当前位置:文档之家› 高数下复习提纲

高数下复习提纲

高数下复习提纲
高数下复习提纲

高等数学下册习题常见类型

题型1 求向量的坐标、模、方向角、方向余弦、数量积、向量积

题型2 由已知条件求平面与直线方程

题型3 计算一阶偏导数及高阶偏导数

题型4 求多元复合函数的偏导数

题型5 求方程所确定的隐函数的偏导数

题型6 求方向导数、梯度、曲线的切线、曲面的切平面

题型7 求极值、利用拉格郎日乘数法求最值

题型8 利用直角坐标计算二重积分

题型9 利用极坐标计算二重积分

题型10 计算带绝对值的二重积分

题型11 利用二重积分证明恒等式

题型12 利用对称性质计算二重积分

题型13 只有一种积分次序可计算的积分

题型14 利用投影法计算三重积分

题型15 利用柱坐标计算三重积分

题型16 利用球坐标计算三重积分

题型17 利用切片法计算三重积分

题型18 利用三重积分计算立体的体积

题型19 计算对弧长的曲线积分

题型20 计算对面积的曲面积分

题型21 计算对坐标的曲线积分

题型22 利用格林公式计算对坐标的曲线积分

题型23 曲线积分与路径无关及全微分求积

题型24 计算对坐标的曲面积分

题型25 利用高斯公式计算对坐标的曲面积分

题型26 可分离变量的微分方程、齐次方程

题型27 一阶线性微分方程

题型29 可降阶方程

题型30 二阶常系数非齐次线性方程

第八章 向量与解析几何

向量代数

定义 定义与运算的几何表达

在直角坐标系下的表示

向量 有大小、有方向. 记作a 或AB a (,,)x y z x y z a i a j a k a a a =++=

,,x x y y z z a prj a a prj a a prj a === 模

向量a 的模记作a

a 222x y z a a a =++

和差

c a b =+ c a b =-

=+c a b {},,=±±±x x y y z z a b a b a b

单位向量

0a ≠,则a a

e a

=

a e 2

2

2

(,,)=

++x y z x y z a a a a a a

方向余弦

设a 与,,x y z 轴的夹角分别为αβγ,,,则方向余弦分别为cos αβγ,cos ,cos

cos y x z a a a a

a

a

αβγ==

=

,cos ,cos

cos a e αβγ=(,cos ,cos ) 222cos 1αβγ+=+cos cos

点乘(数量积)

θcos b a b a =?, θ为向量a 与b 的夹

z z y y x x b a b a b a ++=?b a

叉乘(向量积)

b a

c ?=

θsin b a c =

θ为向量a 与b 的夹角 向量c 与a ,b 都垂直

z

y

x

z y x

b b b a a a k j i

b a =?

定理与公式

垂直 0a b a b ⊥??=

0x x y y z z a b a b a b a b ⊥?++=

平行

//0a b a b ??=

//y z

x x y z

a a a a

b b b b ?

== 交角余弦

两向量夹角余弦b

a b

a ?=θcos

2

2

2

2

2

2

cos x x y y z z

x y z x y z

a b a b a b a a a b b b θ++=

++?++

投影

向量a 在非零向量b 上的投影

cos()b a b

prj a a a b b

?== 2

2

2

x x y y z z

b x y z

a b a b a b prj a b b b ++=

++

平面

直线

法向量{,,}n A B C = 点),,(0000z y x M

方向向量{,,}T m n p = 点),,(0000z y x M

方程名称 方程形式及特征

方程名称 方程形式及特征

一般式

0=+++D Cz By Ax

一般式

??

?=+++=+++0

022221111D z C y B x A D z C y B x A

点法式

0)()()(000=-+-+-z z C y y B x x A

点向式

p

z z n y y m x x 0

00-=

-=- 三点式

1

11

21212131

31

31

0x x y y z z x x y y z z x x y y z z ------=--- 参数式

???

