当前位置:文档之家› 第2章_控制系统的动态数学模型_2.1基本环节数学模型

第2章_控制系统的动态数学模型_2.1基本环节数学模型

被控过程的数学模型

第5章思考题与习题 5-1 什么是被控过程的数学模型 解答: 被控过程的数学模型是描述被控过程在输入(控制输入与扰动输入)作用下,其状态和输出(被控参数)变化的数学表达式。 5-2 建立被控过程数学模型的目的是什么过程控制对数学模型有什么要求解答: 1)目的:○1设计过程控制系统及整定控制参数; ○2指导生产工艺及其设备的设计与操作; ○3对被控过程进行仿真研究; ○4培训运行操作人员; ○5工业过程的故障检测与诊断。 2)要求:总的原则一是尽量简单,二是正确可靠。阶次一般不高于三阶,大量采用具有纯滞后的一阶和二阶模型,最常用的是带纯滞后的一阶形式。 5-3 建立被控过程数学模型的方法有哪些各有什么要求和局限性解答:P127 1)方法:机理法和测试法。 2)机理法: 测试法: 5-4 什么是流入量什么是流出量它们与控制系统的输入、输出信号有什么区别与联系 解答: 1)流入量:把被控过程看作一个独立的隔离体,从外部流入被控过程的物质或能量流量称为流入量。 流出量:从被控过程流出的物质或能量流量称为流出量。 2)区别与联系: 控制系统的输入量:控制变量和扰动变量。 控制系统的输出变量:系统的被控参数。

5-5 机理法建模一般适用于什么场合 解答:P128 对被控过程的工作机理非常熟悉,被控参数与控制变量的变化都与物质和能量的流动与转换有密切关系。 5-6 什么是自衡特性具有自衡特性被控过程的系统框图有什么特点 解答: 1)在扰动作用破坏其平衡工况后,被控过程在没有外部干预的情况下自动恢复平衡的特性,称为自衡特性。 2)被控过程输出对扰动存在负反馈。 5-7 什么是单容过程和多容过程 解答: 1)单容:只有一个储蓄容量。 2)多容:有一个以上储蓄容量。 5-8 什么是过程的滞后特性滞后又哪几种产生的原因是什么 解答: 1)滞后特性:过程对于扰动的响应在时间上的滞后。 2)容量滞后:多容过程对于扰动的响应在时间上的这种延迟被称为容量滞 后。 纯滞后:在生产过程中还经常遇到由(物料、能量、信号)传输延迟引 起的纯滞后。 5-9 对图5-40所示的液位过程,输入量为1Q ,流出量为2Q 、3Q ,液位h 为被控参数,水箱截面为A ,并设2R 、3R 为线性液阻。 (1)列写液位过程的微分方程组; (2)画出液位过程的框图; (3)求出传递函数)()(1s Q s H ,并写出放大倍数K 和时间常数T 的表达式。 解答:

控制数学模型

第二章 控制系统的数学模型 2—1 数字模型 在控制系统的分析和设计中,首先要建立系统的数学模型。 自动控制系统: 相同的数学模型进行描述,研究自动控制系统 其内在共性运动规律。 系统的数学模型,是描述系统内部各物理量之间动态关系的数学表达式。 常用的数学模型有: 数学模型 的建立方法 一般应尽可能采用线性定常数学模型描述控制系统。 如果描述系统的数学模型是线性微分方程,则称该系统为线性系统,若方程中的系数是常数,则称其为线性定常系统。线性系统的最重要特性是可以应用叠加原理,在动态研究中,如果系统在多个输入作用下的输出等于各输入单独作用下的输出和(可加性),而且当输入增大倍数时,输出相应增大同样倍数(均匀性),就满足叠加原理,因而系统可以看成线性系统。如果描述系统的数学模型是非线性微分方程,则相应系统称为非线性系统,其特性是不能应用叠加原理。 建立系统数学模型的主要目的,是为了分析系统的性能。由数学模型求取系统性能指标的主要途径如图2—1所示。由图可见,傅里叶变换和拉普拉斯变换是分析和设计线性定常连续控制系统的主要数学工具。 电气的、 机械的、 液压的 气动的等 微(差)分方程 传递函数(脉冲传递函数研究线性离散系统的数学模型) 经典控制理论 频率特性(在频域中研究线性控制系统的数学模型) 状态空间表达式(现代控制理论研究多输入—多输出控制系统) 结构图和信号流图,数学表达式的数学模型图示型式 解析法:依据系统及元件各变量之间所遵循的物理、化学定律, 列写出各变量之间的数学关系式 实验法:对系统施加典型信号(脉冲、阶跃或正弦),记录系统的时间响应 曲线或频率响应曲线,从而获得系统的传递函数或频率特性。 图2-1 求取性能指标的主要途径

