当前位置:文档之家› 雷达目标识别技术综述

雷达目标识别技术综述

雷达目标识别技术综述
雷达目标识别技术综述

雷达的目标识别技术

雷达的目标识别技术 摘要: 对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。 一.引言 随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。 1.一维距离成象技术 一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。信号带宽与时间分辨率成反比。例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。其基本原理如图1所示。 2.极化成象技术 电磁波是由电场和磁场组成的。若电场方向是固定的,例如为水

平方向或垂直方向,则叫做线性极化电磁波。线性极化电磁波的反射与目标的形状密切相关。当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。通过计算目标散射矩阵便可以识别目标的形状。该方法对复杂形状的目标识别很困难。 3.目标振动声音频谱识别技术 根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。通过解调反射电磁波的频率调制,复现目标振动频谱。根据目标振动频谱进行目标识别。 传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。点状目标的回波宽度等于入射波宽度。一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。通过目标回波宽度的变化可估计目标的大小。目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。 这类波型图叫作波色图。根据波色图内子峰的形状,可获得一些目标信息。熟练的操作员根据回波宽度变化和波色图内子峰形状,进行目标识别。

雷达运动目标检测大作业

非均匀空时自适应处理 摘要 本文首先依次介绍了在非均匀环境下的STAP处理法,包括降维、降秩以及LSMI方法,接着重点分析了直接数据域(DDD)方法的原理及实现过程,最后针对直接数据域方法进行了仿真实验。 引言 机载雷达对运动目标检测时, 面临的主要问题是如何抑制强大的地面杂波和各种类型的干扰,空时自适应处理(STAP)是解决该问题的关键技术。STAP 技术通过对杂波或干扰训练样本分布特性的实时学习来来形成空域—时域二维自适应权值,实现对机载雷达杂波和干扰的有效抑制。 STAP技术在形成自适应权值时,需要计算杂波协方差矩阵R。实际系统的协方差矩阵是估计得到的,即先在待检测距离单元的临近单元测得K个二维数 据矢量样本V i(i=1,2…K),再计算R的估计值?=Σ i=1K V i V i H∕K,然后可得自 适应权值W=μR^-1S,其中μ为常数,S为空时导向矢量。临近训练样本的选择必须满足独立同分布(IID)条件。同时,为了使由杂波协方差矩阵估计引起的性能损失控制在3dB内,要求均匀训练样本数K至少要2倍于其系统自由度(DOF)。如果所选样本非均匀,则形成的权值无法有效对消待检测单元中所含有的杂波和干扰,从而大大降低对运动目标的检测性能。 在实际应用中, 机载雷达面临的杂波环境往往是非均匀的, 这对经典的S T A P 技术带来了极大的挑战。针对这一难题, 许多新的适用于非均匀杂波环境的S T A P 方法不断被提出。 1、解决非均匀样本的方法 1.1、降维方法 降维方法的最初目的是为了减少空时自适应处理时所需的巨大运算量, 但后来发现该类方法同时大大减少了对均匀训练样本数的需求, 对非均匀情况下杂波抑制起到了积极的作用。降维方法将每次自适应处理所需要抑制的杂波范围限制在某一个较小杂波子空间内, 根据RMB准则和Brennan定理, 自适应处理时所需要的均匀训练样本数由2 倍于整体系统自由度减至降维后2 倍于子空间系统自由度。降维程度越高, 对均匀训练样本的需求就越少。降维方法属固定结构方法, 无法充分利用杂波的统计特性。当辅助波束与杂波谱匹配很好时, 处理性能往往很好。反之, 则性能下降。 1.2、降秩方法 与固定结构降维方法相反, 降秩方法充分利用回波中杂波的分布特性, 每次处理选取完备杂波空间来形成自适应权值对消杂波分量, 可看作依赖回波数据的自适应降维方法。该类方法在形成权值过程中利用的信息中不含噪声分量, 所以避免了小样本情况下噪声发散带来的性能下降问题, 故减少了对均匀训练样本数的需求。同样, 该类方法在满足信杂噪比损失不超过 3 d B 条件时所需的训练样本数约为 2 倍的杂波子空间的维数。从处理器结构上来看, 降秩方法可