??+=+=+=pt

z z nt y y m t x x 000 截距式 1x y z

a b c

++= 两点式 000

101010

---==

---x x y y z z x x y y z z 面面垂直 0212121=++C C B B A A

线线垂直 0212121=++p p n n m m

面面平行 21

2121C C B B A A =

= 线线平行 2

12121p p n n m m == 线面垂直

p

C n B m A == 线面平行

0=++Cp Bn Am

点面距离

),,(0000z y x M 0=+++D Cz By Ax 面面距离

10Ax By Cz D +++= 20+++=Ax By Cz D

2

2

2

000C

B A D

Cz By Ax d +++++=

122

2

2

D D d A B C

-=

++

面面夹角

线线夹角

线面夹角

},,{1111C B A n =

},,{2222C B A n = },,{1111p n m =s },,{2222p n m =s

},,{p n m =s },,{C B A =n

2

2

2

22

22

12

12

1212121||cos C B A C B A C C B B A A ++?++++=

θ 2

2

22222121212

12121cos p n m p n m p p n n m m ++?++++=

? 2

22222sin p n m C B A Cp Bn Am ++?++++=

?

间曲线Γ:

()() ()x t y t z t ?ψω=??

=??=?

,)(βα≤≤t 切向量

))(,)(,)((000t t t T ωψ?'''=

切“线”方程:

)

()()(00

0000t z z t y y t x x ωψ?'-=

'-='- 法平“面”方程:

0))(()()()()(000000=-'+-'+-'z z t y y t x x t ωψ?

()()

y x z x ?ψ=??

=? 切向量

))(,)(,1(x x T ψ?''= 切“线”方程:

)

()(100

000x z z x y y x x ψ?'-=

'-=- 法平“面”方程:

0))(()()()(00000=-'+-'+-z z x y y x x x ψ?

间曲面 ∑:

0),,(=z y x F

法向量

000000000((,,),

(,,),(,,))

x y z n F x y z F x y z F x y z = 切平“面”方程:

000000000000(,,)()(,,)()

(,,)()0

x x x F x y z x x F x y z y y F x y z z z -+-+-=

法“线“方程:

)

,,(),,(),,(0000

00000000z y x F z z z y x F y y z y x F x x z y x -=

-=- ),(y x f z =

0000((,),

(,),1)

x y n f x y f x y =--

切平“面”方程:

0)())(,())(,(0000000=---+-z z y y y x f x x y x f y x

0000((,),

(,),1)

x y n f x y f x y =-

法“线“方程:

1

),(),(0

000000--=

-=-z z y x f y y y x f x x y x

第十章 重积分

重积分 积分类型

计算方法

典型例题

二重积分

()σ

d ,??=D

y x f I

平面薄片的质量

质量=面密度

?面积

(1) 利用直角坐标系

X —型 ????=D

b

a

x x dy y x f dx dxdy y x f )

()

(21),(),(φφ

Y —型

?

?

??=d

c

y y D

dx y x f dy dxdy y x f )

()

(21),(),(??

P141—例1、例3

(2)利用极坐标系 使用原则

(1) 积分区域的边界曲线易于用极坐标方程表示( 含圆弧,直线段 ); (2) 被积函数用极坐标变量表示较简单( 含22()x y α+, α为实数 )

21()()

(cos ,sin )(cos ,sin )D

f d d d f d β

?θα

?θρθρθρρθ

θρθρθρρ

=????

02θπ≤≤ 0θπ≤≤ 2πθπ≤≤ P147—例5

(3)利用积分区域的对称性与被积函数的奇偶性

当D 关于y 轴对称时,(关于x 轴对称时,有类似结论)

110(,)(,)(,)2(,)(,)(,)(,)D f x y x f x y f x y I f x y dxdy

f x y x f x y f x y D D ?

??-=-??

=???-=???

??对于是奇函数,即对于是偶函数,即是的右半部分

P141—例2

应用该性质更方便

计算步骤及注意事项

1. 画出积分区域

2. 选择坐标系 标准:域边界应尽量多为坐标轴,被积函数

关于坐标变量易分离

3. 确定积分次序 原则:积分区域分块少,累次积分好算为妙

4. 确定积分限 方法:图示法 先积一条线,后扫积分域 5. 计算要简便 注意:充分利用对称性,奇偶性

三重积分

???

Ω

=

dv

z y x f I ),,(

空间立体物的质量

质量=密度?面积

(1) 利用直角坐标?