控制数学模型

第二章 控制系统的数学模型 2—1 数字模型 在控制系统的分析和设计中,首先要建立系统的数学模型。 自动控制系统: 相同的数学模型进行描述,研究自动控制系统 其内在共性运动规律。 系统的数学模型,是描述系统内部各物理量之间动态关系的数学表达式。 常用的数学模型有: 数学模型 的建立方法 一般应尽可能采用线性定常数学模型描述控制系统。 如果描述系统的数学模型是线性微分方程,则称该系统为线性系统,若方程中的系数是常数,则称其为线性定常系统。线性系统的最重要特性是可以应用叠加原理,在动态研究中,如果系统在多个输入作用下的输出等于各输入单独作用下的输出和(可加性),而且当输入增大倍数时,输出相应增大同样倍数(均匀性),就满足叠加原理,因而系统可以看成线性系统。如果描述系统的数学模型是非线性微分方程,则相应系统称为非线性系统,其特性是不能应用叠加原理。 建立系统数学模型的主要目的,是为了分析系统的性能。由数学模型求取系统性能指标的主要途径如图2—1所示。由图可见,傅里叶变换和拉普拉斯变换是分析和设计线性定常连续控制系统的主要数学工具。 电气的、 机械的、 液压的 气动的等 微(差)分方程 传递函数(脉冲传递函数研究线性离散系统的数学模型) 经典控制理论 频率特性(在频域中研究线性控制系统的数学模型) 状态空间表达式(现代控制理论研究多输入—多输出控制系统) 结构图和信号流图,数学表达式的数学模型图示型式 解析法:依据系统及元件各变量之间所遵循的物理、化学定律, 列写出各变量之间的数学关系式 实验法:对系统施加典型信号(脉冲、阶跃或正弦),记录系统的时间响应 曲线或频率响应曲线,从而获得系统的传递函数或频率特性。 图2-1 求取性能指标的主要途径

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

第二章 系统的数学模型

第二章 系统的数学模型 2.3图中三图分别表示三个机械系统。求出他们各自的微分方程,图中xi 表示输入位移,xo 表示输出位移,假设输出端无负载效应。 解:(1)、对图(a )所示系统,有牛顿定律有 c 1(x i-x 0)-c 2x 0=m x 0 即 m x 0+(c 1-c 2) x 0= c 1x i (2)、对图(b )所示系统,引入一中间变量x ,并有牛顿定律有 (x i -x)k 1=c(x -x 0) c(x -x 0)=k 2x 0 消除中间变量有 c(k 1+k 2)x 0+k 1k 2x 0=ck 1x i (3)、对图(c )所示系统,有牛顿定律有 c(x i-x 0)+ k 1 (x i -x)= k 2x 0 即 c x 0+(k 1+k 2)x 0=c x i+ k 1x i 2.4 求出图(2.4)所示电网络图的微分方程。

解:(1)对图(a )所示系统,设i x 为流过1R 的电流,i 为总电流,则有 ?+ =i d t C i R u o 2 21 11i R u u o i =- dt i i C u u o i ?-= -)(11 1 消除中间变量,并化简有 i i i o o o u R C u C C R R u R C u R C u C C R R u R C 1 22 11 221122 112211 )(1)1(++ +=++ ++ (2)对图(b )所示系统,设i 为电流,则有 dt i C i R u u o i ?+ +=1 11 i R dt i C u o 2 2 1+= ? 消除中间变量,并化简有 i i o o u C u R u C C u R R 2 22 1 211)11()(+=+ ++ 2.5 求图2.5所示机械系统的微分方程。图中M 为输入转矩,C m 为圆周阻尼,J 为转动惯量。 解:设系统输入为M (即M (t )),输出为θ(即θ(t )),分别对圆盘和质块进行动力学分析,列写动力学方程如下:

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

第二章 控制系统的数学模型

+ 第二章控制系统的数学模型 一.是非题 1.惯性环节的输出量不能立即跟随输入量变化,存在时间上的延迟,这是由于环节的惯性造成的。(√) 2.比例环节又称放大环节,其输出量与输入量之间的关系为一种固定的比例关系。(√) 3.积分环节的输出量与输入量的积分成正比。(√) 4.如果把在无穷远处和在零处的的极点考虑在内,而且还考虑到各个极点和零点的重复数,传递函数G (s )的零点总数与其极点数不等 (×) 二. 选择题 1.比例环节的传递函数为 (A ) A .K B 。K s C 。 τs D 。以上都不是 2.下面是t 的拉普拉斯变换的是 (B ) A . 1 S B 。 21S C 。2S D 。S 3.两个环节的传递函数分别为()1G s 和()2G s 则这两个环节相串联则总的传递函数是 (C ) A .()()12G s G s + B 。()12()G s G s - C .()()12G s G s D 。 () () 12G s G s

4.两个环节的传递函数分别为()1G s 和()2G s 则这两个环节相并联则总的传递函数是 (A ) A .()()12G s G s + B 。()12()G s G s - C .()()12G s G s D 。() () 12G s G s 三. 填空题 1.典型环节由比例环节,惯性环节, 积分环节,微分环节,振荡环节,纯滞后环节 2.振荡环节的传递函数为22 21k s s τζτ++ 3.21 2 t 的拉普拉斯变换为 3 1 s 4.建立数学模型有两种基本方法:机理分析法和实验辨识法 四.计算题 §2-1 数学模型 1、 线性元部件、系统微分方程的建立 (1)L-R-C 网络 C r u R i dt di L u +?+? = c i C u =? c c c u u C R u C L +'??+''??=

第二章 动态数学模型

第二章控制系统的数学模型 控制系统的数学模型 本章主要内容: 引言 微分方程模型 传递函数模型 脉冲响应模型 方框图模型 信号流图模型 频域特性模型 数学模型的实验测定方法(辨识) 2.0 引言 主要解决的问题: 什么是数学模型 为什么要建立系统的数学模型 对系统数学模型的基本要求 2.0.1 什么是数学模型 控制系统的数学模型是描述系统内部各物理量(或变量)之间关系的数学表达式或图形表达式或数字表达式。 亦:描述能系统性能的数学表达式(或数字、图像表达式) 控制系统的数学模型按系统运动特性分为:静态模型

动态模型 静态模型:在稳态时(系统达到一平衡状态)描述系统各变量间关系的数学模型。 动态模型:在动态过程中描述系统各变量间关系的数学模型。 关系:静态模型是t时系统的动态模型。 控制系统的数学模型可以有多种形式,建立系统数学模型的方法可以不同,不同的模型形式适用于不同的分析方法。 2.0.2 为什么要建立控制系统的数学模型 控制系统的数学模型是由具体的物理问题、工程问题从定性的认识上升到定量的精确认识的关键!(这一点非常重要,数学的意义就在于此) 一方面,数学自身的理论是严密精确和较完善的,在工程问题的分析和设计中总是希望借助于这些成熟的理论。事实上凡是与数学关系密切的学科发展也是快的,因为它有严谨和完整的理论支持;另一方面,数学本身也只有给它提供实际应用的场合,它才具有生命力。“1”本身是没有意义的,只有给它赋予了单位(物理单位)才有意义。 建立系统数学模型的方法很多,主要有两类: 机理建模白箱实验建模(数据建模)黑箱或灰箱 系统辨识 2.0.3 对系统数学模型的基本要求 亦:什么样的数学表达式能用于一个工程系统的描述。 理论上,没有一个数学表达式能够准确(绝对准确)地描述一个系统,因为,理论上任何一个系统都是非线性的、时变的和分布参数的,都存在随机因素,系统越复杂,情况也越复杂。 而实际工程中,为了简化问题,常常对一些对系统运动过程影响不大的因素忽略,抓住主要问题进行建模,进行定量分析,也就是说建立系统的数学模型应该在模型的准确度和复杂度上进行折中的考虑。因此在具体的系统建模时往往考虑以下因素:

控制系统的数学模型[]