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

【CN110133630A】一种雷达目标检测方法及应用其的雷达【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910344449.2 (22)申请日 2019.04.26 (71)申请人 惠州市德赛西威智能交通技术研究 院有限公司 地址 516006 广东省惠州市仲恺高新区和 畅五路西8号投资控股大厦 (72)发明人 孙靖虎 曾迪 黄力 温和鑫  盘敏容 蒋留兵  (74)专利代理机构 惠州创联专利代理事务所 (普通合伙) 44382 代理人 韩淑英 (51)Int.Cl. G01S 13/02(2006.01) G01S 13/08(2006.01) G01S 13/58(2006.01) G01S 7/41(2006.01) (54)发明名称 一种雷达目标检测方法及应用其的雷达 (57)摘要 本发明涉及一种雷达目标检测方法。本发明 提供了一种运行速度快、探测精度高的雷达目标 检测方法,本发明中,雷达的一帧检测中第二发 射波的发射次数可与第一发射波不同,可通过设 置较少的第二发射波的发射次数来缩短雷达的 检测帧周期;本发明中第二发射波只需要进行一 次一维FFT而无需进行二维FFT,降低了计算复杂 度, 提高了数据处理速度。权利要求书2页 说明书7页 附图4页CN 110133630 A 2019.08.16 C N 110133630 A

1.一种雷达目标检测方法,其特征在于,包括以下步骤: 步骤一、发射K1次周期为T1、的第一发射波,所述第一发射波被目标反射后被天线接收得到第一回波; 步骤二、对每个周期的第一回波进行N点采样一维FFT变换得到第一回波一维FFT结果; 步骤三、对所述第一回波一维FFT结果进行二维FFT变换得到坐标对应第一距离单元号、第一模糊速度号的距离多普勒谱,其中第一距离单元号为对单个周期的第一回波进行一维FFT采样的序号,第一模糊速度号为所述第一发射波的发射周期的序号;根据第一回波的目标检测距离、目标检测模糊速度与所述距离多普勒谱的峰值的对应关系求第一回波的目标检测距离及目标检测模糊速度; 步骤四、发射K2次与所述第一发射波频率互质的周期为T2的第二发射波,所述第二发射波被目标发射后被所述天线接收得到第二回波,对每个周期的第二回波进行N点采样一维FFT变换得到对应不同第二距离单元号、第二模糊速度号的第二回波一维FFT结果,其中第二距离单元号为对单个周期的第二回波进行一维FFT采样的序号,第二模糊速度号为所述第二发射波的发射周期的序号; 步骤五、根据步骤三得到的第一回波的目标检测模糊速度与目标真实速度可能值之间的关系求目标真实速度可能值的速度旋转因子,并将该速度旋转因子与步骤四得到的第二回波一维FFT结果形成关联,然后对该关联结果进行解模糊,再根据解模糊的结果对步骤2求得的第一回波的目标检测距离、目标检测模糊速度进行修正从而求得目标真实速度及目标真实距离;以及 步骤六、输出步骤四获得的目标真实速度及目标真实距离。 2.根据权利要求1所述的一种雷达目标检测方法,其特征在于,步骤三中求第一回波的目标检测距离及目标检测模糊速度方法为: 在所述距离多普勒中寻找峰值,该峰值对应的距离单元号、模糊速度号即为目标所处 的第一距离单元号 第一模糊速度号 再根据目标所处的第一距离单元号电磁波的传播速度C、第一发射波的射频带宽B1计算第一回波的目标检测距离以及 根据目标所处的第一模糊速度号所述天线中心频率对应的波长λ、步骤1中所述第一发射波的发射次数K1及周期T1计算第一回波的目标检测模糊速度 3.根据权利要求2所述的一种雷达目标检测方法,其特征在于,所述步骤五具体包括: 定义目标真实速度可能值的速度旋转因子V DFT : 式中V r为目标真实速度可能值;z为所述第二模糊速度号; 将第一回波的目标检测模糊速 度与目标真实速度可能值V r之间的关 系代入步骤4.1中目标真实速度可能值的速度旋转因子V DFT的定义公式中, 式中m为取值范围为[-d,d]的模糊数单元号,其中d为正整数,从而求得目标真实速度可能值的速度旋转因子; 权 利 要 求 书1/2页 2 CN 110133630 A

雷达目标检测性能分析

雷达目标检测实例 雷达对Swerling起伏目标检测性能分析 1.雷达截面积(RCS)的涵义 2.目标RCS起伏模型 3.雷达检测概率、虚警概率推导 4.仿真结果与分析

雷达通过发射和接收电磁波来探测目标。雷达发射的电磁波打在目标上,目标会将入射电磁波向不同方向散射。其中有一部分向雷达方向散射。雷达截面积就是衡量目标反射电磁波能力的参数。

雷达截面积(Radar Cross Section, RCS)定义:22o 2 4π 4π4π4π()4πo i i P P R m P P R σ=== 返回雷达接收机单位立体角内的回波功率 入射功率密度 在远场条件下,目标处每单位入射功率密度在雷达接收机处每单位立体角内产生的反射功率乘以4π。 R 表示目标与雷达之间的距离,P o 、P i 分别为目标反射回 的总功率和雷达发射总功率

?目标RCS和目标的几何横截面是两个不同的概念?复杂目标在不同照射方向上的RCS不同 ?动目标同一方向不同时刻的RCS不同 飞机舰船 目标RCS是起伏变化的,目标RCS大小直接影响着雷达检测性能。为此,需用统计方法来描述目标RCS。基于此,分析雷达目标检测性能。

