手段是调节有载调压变压器分接头位置和控制无功无功补偿电容器。在这里我想向大家介绍一种新型无功补偿器—静止无功补偿器。 上述两种调节和控制的措施,都有调整电压和改变无功分布的作用,但它们的作用原理和后果有所不同。有载调压变压器可以在带负荷的情况下切换分接头位置,从而改变变压器的变比,起到调整电压和降低损耗的作用。调压措施本身不产生无功功率,但系统消耗的无功功率与电压水平有关,因此在系统无功功率不足的情况下,不能用改变变比的办法来提高系统的电压水平;否则电压水平调得越高,该地区的无功功率越不足,反而导致恶性循环。所以在系统缺乏无功的情况下,必须利用补偿电容器进行调压。控制无功补偿电容器的投切,既能补偿系统的无功功率,又可以改变网络中无功功率的分布,改善功率因数,减少网损

配电网电压控制方案的探讨

平煤电网电压控制方案的探讨 平煤电务厂电力调度室:张洪跃 摘要:平煤电网供电半径的不断延伸,容量的不断增加,配电网终端系统,无功过剩也会影响线路传输的安全稳定性,导致系统的输送容量下降,给电网运行调度带来不利的影响。而系统无功不足时,一方面会降低电网电压,另一方面,电网中传送的无功功率还增加了电能传输时的网络损耗,加大了电网的运行成本。为此,实现无功的分层、分区就地平衡是降低网损的主要原则和重要手段。 关键词:配电网电压质量控制方案 随着平煤电网容量的不断增加,对于配电网终端系统,无功过剩时一方面会提高系统运行电压,导致运行中的用电设备的运行电压超出额定工况,缩短设备的使用寿命;另一方面,无功过剩也会影响线路传输的安全稳定性,导致系统的输送容量下降,给电网运行调度带来不利的影响。而系统无功不足时,一方面会降低电网电压,另一方面,电网中传送的无功功率还增加了电能传输时的网络损耗,加大了电网的运行成本。所以,无功是影响电压质量的一个重要因素。 实现无功的分层、分区就地平衡是降低网损的主要原则和重要手段。电压和无功调节是各级变电站需要承担的重要任务。其中,电容器投切是变电站无功调节的最有效而简便的方法,变压器分接头的调节是母线电压控制的最直接手段。近几年以来,随着平煤煤电、化工、焦炭的快速发展,从而加大了对电网的改造力度,变电站综合自动化保护得到了广泛的应用,从而推出了基于微机控制技术的电压与无功综合控制装置(VQC系统)。 1现有电压无功控制的问题 目前VQC系统的实现方式多种多样,包括专用的VQC装置、利用变电站综合自动化后台或利用RTU可编程逻辑控制等方式。其控制策略为九区图控制,即根据电压和无功功率两个参数的综合分析后,判断是投切电容还是调节变压器分接头。采用VQC装置后,变电站的电压无功调节实现了自动控制,改变了过去依靠人工实现电压-无功调节的传统方式,可以满足变电站中母线电压与无功潮流的综合控制,大大地减轻了运行人员的工作负担,降低了误操作的发生,并取得了一定的运行经验,成为一种发展趋势,在变电站得到了大力的推广。但从运行的效果看来,该种方式还有很多地方值得讨论: a)容性无功是通过电容器的投切实现的,因容性功率调节不平滑而呈现阶梯性调节,故在系统运行中无法实现最佳补偿状态。电容器分组投切,使变电站无功补偿效果受电容器组分组数和每组电容器容量的制约,分组过少则电容调整梯度过大和冲击大;分组多则需增加开关、保护等附属设备及其占地面积。 b)电容器组仅提供容性无功补偿,当系统出现无功过剩时,无法实现无功就地平衡。 c)由于系统无功的变化而导致电容器的频繁投切,使得电容器充放电过程频繁,减少其使用寿命,对设备运行也带来了不可靠因素。 d)电容器的投切主要采用真空断路器实现(VSC)。其开关投切响应慢,不能进行无功负荷的快速跟踪;操作复杂,尤其不宜频繁操作。近来出现了使用晶闸管投切电容器组

AVC系统电压无功控制策略

第四部分 AVC电压控制

概述: 电压控制策略目的是即时调节区域电网中低压侧电压以及控制区域整体电压水平,使得电压稳定在一定的区间内。针对AVC系统各个功能来说,电压控制是优先级最高,保证电压稳定在合格范围内也是AVC系统最重要的目标。AVC系统的电压控制分为两部分即区域电压控制和单个变电站的电压校正。通过两部分调节即可以保证所有母线电压稳定在合格范围内,又有效的减少了设备控制震荡。 区域电压控制: 区域即电气分区,所谓区域控制就是整体调节每一个电气分区(以下称作区域)的电压水平,使之处在一个合理范围内。首先以AVC建模结果为基础,分别扫描每个区域中压侧母线电压水平,通过取当前母线电压和设定的母线电压上下限作比较,分别统计每个区域中压侧母线的电压合格率(s%)。然后用此合格率和设定的合格率限值(-d%)比较,如果s>=d,说明对应区域整体电压水平相对合理,不需要调整。如果s