第二章控制系统的数学模型 2-1 什么是系统的数学模型?大致可以分为哪些类型? 答定量地表达系统各变量之间关系的表达式,称工矿企业数学模型。从不同的角度,可以对 数学模型进行大致的分类,例如:用来描述各变量间动态关系的数学模型为动态模型,用来描述各变量间稳态关系有数学模型为静态模型;数学模型中各变量与几何位置无关的称为集中参数模型,反之与几 何位置有关的称为分布参数模型;变量间关系表现为线性的称为线性模型,反之非线性模型;模型参数与时间有关的称为时变模型,与时间无关的称为时不变或定常模型;以系统的输入、输出变量这种外部特征来描述系统特性的数学模型称为输入输出模型,而以系统内部状态变量描述的数学模型称为状态空 间模型;等等。 2-2 系统数学模型的获取有哪几种方法? 答获取系统数学模型的方法主要有机理分析法和实验测试法。 机理分析法是通过对系统内部机理的分析,根据一些基本的物理或化学变化的规律而导出支配系统运动规律的数学模型,这样得到的模型称为机理模型。 实验测试法是通过对实际系统的实验测试,然后根据测试数据,经过一定的数据处理而获得系统的数学 模型,这样得到的模型可称为实测模型或经验模型。 如果将上述两种方法结合起来,即通过机理分析的方法预先得到数学模型的结构或函数形式,然后对其 中的某些参数用实验辨识的方法来确定,这样得到的数学模型可称为混合模型。这是介于 上述两种方法之间的一种比较切合实际的应用较为普遍的方法。 2-3 通过机理分析法建立对象微分方程数学模型的主要步骤有哪些? 答主要步骤有: ⑴根据系统的控制方案和对象的特性,确定对象的输入变量和输出变量。一般来说,对象的输出变量为系统的被控变量,输入变量为作用于对象的操纵变量或干扰变量。 ⑵根据对象的工艺机理,进行合理的假设和简化,突出主要因素,忽略次要 因素。⑶根据对象的工艺机理,从基本的物理、化学等定律出了,列写描述 对象运动规律的原始微分 方程式(或方程式组)。 ⑷消去中间变量,推导出描述对象输入变量与输出变量之间关系的方程式。 ⑸根据要求,对上述方程式进行增量化、线性化和无因次化的处理,最后得 出无因次的、能够 描述对象输入变量与输出变量的增量之间关系的线性微分方程式(对于严重非线性的对象,可进行分段 线性化处理或直接导出非线性微分方程式)。 2-4 试述传递函数的定义。如何由描述对象动态特性的微分方程式得到相应的传递函数?并写出传递函数的一般形式。 答对于线性定常系统、对象或环节的传递函数的定义可以表述为:当初始条 件为零时,系统、对象或环节输出变量的拉氏变换式与输入变量的拉氏变换式之比。 如果已知系统、对象或环节的动态数学模型用下述线性常系数微分方程式来描述: 式中y为输出变量,x为输入变量,表示y(t) 的n阶导数,表示x(t)

异步电动机动态数学模型的建模与仿真

概述 (1) 1课程设计任务与要求 (2) 2异步电动机动态数学模型 (3) 2.1三相异步电动机的多变量非线性数学模型 (4) 2.2 坐标变换 (6) 2.2.1坐标变换的基本思路 (6) 2.2.2三相-两相变换(3/2变换) (6) 2.2.3 静止两相-旋转正交变换(2s/2r变换) (8) 2.3状态方程 (9) 3模型实现 (11) 3.1AC Motor模块 (11) 3.2坐标变换模块 (12) 3.3仿真原理图 (15) 4仿真结果及分析 (17) 5结论 (20) 参考文献 (21)

异步电动机又称感应电动机,是由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电机。异步电动机按照转子结构分为两种形式:有鼠笼式、绕线式异步电动机。 异步电动机的转子绕组不需与其他电源相连,其定子电流直接取自交流电力系统;与其他电机相比,异步电动机的结构简单,制造、使用、维护方便,运行可靠性高。但它的转速与其旋转磁场的同步转速有固定的转差率,因而调速性能较差,在要求有较宽广的平滑调速范围的使用场合(如传动轧机、卷扬机、大型机床等),不如直流电动机经济、方便。因此,在需要高动态性能的调速系统或伺服系统,异步电动机就不能完全适应了。要实现高动态性能的系统,必须首先认真研究异步电机的动态数学模型。 系统建模与仿真一直是各领域研究、分析和设计各种复杂系统的有力工具。建模可以超越理想的去模拟复杂的现实物理系统;而仿真则可以对照比较各种控制策略和方案,优化并确定系统参数。长期以来,仿真领域的研究重点是放在仿真模型建立这一环节上,即在系统模型建立以后,设计一种算法,以使系统模型为计算机所接受,然后再将其编制成计算机程序,并在计算机上运行。显然,为达到理想的目的,在这一过程中编制与修改仿真程序十分耗费时间和精力,这也大大阻碍了仿真技术的发展和应用。 近年来逐渐被大家认识的Matlab软件则很好的解决了系统建模和仿真的问题。异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。本次设计就是借助于Matlab软件的Simulink组件来建立异步电动机的动态数学模型,再按照定子磁链定向的方法来仿真分析异步电动机的运行特性。