Swerling 模型是最常用的目标RCS 模型,它包括Swerling 0、I 、II 、III 、IV 五种模型。其中,Swerling 0型目标的RCS 是一个常数,金属圆球就是这类目标。Swerling Ⅰ/Ⅱ型: 1 ()exp()p σ σσσ =- 指数分布 Swerling Ⅰ:目标RCS 在一次天线波束扫描期间是完 全相关的,但本次和下一次扫描不相关(慢起伏),典型目标如前向观察的小型喷气飞机。 Swerling Ⅱ:目标RCS 在任意一次扫描中脉冲间不相关(快起伏),典型目标如大型民用客机。

雷达空间目标识别技术综述

2006年10月第34卷 第5期 现代防御技术 MODERN DEFENCE TECHNOLOGY O ct.2006 V o.l34 N o.5雷达空间目标识别技术综述* 马君国,付 强,肖怀铁,朱 江 (国防科技大学ATR实验室,湖南 长沙 410073) 摘 要:随着人类航天活动的增加,对于卫星和碎片等空间目标进行监视变得非常重要。为了实现空间监视任务,对空间目标进行识别是非常必要的。对空间目标的轨道特性与动力学特性进行了介绍,对雷达空间目标识别技术的研究现状和发展趋势进行了详细的综述。 关键词:空间目标识别;低分辨雷达;高分辨雷达成像 中图分类号:TN957 52 文献标识码:A 文章编号:1009 086X(2006) 05 0090 05 Survey of radar space target recognition technology MA Jun guo,F U Q iang,X I AO Huai tie,Z HU Jiang (ATR L ab.,N ationa lU n i versity o f De fense T echno l ogy,Hunan Changsha410073,Ch i na) Abst ract:W ith t h e deve l o pm ent of spacefli g ht acti v ity of hum an,surveillance of space tar get such as sate llite and debris beco m es very i m portan.t In or der to i m p le m ent surveillance task,space target recogni ti o n is ver y necessary.Orb it property and dyna m ics property of space targe t are i n troduced,a deta iled sur vey is set forth about current research state and developi n g trend of radar space target recogn iti o n techno l ogy. K ey w ords:space tar get recogniti o n;lo w reso lution radar;h i g h reso lution radar i m aging 1 引 言 自从前苏联发射了第1颗人造地球卫星以来,卫星在预警、通信、侦察、导航定位、监视和气象等方面具有不可替代的优势。随着人类航天活动的增加,空间碎片日益增多,对于卫星等航天器的安全造成极大的威胁,因此对于卫星和碎片等空间目标进行监视变得非常重要。其中空间目标识别是空间监视任务中不可或缺的基本条件,空间目标识别主要是利用雷达等传感器获取空间目标的回波信号,从中提取目标的位置、速度、结构等特征信息,进而实现对空间目标的类型或属性进行识别。 2 空间目标的轨道特性与动力学特性 (1)轨道特性[1,2] 空间目标在轨道上的运动是无动力惯性飞行,本质上空间目标与自然天体的运动是一致的,故研究空间目标的运动可以用天体力学的方法。空间目标在运动时受到地球引力、月球引力、太阳及其他星体引力、大气阻力和太阳光辐射压力等的作用,轨道存在摄动。但是对轨道的实际分析表明,空间目标受到的主要力是地球引力。假设空间目标只是受到地球引力的作用,同时假设地球是一个质量均匀分布的球体,则空间目标与地球构成二体运动系统,开 *收稿日期:2005-12-15;修回日期:2006-01-23 作者简介:马君国(1970-),男,吉林长春人,博士生,主要从事目标识别与信号处理研究。 通信地址:410073 湖南长沙国防科技大学ATR实验室 电话:(0731)4576401