无功功率平衡和的电压调整

电力系统的无功功率平衡和电压调整 1.输电线路传输无功功率的电压效应。负荷的无功功率――电压静特性。 2.电力系统的无功功率平衡 3. 电力系统的无功损耗。 4.电力系统的无功功率源。 5.电力系统调压方式有哪几种。 6.电力系统中无功功率分布对电压的影响。

1.输电线路传输无功功率的电压效应。负荷的无功功率――电压静特性。 如图7-1所示的简单输电线路。图中R +jX 为线路集中阻抗,输电线的电容不考虑。当线路末端的功率为r r jQ P +,这一功率将在线路上引起电压降。在高压电网中系统节点电压幅值的变化仅与无功功率的变化有关,且一节点的无功功率变化对其本身的电压变化影响最大。 当传输的负荷功率r r jQ P +通过阻抗时要产生电压降,电压降纵分量U ?和 横分量U δ和电压相量s U ,均示于图7-1(b ),我们已知 图7-1 简单输电线路 (a)等值电路;(b)相量图 =+r r r r r r U R Q X P U U X Q R P U -=δ? 并可以近似地认为线路首端到末端的电压损耗为υ?。 从图7-1(b),当已知r U ,r P ,r Q ,始端电压s U 可由下式求得(r U 作为参考相量)。

r R r Q X r P j r X r Q R r P r j S r R r Q X r P j r X r Q R r P r j r S U U U )s i n (c o s U U U U U +++=+?+++=++υδδυυδυ? = 电压为110千伏以上的输电线路R<

500kV变电站无功电压控制

机电信息2012年第36期总第354期4结语 在线路中后段或负荷中心安装无功补偿装置,就地补偿无 功功率,减少大量感性用电设备长距离较大负荷的输送,可以提升线路中后段的电压质量,避免造成近变电站出线段的电压过高问题,同时降低线路损耗,是一举多得的技术措施。 [参考文献] [1]丁素风.无功补偿原理及其应用[J].鄂钢科技,2009(3)[2]高虹.农村电网无功补偿方式优化配置探讨[J].电力职业技 术学刊,2011(1) [3]吕艳荣,谢智宇,王庆丰.营口港矿石码头中压无功补偿及谐波抑制的探讨[J].水运科学研究,2009(2) [4]马笑泉,熊建梅,高博,等.浅谈10kV配电线路加装无功补偿[J].新疆电力技术,2011(2) 收稿日期:2012-08-24 作者简介:夏斌(1981—),男,广东江门人,工程师,研究方向: 电网优化。 图3 测点2:南镇砖厂(距离变电站4636m )补偿前后电压变化曲线对比 二次侧电压曲线 260255250245240235230225220215 210 205 03/1100时03/1104时03/1108时03/1112时03/1116时03/1120时03/1200时03/1204时03/1208时03/1212时03/1216时03/1220时03/1000 B 相电压 C 相电压 B 相电压 C 相电压 时间数据(V ) 265260255250245240235230225220215 210 数据(V ) 03/1500时03/1504时03/1508时03/1512时03/1516时03/1520时03/1600时时间 C 相电压 03/1604时03/1608时03/1612时03/1616时03/1620时03/1700 A 相电压A 相电压图4 测点3:石板沙机砖厂(距离变电站4636m ) 补偿前后电压变化曲线对比 二次侧电压曲线 275 250225200175150数据(V ) 03/1100时03/1104时03/1108时03/1112时03/1116时03/1120时03/1000时时间 03/1204时03/1208时03/1212时03/1216时03/1220时03/1300 B 相电压 C 相电压 270260250240230220210200190 数据(V ) 03/1500时03/1504时03/1508时03/1512时03/1516时03/1520时03/1600时03/1604时时间 C 相电压 03/1608时03/1612时03/1616时03/1620时03/1700 C 相电压 B 相电压A 相电压A 相电压1无功功率与电压间的关系 将电力系统作简化处理如图1所示,G 代表发动机,T 代 表变压器,L 代表输电线路,S LD 代表负荷,其中负荷所消耗的功率为S LD =P LD +jQ LD ,系统各处电压如图1(a )表示。等效电路图如图1 (b ),其中E q 、X d 代表发电机电势及等值电抗,R Σ+jX Σ表示变压器、输电线路等值阻抗,Y D =G D +jB D 代表负荷等值导纳。 忽略电压降落横分量并考虑R Σ垲X Σ,则有: △U =U G -U =P LD R Σ+Q LD X ΣU ≈Q LD X Σ U 由此可知,线路中电压损耗正比于负荷所消耗的无功功率。发电机输出的无功功率一部分消耗于变压器及输电线路上,另一部分则供给负荷。当负荷无功需求增加时,线路电流随之增加,相应地消耗在变压器及线路上的无功功率亦增加,这使得发电机侧提供更多的无功功率以维持系统无功功率平衡;另一方面,线路电流的增加也使得线路网损增大。同理,当负荷无功需求减少时,变压器及线路上的无功损耗也减少,发电机需减少无功功率输出以维持系统无功功率平衡。在上述两种情况下,均可以通过调节发电机励磁系统等方式增加机端电压U G 以保证末端电压U 维持在正常范围内。但这并未减小或增大系统首末端电压损耗△U ,因为电压损耗的产生在根本上取决于线路上传递的无功功率大小。 发电机输出的无功功率有限,当其无法满足负荷及线路的过大的无功需求时,系统无功功率将失衡,破坏了系统的稳定。基于以上原因,引入合理的无功功率补偿设备,改变网络中的无功功率分布,可以减少网络中的有功功率损耗和电压损耗提高供电质量。 图1电力系统接线图及等效电路 U G jX d U G Y D S LD S LD U U L T 2 T 1 G G jX Σ R Σ+(a )电力系统接线图 Dianqigongcheng yu Zidonghua ◆电气工程与自动化 35