??截面法投影法

投影

?????

?

b

a

y x z y x z x y x y z z y x f y x V z y x f )

,()

,()

()

(2121d ),,(d d d ),,(

P159—例1

P160—例2

(2) 利用柱面坐标 cos sin x r y r z z θθ=??

=??=?

相当于在投影法的基础上直角坐标转换成极坐标 适用范围:

1积分区域表面用柱面坐标表示时方程简单;如 旋转体 ○

2被积函数用柱面坐标表示时变量易分离.如2222

()()f x y f x z ++ 21()

()

(,,)d d d (cos ,sin ,)d b r a

r f x y z V z f z β

θα

θθρθρθρρΩ

=???

???

P161—例3

(3)利用球面坐标 cos sin cos sin sin sin cos x r y r z r ρθ?θ

ρθ?θ?==??

==??=?

dv r drd d =2sin ??θ

适用范围:

1积分域表面用球面坐标表示时方程简单;如,球体,锥体. ○

2被积函数用球面坐标表示时变量易分离. 如,222

()f x y z ++ 2221

1

1(,)

2(,)

d d (sin cos ,sin sin ,cos )sin d I f αβρθ?αβρθ??θρ?θρ?θρ?ρ?ρ=???

P165—10-(1)

(4)利用积分区域的对称性与被积函数的奇偶性

第十一章曲线积分与曲面积分

曲线积分与曲面积分

积分类型

计算方法

典型例题

第一类曲线积分

?

=L

ds y x f I ),(

曲形构件的质量 质量=线密度?

弧长

参数法(转化为定积分) (1):()L y x ?= dt t t t t f I ?+=

β

αψ???)(')('))

(),((22

(2)()

:()()x t L t y t ?αβφ=?≤≤?

=? dx x y x y x f I b

a ?

+=)('1))(,(2

(3)()()r r θαθβ=≤≤()cos :()sin x r L y r θθθθ

=??=?

θθθθθθθβ

α

d r r r r f I ?+=)(')()sin )(,cos )((22

P189-例1

P190-3

平面第二类曲线积分

?+=L Qdy Pdx I

变力沿曲线所做的功

(1) 参数法(转化为定积分) ():()()x t L t y t ?αβφ=??=?

单调地从到

t t t t Q t t t P y Q x P L

d )}()](),([)()](),([{d d ψψ??ψ?β

α

'+'=+?

?

P196-例1、例2、

例3、例4

(2)利用格林公式(转化为二重积分)

条件:①L 封闭,分段光滑,有向(左手法则围成平面区域D ) ②P ,Q 具有一阶连续偏导数 结论:

dy dx y

P

x Q Qdy Pdx D

L

???

??-??=+)(

应用:????

?助线不是封闭曲线,添加辅有瑕点,挖洞满足条件直接应用

P205-例4

P214-5(1)(4)

(3)利用路径无关定理(特殊路径法)

等价条件:①y

P x Q ??=?? ②

0=+?L

Qdy Pdx

?

+L

Qdy Pdx 与路径无关,与起点、终点有关

④Qdy Pdx +具有原函数),(y x u

(特殊路径法,偏积分法,凑微分法)

P211-例5、例6、例7

(4)两类曲线积分的联系

??+=+=L

L

ds Q P Qdy Pdx I )cos cos (βα

空间第二类曲线积分

L I Pdx Qdy Rdz =++?

变力沿曲线所做的功

(1)参数法(转化为定积分)

dt

t t t t R t t t t Q t t t t P Rdz Qdy Pdx )}()](),(),([ )()](),(),([ )()](),(),([{ωωψ?ψωψ??ωψ?β

α

'+'+'=++??

Γ

(2)利用斯托克斯公式(转化第二类曲面积分)

条件:①L 封闭,分段光滑,有向 ②P ,Q ,R 具有一阶连续偏导数 P240-例1

结论:

dxdy

y p x Q dzdx x R

z P dydz z Q y R Rdz

Qdy Pdx L

)()()(??-??+??-??+??-??=++???∑

应用:???助线

不是封闭曲线,添加辅满足条件直接应用

第一类曲面积分 dv z y x f I ??

=),,(曲面薄片的质量 质量=面密度?