雷达目标识别发展趋势

雷达目标识别发展趋势 雷达具备目标识别功能是智能化的表现,不妨参照人的认知过程,预测雷达目标识别技术的发展趋势: (1)综合目标识别 用于目标识别的雷达必将具备测量多种目标特征的手段,综合多种特征进行目标识别。我们人类认知某一事物时,可以通过观察、触摸、听、闻、尝,甚至做实验的方法认知,手段可谓丰富,确保了认知的正确性。 目标特征测量的每种手段会越来越精确,就如同弱视的人看东西,肯定没有正常人看得清楚,也就不能认知目标。 识别结果反馈给目标特征测量,使目标特征测量成为具有先验信息的测量,特征测量精度会有所提高,识别的准确程度也会相应提高。 雷达具备同时识别目标和背景的功能。人类在观察事物的时候,不仅看到了事物的本身,也看到了事物所处的环境。现有的雷达大多通过杂波抑制、干扰抑制等方法剔除了干扰和杂波,未来的雷达系统需要具备识别目标所处背景的能力,这些背景信息在战时也是有用的信息。 雷达具备自适应多层次综合目标识别能力。用于目标识别的雷达虽然需要具备测量多种目标特征的手段,但识别目标时不一定需要综合所有的特征,这一方面是因为雷达系统资源不允许,另一方面也是因为没有必要精确识别所有的目标。比如司机在开车时,视野中有很多目标,首先要评价哪几个目标有威胁,再粗分类一下,是行人还是汽车,最后再重点关注一下靠得太近、速度太快的是行人中的小孩子还是汽车中的大卡车。 (2)自学习功能 雷达在设计、实现、装备的过程中,即具备了设计师的基因,但除了优秀的基因之外,雷达还需要具有学习功能,才能在实战应用中逐渐成熟。 首先,要具有正确的学习方法,这是设计师赋予的。对于实际环境,雷达目标识别系统应该知道如何更新目标特征库、如何调整目标识别算法、如何发挥更好的识别性能。 其次,要人工辅助雷达目标识别系统进行学习,这就如同老师和学生的关系。在目标识别系统学习时,雷达观测已知类型的合作目标,雷达操作员为目标识别系统指出目标的类型,目标识别系统进行学习。同时还可以人为的创造复杂的电磁环境,使目标识别系统能更好地适应环境。 (3)多传感器融合识别 多传感器的融合识别必定会提高识别性能,这是毋容置疑的。这就好比大家坐下来一起讨论问题,总能讨论出一个好的结果,至少比一个人说的话更可信。但又不能是通过投票的方式,专家的话肯定比门外汉更有说服力。多传感器融合识别需要具备双向作用的能力。 并不是给出融合识别的结果就结束了,而是要利用融合识别的结果反过来提高各个传感器的识别性能,这才是融合识别的根本目的所在。反向作用在一定程度上降低了人工辅助来训练目标识别系统的必要性,也减少了分别进行目标识别试验的总成本。