第二章 数学模型作业与习题解答

第二章 数学模型作业与习题解答 2-1 试建立图2-55所示各系统的动态方程,并说明这些动态方程之间有什么特点。图中电压1u 和位移1x 为输入量,电压2u 和位移2x 为输出量;k 、1k 和2k 为弹性系数;f 为阻尼器的阻尼系数。 解: 1212 2 211u idt u u i u C C u u iR i R ?=+?=+????=?=??? 2211 u u u RC + = 21()1()1U s s RCs U s RCs s RC == ++

221fx kx fx += 21()()1f s X s fs k f X s fs k s k ==++ 1111 ()()()1c R Cs U s I s U s R Cs ? =?++ 22()()U s R I s = 22111221()(1) ()U s R R Cs U s R R R R Cs +=++ 12212212121()R R u R R Cu R R Cu R u ++=+ 1222111211 R R u u u u R R R C ++ =+

22 2211 1121212121() (1) 1() 1 1U s R R R R Cs R U s R R R R Cs R R Cs R Cs R R Cs +=== ++? + ++ + 21222111fx k x k x k x fx ++=+ 112121112 12 1()()1k f s k k k x s fs k f x s fs k k s k k ??+ ? ++??= ++++= 22211212 1()1 1( )()1 R U s R Cs Cs U s R R Cs R R Cs + +== ++++

完整版数学模型第二章习题答案.doc

15. 速度为 v 的风吹在迎风面积为 s 的风车上,空气密度是 ,用量纲分析方法确定风车 获得的功率 P 与 v 、S 、 的关系 . 解: 设 P 、 v 、 S 、 的关系为 f ( P, v, s, ) 0 , 其量纲表达式为 : [P]= ML 2T 3 , [ v ]= LT 1 ,[ s ]= L 2 ,[ ]= ML 3 , 这里 L, M ,T 是基本量纲 . 量纲矩阵为: 2 1 2 3 ( L) A= 1 0 0 1 ( M ) 3 1 (T ) ( P) (v) (s) ( 齐次线性方程组为: 2 y 1 y 2 2y 3 3y 4 y 1 y 4 0 3y 1 y 2 它的基本解为 y ( 1,3 ,1,1) 由量纲 P i 定理得 P 1v 3 s 1 1 , P v 3s 1 1 , 其中 是无量纲常数 . 16.雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘滞系数的定义 是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比, 比例系数为粘滞系 数,用量纲分析方法给出速度 v 的表达式 . 解:设 v , , , g 的关系为 f ( v , , , g ) =0. 其量纲表达式为 [ v ]=LM 0T -1 ,[ ]=L -3 MT 0, -2 -1 L -1 -1 -2 -2 -2 -1 -1 0 -2 , 其中 L ,M , T 是基本量纲 . [ ]=MLT ( LT ) L =MLL T T=L MT , [ g ]=LM T 量纲矩阵为 1 3 1 1 ( L) A= 0 1 1 0 ( M ) 1 0 1 2 (T ) (v) ( ) ( ) ( g) 齐次线性方程组 Ay=0 ,即 y 1 - 3y 2 - y 3 y 4 0 y 2 y 3 - y 1 - y 3 - 2y 4 的基本解为 y=(-3 ,-1 ,1 ,1) 由量纲 P i 定理 得 v 3 1 g . v 3 g ,其中 是无量纲常数 .

第二章用拉格朗日方程建立系统数学模型

第二章 用拉格朗日方程建立系统的数学模型 §2.1概述 拉格朗日方程——属于能量法,推导中使用标量,直接对整个系统建模 特点:列式简洁、考虑全面、建模容易、过程规范 适合于线性系统也适合于非线性系统,适合于保守系统,也适合于非保守系统。 §2.2拉格朗日方程 1. 哈密尔顿原理 系统总动能 ),,,,,,,(321321N n q q q q q q q q T T = (2-1) 系统总势能 ),,,,(321t q q q q U U N = (2-2) 非保守力的虚功 N N nc q Q q Q q Q W δδδδ ++=2211 (2-3) 哈密尔顿原理的数学描述: 0)(2 1 21 =+-??t t nc t t dt W dt U T δδ (2-4) 2. 拉格朗日方程: 拉格朗日方程的表达式: ),3,2,1()(N i Q q U q T q T dt d i i i i ==??+??-?? (2-5) (推导:) 将系统总动能、总势能和非保守力的虚功的表达式代入哈密尔顿原理式中(变分驻值原理),有 0)( 22112211221122112 1 =+++??-??-??-??++??+??+??+??+??? dt q Q q Q q Q q q T q q U q q U q q T q q T q q T q q T q q T q q T N N N N N N N N t t δδδδδδδδδδδδ (2-6) 利用分步积分