无功电压控制

配电网电压控制方案 北极星电力网技术频道作者: 2009-4-28 13:20:25 (阅290次) 所属频道: 电网关键词: 配电网电压控制电压无功控制确定规模的配电网终端系统,无功过剩时一方面会提高系统运行电压,导致运行中的用电设备的运行电压超出额定工况,缩短设备的使用寿命;另一方面,无功过剩也会影响线路传输的安全稳定性,导致系统的输送容量下降,给电网运行调度带来不利的影响。而系统无功不足时,一方面会降低电网电压,另一方面,电网中传送的无功功率还增加了电能传输时的网络损耗,加大了电网的运行成本。所以,无功是影响电压质量的一个重要因素。 实现无功的分层、分区就地平衡是降低网损的主要原则和重要手段。电压和无功调节是各级变电所需要承担的重要任务。其中,电容器投切是变电站无功调节的最有效而简便的方法,变压器分接头的调节是母线电压控制的最直接手段。近几年以来,我国的电力工作者在此基础上,对电压与无功控制方式进行了大量的研究与开发工作,并相继推出了一系列的基于微机控制技术的电压与无功综合控制装置(VQC系统)。 1 现有电压无功控制的问题 目前VQC系统的实现方式多种多样,包括专用的VQC装置、利用变电站综合自动化后台或利用RTU可编程逻辑控制等方式。其控制策略为九区图控制,即根据电压和无功功率两个参数的综合分析后,判断是投切电容还是调节变压器分接头。采用VQC装置后,变电站的电压无功调节实现了自动控制,改变了过去依靠人工实现电压-无功调节的传统方式,可以满足变电站中母线电压与无功潮流的综合控制,大大地减轻了运行人员的工作负担,降低了误操作的发生,并取得了一定的运行经验,受到了运行部门的认同,成为一种发展趋势,在变电站得到了大力的推广。但从运行的效果看来,该种方式还有很多地方值得讨论:a)容性无功是通过电容器的投切实现的,因容性功率调节不平滑而呈现阶梯性调节,故在系统运行中无法实现最佳补偿状态。电容器分组投切,使变电站无功补偿效果受电容器组分组数和每组电容器容量的制约,分组过少则电容调整梯度过大和冲击大;分组多则需增加开关、保护等附属设备及其占地面积。 b)电容器组仅提供容性无功补偿,当系统出现无功过剩时,无法实现无功就地平衡。 c)由于系统无功的变化而导致电容器的频繁投切,使得电容器充放电过程频繁,减少其使用寿命,对设备运行也带来了不可靠因素。 d)电容器的投切主要采用真空断路器实现(VSC)。其开关投切响应慢,不能进行无功负荷的快速跟踪;操作复杂,尤其不宜频繁操作。近来出现了使用晶闸管投切电容器组(TSC)来代替用真空开关投切电容器组的方法。该法解决了开关投切响应慢和合闸时冲击电流大的问题,但不能解决无功调节不平滑以及电容器组分组的矛盾,同时由于采用了大功率的电力电子器件,也提高了系统的造价。 e)该方法需要在变压器上配置有载开关。变压器带负荷时调节有载开关分接头,会出现短时的匝间短路产生电弧,影响变压器油的性能,也会损坏分接头的机械与电气性能,因此,运行部门往往采取尽量不调或少调有载分接开关的原则,使得VQC的综合调节效果难以实

相关主题
文本预览
相关文档 最新文档