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

雷达抗有源干扰技术的应用现状

雷达抗有源干扰技术的应用现状 发表时间:2019-06-17T11:54:52.620Z 来源:《中国西部科技》2019年第7期作者:杨文超高金宝袁义[导读] 检测目标以及跟踪与识别目标,是现代社会应用雷达的主要目的。雷达有源干扰对上述工作的顺利开展带来极大阻碍。因此,针对复杂电磁环境下雷达抗有源干扰技术展开的探究十分必要。雷达抗有源干扰技术复杂性较强,涉及到多个环节,最明显的是雷达信号以及信息处理。在探究雷达抗有源干扰技术后可明确该项技术在体制层面、波形设计以及信号与数据处理等层面的关键点。并在客观分析其不 足的基础上制定恰当策略,对其进行逐步完善。中国人民解放军91411部队军用雷达在全新的发展背景下面临巨大挑战,加之受到雷达电子对抗技术的影响,军用雷达使用面临的问题不断增加。雷达工作电磁环境因超大规模集成电路的影响而呈现出日渐恶劣的状态。固态电路技术的不断发展以及有源干扰等都与雷达工作电磁环境之间存在直接联系。高功率、高逼真度是有源干扰的明显特征,在智能化方面也占据一定优势。这些都是影响雷达生存与使用的直接因素。应用雷达抗有源干扰技术是改善上述问题的基础与前提。 一、系统与体制层面抗干扰应用现状 1.系统层面抗有源干扰措施(1)对于大功率饱和干扰,可通过调整接收机信号动态范围防止出现饱和状态。相关的方法主要包括时间灵敏度控制、自动增益控制、快时间常数以及宽限窄接收机等技术,但该类方法将影响雷达灵敏度和线性特性。(2)通过调查可以发现,噪声调制类干扰普遍存在于跟踪雷达当中。一般需要借助装备干扰检测器的方式来检测上述干扰。在加装干扰检测器时,需要进行波门设置工作,在选定感兴趣目标后,将其恰当设置在目标两侧。雷达系统因干扰检测器的影响,而向干扰跟踪模式不断转化。波门后拖干扰是制约跟踪雷达的重要因素,现阶段已经有前沿的跟踪技术打破上述限制。保护波门技术并不是随意使用,而是在距离信息并不重要的情况下开展,这类信息虽然精确,但不在重要参数的涵盖范围内。部门会在假目标信号转移后重新开始跟踪工作,系统在此过程中发挥自身作用与价值,重置各类参数,维持对原有感兴趣目标的跟踪。真正改善雷达检测概率较差的问题,是针对系统设计层面开展抗干扰工作的基础。当干扰处于某种特定情境时可取得理想效果,例如平稳以及线性等。但该措施仍然存在一定的缺陷。干扰被大功率压制后无法使用该种措施,或者涉及到较为密集的假目标时,该类措施仍无法发挥自身作用。 2.天线极化抗干扰措施干扰机天线会利用多种方式进行极化,也正是因为这种方式,有源干扰极化状态会发生不同程度的改变,极化方式是影响有源干扰极化状态的先决条件。干扰天线极化方式与雷达天线极化方式直接存在较大差异,一般情况下不会保持在相同状态。这是将更为科学的理论提供给抗有源干扰,是极化信息发挥自身价值的直观体现。国防科技大学在天线极化抗干扰方面的研究始终处于领先水平。一般是从极化滤波器设计角度着手,开展抗有源压制干扰工作的研究。极化抗干扰会利用多种方式开始作业,最为普遍的一种方法为有源干扰,现阶段目标回波极化方式差异的应用范围也有所拓宽,作为极化抗干扰开展各项作业的有效手段。无论是在稳健性还是在可靠性方面,上述两种技术都占据一定优势,并在不断应用与实践的同时,完善自身技术体系。其应用范围不断拓宽,对空监视以及导弹制导等都可结合实际恰当应用上述两种技术,成像雷达在作业过程中也可对其进行有效使用。但上述技术在发展过程中仍然会受到一定的阻碍,最为明显的就是实施条件较窄,只能在某种特定情况下使用。因其他因素会影响到抗干扰性能,例如在全极化发射天线时,抗干扰性能的发挥就会受到破坏性影响。 二、波形设计与接收机层面抗干扰应用状态 1.发射波形管理抗干扰作为一种改进思路,分集理论可以打破雷达方在抗干扰被动的局面。脉冲分集技术不仅可以增加干扰方截获与存储雷达信号的难度,而且可以通过对发射与接收信号集的分析与处理获得干扰信息,因而被应用于雷达有源欺骗干扰抑制。设计转向慢时域、频域及其联合域分集波形设计,其结构简单且计算量相对较低。分集信号将提高雷达复杂度,影响雷达基本功能,这个缺点将严重阻碍其工程实现。 2.天线空时自适应处理抗干扰空时自适应处理技术的出现时间相当早,并且经过较长时间的使用。机载雷达的杂波抑制是最开始应用该技术的范围。科学预估有源干扰特征参数,可以说是阵列技术取得成就的直观体现。部分新体制雷达在处理特征测数时,还要接收各项数据,将多个雷达接收阵元科学设置在其中。真正改善干扰信号抑制的问题,其对消出现的可能性大幅降低。STAP类抗干扰方法通过在特定方向设置零陷,从空域滤除干扰。其缺点较为明显:由于不具有距离维的自由度,当干扰和目标同向时,将严重影响真实目标检测概率。 三、明确信号与数据处理层面抗干扰应用现状 1.信号处理层面这类方法主要利用目标回波和干扰的多域表征差异进行抗干扰。针对LFM信号,利用分数阶傅里叶变换和经验模态分解抑制压制类干扰;通过匹配滤波和小波变换对干扰进行抑制;建立映射原则,研究目标回波和干扰的典范相关分析特征向量差异性,分离出回波从而抑制干扰。通过极化滤波的方法抑制干扰,该方法能较高程度地保留目标回波信息。对于利用多域滤波与子空间分离的方法,分辨率成为影响性能的最重要因素之一。 2.信号及数据处理层面抗有源欺骗干扰现代有源欺骗干扰通常由DRFM辅助产生,通过DRFM干扰机的工作流程分析可知,干扰机对截获的雷达发射信号进行距离、多普勒调制,产生欺骗干扰。由于干扰机的频率变换环节、射频功率放大器等器件的非线性,引入的非线性失真对调制产生的信号进行二次调制,所产生的假目标带有干扰机的指纹特征,这种特征为信号层面有源欺骗干扰感知提供了依据。结语:通过深入分析雷达抗有源干扰理论可明确其关键技术与各项要点,也可通过分析国内外发展现状的方式,完善雷达在应用方面存在的多种不足。雷达抗有源干扰技术可以说是将最为坚固的物质保障提供给电子对抗领域。雷达抗有源干扰技术的发展前景与空间相当广阔,无论是在理论方面,还是在工程方面,都具备极大的发展平台。雷达工程师需要在这一过程中转变自身的研究思路与观念。从设计阶段着手,实现雷达体制设计抗干扰算法与抗干扰技术以及需求指导之间的科学转换。参考文献:

浅谈雷达干扰与反干扰技术

浅谈雷达干扰与抗干扰技术 近年来,由于电子对抗技术的不断进步,干扰与抗干扰之间的斗争亦日趋激烈。面对日益复杂的电子干扰环境,雷达必须提高其抗干扰能力,才能在现代战争中生存,然后才能发挥其正常效能,为战局带来积极影响。 一、雷达干扰技术 1、对雷达实施干扰的目的和方法 雷达干扰的目的是使敌方雷达无法获得探测、跟踪、定位及识别目标的信息,或使有用的信息淹没在许多假目标中,以致无法提取真正的信息。 根据雷达工作原理,雷达是通过辐射电磁波在空间传播至目标,由目标散射回波被雷达接收实现探测目标。因此对雷达实施干扰可以从传播空间和目标这两处着手。具体来说就是辐射干扰信号,反射雷达信号,吸收雷达信号三个方面。 为了实现对雷达实现有效的干扰,一般需要满足下面几个条件。空间上,干扰方向必须对准雷达,使得雷达能够接收到干扰信号。频域上,干扰频率必须覆盖雷达工作频率或者和雷达工作频点相同。能量上,干扰的能量必须足够大,使得雷达接收机接收的能量大于其最小可接收功率(灵敏度)。极化方式上,干扰电磁波的极化方式应当和雷达接收天线的极化方式尽量接近,使得极化损失最小。信号形式上,干扰的信号形式应当能够对雷达接收机实施有效干扰,增加其信号处理的难度。 2、雷达干扰分类 雷达面临的复杂电子干扰可分为有意干扰和无意干扰两大类,这两者又分别包括有源和无源干扰,具体如下图所示。

有意干扰无意干扰有源干扰无源干扰有源干扰 无源干扰遮盖性干扰欺骗性干扰自然界的人为的欺骗性干扰遮盖性干扰自然界的人为的噪声调频干扰复合调频干扰噪声调相干扰随机脉冲干扰距离欺骗干扰角度欺骗干扰速度欺骗干扰等箔条走廊干扰箔条区域干扰反雷达伪装雷达诱饵宇宙干扰雷电干扰等工业干扰友邻干扰等鸟群干扰等 人工建筑干扰 地物、气象干扰 {友邻物体干扰{{{{{{{{{{{{{{ 雷达干扰 二、雷达抗干扰技术 雷达抗干扰的主要目标是在与敌方电子干扰对抗中保证己方雷达任务的顺利完成。雷达抗干扰措施可分为两大类:(1)技术抗干扰措施;(2)战术抗干扰措施。技术抗干扰措施又可分为两类:一类是使干扰不进入或少进入雷达接收机中;另一类是当干扰进入接收机后,利用目标回波和干扰的各自特性,从干扰背景中提取目标信息。这些技术措施都用于雷达的主要分系统如天线、发射机、接收机、信号处理机中。 1、与天线有关的抗干扰技术 雷达通过天线发射和接收目标信号,但同时可能接收到干扰信号,可以通过在天线上采取某些措施尽量减少干扰信号进入接收机。如提高天线增益,可提高雷达接收信号的信干比;控制天线波束的覆盖与扫描区域可以减少雷达照射干扰机;采用窄波束天线不仅可以获得高的天线增益,还能增大雷达的自卫距离、提高能量密度,还可以减少地面反射的影响,减小多径的误差,提高跟踪精度;采用低旁瓣天线可以将干扰限制在主瓣区间,还可以测定干扰机的角度信息,并能利用多站交叉定位技术,测得干扰机的距

雷达目标识别技术

雷达目标识别技术述评 孙文峰 (空军雷达学院重点实验室,湖北武汉430010) 摘要:首先对雷达目标识别研究领域已经取得的成果和存在的问题进行简单的回顾,然后结合对空警戒雷达,阐明低分辨雷达目标识别研究的具体思路。 关键词:雷达目标识别;低分辨雷达 Review on Radar Target Recognition SUN Wen-feng (Key laboratory, Wuhan Radar Academy, Wuhan 430010, China)Abstract: The acquired productions and existent problems of radar target recognition are reviewed simply, then the specific considerations of target recognition with low resolution radar are illustrated connect integrating with air defense warning radar in active service. Key words: radar target recognition; low resolution radar 1.引言 雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。1958年,D.K.Barton(美国)通过精密跟踪雷达回波信号分析出前苏联人造卫星的外形和简单结构,如果将它作为RTR研究的起点,RTR至今已走过了四十多年的历程。目前,经过国内外同行的不懈努力,应该说RTR已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,这些成果的取得使人们有理由相信RTR是未来新体制雷达的一项必备功能。目前,RTR技术已成功应用于星载或机载合成孔径雷达(SAR—Synthetic Aperture Radar)地面侦察、毫米波雷达精确制导等方面。但是,RTR还远未形成完整的理论体系,现有的R TR 系统在功能上都存在一定的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。本文首先对RTR研究领域已经取得的成果和存在的问题进行简单的回顾,最后结合对空警戒雷达,阐明了低分辨雷达目标识别研究的具体思路。 2.雷达目标识别技术的回顾与展望 雷达目标识别研究的主体有三个,即雷达、目标及其所处的电磁环境。其中任何一个主体发生改变都会影响RTR系统的性能,甚至可能使系统完全失效,即RTR研究实际上是要找到一种无穷维空间与有限类目标属性之间的映射。一个成功的RTR系统必定是考虑到了目标、雷达及其所处电磁环境的主要可变因素。就目标而言主要有目标的物理结构、目标相对于雷达的姿态及运动参数、目标内部的运动(如螺旋桨等)、目标的编队形式、战术使用特点等等;就雷达而言主要有工作频率、带宽、脉冲重复频率(PRF)、天线方向图、天线的扫描周期等等;环境因素主要有各种噪声(如内部噪声和环境噪声)、杂波(如地杂波、海杂波和气象杂波)和人为干扰等。在研制RTR系统时必须综合考虑这些因素,抽取与目标属性有关的特征,努力消除与目标属性无关的各种不确定因素的影响。