面积 投影法

∑:),(y x z z = 投影到xoy 面

dxdy z z y x z y x f dv z y x f I xy D y x ????++==∑2

21)),(,,(),,(

类似的还有投影到yoz 面和zox 面的公式

P217-例1、例2

第二类曲面积分

I Pdydz Qdzdx R

=++??

流体流向曲面一侧的流量

(1)投影法 ○1dydz z y z y x p Pdydz yz D ??

??±=∑),),,(( ∑:),(y x z z =,γ为∑的法向量与x 轴的夹角 前侧取“+”,cos 0γ>;后侧取“-”,cos 0γ<

○2dzdx z z x y x p Qdzdx yz D ??

??

±=∑)),,(,( ∑:),(z x y y =,β为∑的法向量与y 轴的夹角 右侧取“+”,cos 0β>;左侧取“-”,cos 0β<

3dxdy y x z y x Q Qdxdy yz

D ????±=∑

)),(,,( ∑:),(z y x x =,α为∑的法向量与x 轴的夹角 上侧取“+”, cos 0α>;下侧取“-”,cos 0α< P226-例2

(2)高斯公式 右手法则取定∑的侧

条件:①∑封闭,分片光滑,是所围空间闭区域Ω的外侧

②P ,Q ,R 具有一阶连续偏导数 结论:

?????Ω

??+??+??=++)(

z

R y Q x P Rdxdy Qdzdz Pdydz 应用:??

?助面

不是封闭曲面,添加辅满足条件直接应用

P231-例1、例2

(3)两类曲面积分之间的联系

(cos cos cos )Pdydz Qdzdx Rdxd y P Q R dS αβγ∑

++=++????

转换投影法:()()z

z

dydz dxdy dzdx dxdy x

y

??=-

=-

?? P228-例3

所有类型的积分:

1定义:四步法——分割、代替、求和、取极限; ○

2性质:对积分的范围具有可加性,具有线性性; ○3对坐标的积分,积分区域对称与被积函数的奇偶性。

无穷级数常

用收敛定义,

n

n

s

lim存在

常数项级数的基本性质

常数项级数的基本性质

○1若级数收敛,各项同乘同一常数仍收敛.

○2两个收敛级数的和差仍收敛.

注:一敛、一散之和必发散;两散和、差必发散.

○3去掉、加上或改变级数有限项,不改变其收敛性.

○4若级数收敛,则对这级数的项任意加括号后所成

的级数仍收敛,且其和不变。

推论:如果加括号后所成的级数发散,则原来级数

也发散.注:收敛级数去括号后未必收敛.

○5(必要条件)如果级数收敛,则0

lim

=

n

n

u

莱布尼茨判别法若

1+

n

n

u

u且0

lim=

n

n

u,则∑∞

=

-

-

1

1

)1

(

n

n

n u收敛

n

u

∑和

n

v

∑都是正项级数,且

n

n

v

u≤.若

n

v

∑收敛,则

n

u

∑也收敛;若

n

u

∑发散,则

n

v

∑也发散.

比较判别法

比较判别法

的极限形式

n

u

∑和

n

v

∑都是正项级数,且l

v

u

n

n

n

=

lim,则○1若

+∞

<

0,

n

u

∑与

n

v

∑同敛或同散;○2若0

=

l,

n

v

∑收

敛,

n

u

∑也收敛;○3如果+∞

=

l,

n

v

∑发散,

n

u

∑也发散。

比值判别法

根值判别法

n

u

∑是正项级数,ρ

=

+

n

n

n u

u

1

lim,ρ

=

n

n

n

u

lim,则1

<

ρ时收

敛;1

>

ρ(ρ=+∞)时发散;1

=

ρ时可能收敛也可能发散.

n

n

n

x

a

∑∞

=0

,

ρ

=

+

n

n

n a

a

1

lim

,1,0;,0;0,.

R R R

ρρρ

ρ

=≠=+∞===+∞缺项级数用比值审敛法求收敛半径

)

(x

s的性质○1在收敛域I上连续;○2在收敛域)

,

(R

R

-内可导,且可逐项求导;○3和函数)

(x

s在收敛域I上可积分,且可逐项积分.(R不变,收敛域可能变化).