dt q q T dt d q q T dt q q T i t t i t t i i i t t i δδδ?? ??-??=??21212 1 )(][ (2-7) 并注意到端点不变分(端点变分为零) 0)()(21==t q t q i i δδ (2-8) 故 dt q q T dt d dt q q T i i t t i t t i δδ)(212 1 ??-=???? (2-9) 从而有 0)])([2 1 1 =+??-??+??- ?∑=dt q Q q U q T q T dt d i i i t t i i N i δ ( (2-10) 由变分学原理的基本引理: (设 n 维向量函数M(t),在区间],[0f t t 内处处连续,在],[0f t t 内具有二阶连续导 数,在f t t ,0处为零,并对任意选取的n 维向量函数)(t η,有 ? =f t t T dt t M t 0 0)()(η 则在整个区间],[0f t t 内,有 0)(≡t M ) 我们可以得到: 0)(=+??-??+??- i i i i Q q U q T q T dt d (2-11) 即 i i i i Q q U q T q T dt d =??+??-??)( (2-12) 对非保守系统,阻尼力是一种典型的非保守力,如果采用线性粘性阻尼模型, 则阻尼力与广义速度}{q 成正比,在这种情况下,可引入瑞利耗散(耗能)函数D , }]{[}{2 1q C q D T ≡ (2-13) 阻尼力产生的广义非保守力为:

第二章。数学模型的分类

学习目标 (1)了解数学建模的方法和步骤以及数学模型的分类。 (2)具备数学建模常用思维方法及能力。 根据研究目的,对研究的过程和现象(称为现实原型或原型)的主要特征、主要关系采用形式化的数学语言,概括地、近似地表达出来的一种结构。所谓“数学化”,指的就是构造数学模型通过研究事物的数学模型来认识事物的方法,称为数学模型方法,简称为MM方法。 数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。数学建模有广义和狭义两种解释。广义的说,数学概念,如数、几何、向量、方程都可称为数学模型;狭义的说,只有反映特定问题和特定的具体事物系统的数学关系结构方式。数学模型大致可以分为两类:(1)描述客体必然现象的确定性模型,其数学工具一般是微分方程、积分方程和差分方程等;(2)描述客体或然现象的随机性模型。其数学模型方法是科学研究与创新的重要方法之一。在体育实践中常常提到优秀运动员的数学模型。如经调查统计现代的世界级短跑运动健将模型为身高1.80m左右、体重70kg左右,100m成绩10s左右或更好等。 用字母、数字和其它数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内在联系或与外界联系的模型,它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有利工具,它是分析、设计、预报或预测、控制实际系统的基础。 知识链接 一、数学模型的分类 数学模型的种类很多,而且有多种不同的分类方法。例如: (1)按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、扩展模型等。 (2)安研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、 经济模型、社会模型等。 (3)按是否考虑随机因素分:确定性模型、随机性模型。 (4)按是否考虑模型的变化分:静态模型、动态模型。 (5)按应用离散方法或连续方法分:离散模型、连续模型。 (6)按人们对事物发展过程的了解程度分:黑箱模型、灰箱模型、白箱模型。 白箱模型指那些内部规律比较清楚的模型。如力学、热学、电学以及相关的 工程技术问题。 灰箱模型指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程 度上都还有许多工作要做的问题。如气象学、生态学、经济学等领域的模型。 黑箱模型指一些内部规律还很少为人们所知的现象。如生命科学、社会科学 等方面的问题。但由于因素众多、关系复杂、也可以简化为灰箱模型来研究。 二、数学建模的一般方法 建立数学模型的方法没有一定的模式,但一个理想的模型应该反映系统的全部 重要特征,模型应具有可靠和实用性。 建模的一般方法 1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反应内部机

相关主题
文本预览
相关文档 最新文档