基于测速雷达的多目标检测算法

基于测速雷达的多目标检测算法 (合肥工业大学计算机与信息学院,安徽合肥20009) 摘要:近些年了来随着科技的进步、人们生活水平的提高,为满足生产和生活的需求各种交通工具应用而生。车型和车速的不断提高给道路交通管制带来了许多的不便和麻烦,因此基于交通测速雷达的多目标分辨领域的研究至关重要,能更好的对道路交通进行管理,在跟踪目标,对超速车辆的查找以及统计各类型车辆数量、缓解交通压力等方面有很大的用途。 本文在多普勒雷达的基础上研究发展而来的基于测速雷达的多目标分辨算法。首先介绍了雷达测速的研究背景及意义,多普勒雷达的测速原理,目前的发展状况以及传统雷达的不足之处。接着介绍了多目标分辨的理论依据,也就是本论文主要讲解的超速雷达的多目标分辨。 关键词:多普勒雷达、多目标分辨、频谱分析、幅度比较 一、研究背景 21世纪以来,人类生产力大解放。科技的蓬勃发展,工业革命的不断推进,无论是生产还是生活人类发生了翻天覆地的变化。其中最明显的便是交通运输工具的变化。随着道路基础设施建设水平的提高,人们生活质量的提高促使家庭小汽车的不断增加,同时为满足生产力发展的需求,各种交通工具应用而生。公路交通运输业是推动国民经济发展,促进经济社会繁荣的主动力。为实现对道路交通的有效管制以及行车速度测量及对超速车辆的实时监测控制对道路上的多目标进行分辨至关重要。 从雷达早期出现用于对空中金属物体的探测,到二战以来出现的雷达对空对地的火力控制等,雷达主要应用于军事领域。随着科技的进步,雷达技术的不断发展,雷达不再是一种单纯的军事雷达,其应用领域不断增加,功能不断增强出现了各种各样的雷达,比如气象雷达,道路交通测速雷达等。雷达测速是利用多普勒效应,通过多普勒频移计算目标的速度。雷达测速因其准确性高,速度快,稳定性好,探测距离远,可移动测速,能更好的抑制地无干扰等优点,得到广泛应用,但是由于雷达波束较宽,在多车并行行驶时,无法分辨出超速车辆,给监测控制带来了困难。国内现有超速测量抓拍系统在多车并行时,由于仅能检测出有车辆超速,无法分辨超速车辆,为避免误判只能放弃抓拍,无形中增加了交通事故隐患,严重影响了现代交通的严格法制化管理进程。因此多目标分辨雷达的研究和制造有着非常重要的作用。同时不仅可应用于超速雷达的探测,在对车型检测,缓解交通压力等方面都发挥很大的作用。 二、交通测速雷达发展状况 目前,美国联邦电讯委员会规定警用测速频道为Xband,Kband,Kaband三种,它们对应的微波频率分别为10.525GHZ,24.150GHZ,33.40-36.00GZH。Xband雷达形状为圆型,无法在车阵中锁定超速车辆只能在车阵中检测第一辆车的速度。K band测速雷达为手持式的雷达,国内警方绝大多数使用这种雷达。Ka band雷达与K band雷达相似,由于其微波频率更高,测速范围更加集中,所以不容易被干扰,目前国内基本局限于一般性测量且测量结果较粗糙,在先进技术方面还有很大差距,因此对多目标分辨的研究至关重要,对提高国内雷达水平,方便道路超速车辆管理有重要的作用。 三、多普勒雷达的作用原理 多普勒雷达,又名脉冲多普勒雷达,是一种利用多普勒效应来探测运动目标的位置和相对运动速度的雷达。1842年,奥地利物理学家J·C·多普勒发现,当波源和观测者有相对运动时,观测者接受到的波的频率和波源发来的频率不同,这种现象被称为多普勒效应。波是由频率和振幅所构成,而无线电波是随着物体而移动的,当无线电波在行进的过程中,碰到物体