直接展开:泰勒级数间接展开:六个常用展开式

1

1

(11)

1

n

n

x x

x

=

=-<<

-

1

1

()

!

x n

n

e x x

n

=

=-∞<<+∞

2

2

T

T l

π

=

=

∑∞

=

+

+

=

1

0)

sin

cos

(

2

)

(

n

n

n

nx

b

nx

a

a

x

f?-

π

π

dx

x

f

a)

(

1

?-

π

π

nxdx

x

f

a

n

cos

)

(

1

?-

π

π

nxdx

x

f

b

n

sin

)

(

1收敛定理

x是连续点,收敛于)

(x

f;x是间断点,收敛于)]

(

)

(

[

2

1

+

-+x

f

x

f

周期

延拓

)

(x

f为奇函数,正弦级数,奇延拓;)

(x

f为偶函数,余弦级数、偶延拓.

交错

级数

武汉理工大学 高数A上 2007级 A卷及答案

武汉理工大学 高数A 上 2007级 A 卷及答 案 一、单项选择题(本题共5小题,每小题3分,共15分) (1)设1 11,0()11 ,0x x e x f x e x ?-?≠? =?+??=? ,则0x =是()f x 的( )。 A .连续点; B .可去间断点; C .跳跃间断点; D .无穷间断点。 (2)设()f x 在0x =处连续,则下列命题错误的是( )。 A. 若0()lim x f x x →存在,则(0)0f =; B 、若0()() lim x f x f x x →+-存在,则(0)0f = C 、若0()lim x f x x →存在,则)0(f '存在; D 、若0()() lim x f x f x x →--存在,则0)0(='f 。 (3)设当0x →时,2(1cos )ln(1)x x -+是比sin()(n x x n 是正整数) 高阶的无穷小,而sin()n x x 是比2 1x e -高阶的无穷小,则n 等于( )。 A 、1; B 、2; C 、3; D 、4 (4)设()f x 在(,)-∞+∞内可导,周期为4,且0(1)(1) lim 12x f f x x →--=-,则曲线()y f x =在点(5,(5))f 处的切线的斜率为( )。 A 、1/2; B 、-2; C 、0; D 、-1 (5)设32()2912f x x x x a =-+-恰有两个不同的零点,则a 为( )。 A 、8; B 、6; C 、4; D 、2。 二、填空题(本题共5小题,每小题3分,共15分) (1)设21lim( )1 a ax t x x te dt x -∞→∞+=-?,则a = ; (2)设()f x 具有任意阶导数,且2)]([)(x f x f =',n 为大于2的整数,则()()n f x = ;

上海海洋大学16-17高数C期末A卷

上海海洋大学试卷 (本试卷不准使用计算器) 诚信考试承诺书 本人郑重承诺: 我已阅读且透彻理解了“上海海洋大学学生考场规则”和“上海海洋大学学生违反校纪校规处理规定”,承诺在考试中自觉遵守,如有违反,按有关条款接受处理。 承诺人签名: 日 期: 考生姓名: 学号: 专业班名: 一、选择题 (每题3分,共15分) 1.设A 为常数,0 lim (),x x f x A →= 则()f x 在0x 处 ( ) ()A 一定有定义 ()B 一定无定义 ()C 有定义且0()f x A = ()D 可以有定义也可以无定义 2.若0 lim 2,(3)x x f x →= 则0(2) lim x f x x →= ( ) ()A 16 ()B 12 ()C 13 ()D 4 3 3.函数sin y x =在0x =处是 ( ) ()A 连续又可导 ()B 不连续也不可导 ()C 不连续但可导 ()D 连续但不可导

4.设()f x 的一个原函数是2,x e - 则()f x = ( ) ()A 2x e - ()B 22x e -- ()C 24x e -- ()D 24x e - 5 .1 21(sin )x dx -=? ( ) ()A π ()B 2 π ()C 23 ()D 0 二、填空题 (每题3分,共15分). 1.已知函数1 1,1x x y e -= - 则1x =是它的 间断点; 2. 设(sin ),y f x = 其中f 可导, 则dy = ; 3. 曲线26x y e x x =-+在区间 是凹的; 4. sin x dx x '??= ??? ? ; 5. 曲线y =y x =所围成图形的面积是_____________. 三、计算题(共65分, 要有计算过程,否则无分) 1.计算下列极限(每题7分,共14分) (1).0ln(1sin )lim tan 2x x x →+; (2).20 0cos lim .tan x x tdt x →? 2. 计算下列导数 (共15分). (1).(7分) 设函数()y y x =由方程y e xy e +=所确定,求0 x dy dx =;