雷达微弱目标检测的有效方法[1]

49642009,30(21)计算机工程与设计Computer Engineering and Design 0引言 复杂背景下低信噪比运动目标的检测和跟踪是雷达信号处理系统的关键技术之一。在微弱运动目标检测和跟踪的应用中,雷达接收的远距离目标回波强度非常弱,信噪比很低,目标易被噪声淹没,单个脉冲回波的信噪比甚至是负的,若仅对单帧图像处理,不能可靠地检测目标。在预警雷达应用中,由于运动目标距离雷达较远,又处在强杂波环境中,对微弱运动目标的检测与跟踪是雷达信号处理的一个重要课题。早期算法主要有Kalman滤波等方法,主要采用检测后跟踪(detect before track,DBT)方法,这类方法在信噪比较高时可以取得很好的效果,否则不能检测出目标。要想对微弱目标进行有效的检测及跟踪,除了抑制杂波和降低系统噪声等方法外,一种有效的方法是检测前跟踪(track before detect,TBD)方法,即对单次观测信号先不进行判断,而是结合雷达图像特点,对目标进行多次观测,计算出目标在各帧图像之间的移动规律,预测目标在下一帧图像的可能位置,同时在帧与帧之间将多次扫描得到的数据沿着预测轨迹进行几乎没有信息损失的相关处理,从而改善目标的信噪比,提高检测性能,在得到检测结果的同时获得目标航迹。 目前,用于微弱目标检测的TBD方法主要有极大似然法、粒子滤波法、动态规划(dynamic programming,DP)法、Hough变换法,等[1-2]。其中,Hough变换法对检测沿径向做匀速直线运动的目标具有较好的检测性能,目标在直线轨迹上的能量集中在Hough变换后的单点上,目标轨迹的能量远大于其它点的能量,但计算量和存储量都较大[3],难以实现。动态规划算法对目标信噪比要求较低,可以探测各种运动形式的目标[4-5]。 动态规划算法是美国Y.Barniv于1985年提出的,利用动态规划的分段优化思想,将目标轨迹搜索问题分解为分级优化的问题[6]。将其应用到雷达微弱目标检测中,可将雷达回波信号在多普勒频率和距离二维方向的幅度排列成图像,在多帧相继的图像序列中,运动目标轨迹可看作是一条连续变化的曲线,利用动态规划算法,检测是否存在着这样一条曲线,从而判断目标是否存在。 基于动态规划的检测前跟踪的关键在于沿目标运动航迹积累能量[7-8],可以看出,搜索目标航迹的计算量非常大,在实际应用中存在不足。在预警雷达中,来袭目标比远离雷达的目标更具有威胁性,更需早期发现和预防,所以单独针对来袭目标进行探测,可以大大减少动态规划法搜索的运算量,提高预警雷达的探测能力。本文针对动态规划算法计算量大的缺 收稿日期:2009-02-26;修订日期:2009-06-10。

雷达信号处理及目标识别分析系统方案

雷达信号处理及目标识别分系统方案 西安电子科技大学 雷达信号处理国家重点实验室 二○一○年八月

一 信号处理及目标识别分系统任务和组成 根据雷达系统总体要求,信号处理系统由测高通道目标识别通道组成。它应该在雷达操控台遥控指令和定时信号的操控下完成对接收机送来的中频信号的信号采集,目标检测和识别功能,并输出按距离门重排后的信号检测及识别结果到雷达数据处理系统,系统组成见图1-1。 220v 定时信号 目标指示数据 目标检测结果输出目标识别结果输出 图1-1 信号处理组成框图 二 测高通道信号处理 测高信号处理功能框图见图2-1。 s 图2-1 测高通道信号处理功能框图

接收机通道送来中频回波信号先经A/D 变换器转换成数字信号,再通过正交变换电路使其成为I 和Q 双通道信号,此信号经过脉冲压缩处理,根据不同的工作模式及杂波区所在的距离单元位置进行杂波抑制和反盲速处理,最后经过MTD 和CFAR 处理输出检测结果。 三 识别通道信号处理 识别通道信号处理首先根据雷达目标的运动特征进行初分类,然后再根据目标的回波特性做进一步识别处理。目标识别通道处理功能框图见图3-1所示。 图3-1 识别通道处理功能框图 四 数字正交变换 数字正交变换将模拟中频信号转换为互为正交的I 和Q 两路基带信号,A/D 变换器直接对中频模拟信号采样,通过数字的方法进行移频、滤波和抽取处理获得基带复信号,和模拟的正交变换方法相比,消除了两路A/D 不一致和移频、滤波等模拟电路引起的幅度相对误差和相位正交误差,减少了由于模拟滤波器精度低,稳定性差,两路难以完全一致所引起的镜频分量。 目标识别结果输出

相关主题
文本预览
相关文档 最新文档