人教版小学数学知识点总结(完整版)

人教版小学数学知识点归纳 第一章数和数的运算 一概念 (一)整数 1、整数的意义自然数和0都是整数。 2 、自然数 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4 、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。例如15÷3=5,所以15能被3整除,3能整除15。 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和约数是相互依存的。 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。 能被2整除的数叫做偶数,不能被2整除的数叫做奇数。0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个因数,这样的数叫做质数,100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 、59、61、67、71、73、79、83、89、97。 一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数 28=2×2×7 几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。

武汉理工大学 高数A下 2004级 A卷及答案 理工科

武汉理工大学考试试题(A 卷) 备注:学生不得在试题纸上答题(含填空题、选择题等客观题)应按顺序答在答题纸上。 一、单项选择题(本题共5小题,每小题 3分,满分15分) 1.二元函数),(y x f z =在点),(00y x 的偏导数存在,是(,)f x y 在该点连续的( ). A .充分但非必要条件 B .必要但非充分条件 C .充分必要条件 D .既非充分也非必要条件 2.设函数()f u 连续,区域{} 22(,)2D x y x y y =+≤,则()D f xy d σ??=( ). A .1 1 ()dx f xy dy -? B .2 02()dy f xy dx ? C .2sin 20 (sin cos )d f r dr πθ θθθ?? D .2sin 20 (sin cos )d rf r dr π θ θθθ?? 3.下列级数中条件收敛的级数是( ). A .∑∞ =+1)1(1n n n B .1n n ∞= C .21(1)2n n n n ∞=-∑ D .n ∞ = 4.设L 是平面上不包含原点的任一光滑有向闭曲线,则22 L ydx xdy x y -=+? ( ). A .π B .2π C .2π- D .0 5.方程36x y y y xe '''--=特解*y 的形式可设为( ). A .3()x ax b e + B .23()x ax bx e + C .3x axe D .23x ax e 二、填空题(本题共5小题,每小题4分,满分20分) 1.设函数(,)z z x y =由方程0z e xyz -=所确定,则z x ?=?________. 2.设()f x 连续,1 ()()(1)t t y F t dy f x dx t =>??,则(2)F '= . 3.设∑是平面123 x y z -+=位于第四卦限的部分,则∑的面积A =______.

大一经典高数复习资料经典最新经典全面复习

大一经典高数复习资料经典最新(经典全面复习)

————————————————————————————————作者: ————————————————————————————————日期: ?

高等数学(本科少学时类型) 第一章 函数与极限 第一节 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-< 第二节 数列的极限 ○数列极限的证明(★) 【题型示例】已知数列{}n x ,证明{}lim n x x a →∞ = 【证明示例】N -ε语言 1.由n x a ε-<化简得()εg n >, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小, 则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →?????(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim 0 b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ??=∞????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分子 分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 【题型示例】求值2 3 3 lim 9 x x x →--

武汉理工大学数学建模公共选修课考试试题

武汉理工大学数学建模公共选修课考试试题 A题:最低生活保障问题 温家宝总理在十届人大三次会议所作的《政府工作报告》中指出,要贯彻落实科学发展观,着力解决与人民群众切身利益相关的突出问题,高度重视解决城乡困难群众基本生活问题,维护社会稳定,努力构建社会主义和谐社会。 1999年国务院颁布《城市居民最低生活保障条例》,规定对持有非农业户口的城市居民,凡共同生活的家庭成员人均收入低于当地城市居民最低生活标准的,均可从当地政府获得基本生活物质帮助。据民政部统计,截至2004年12月底,全国城市低保对象总人数为2200.8万人,各级财政累计支出低保金172.9亿元,其中中央财政支出102亿元。低保对象月人均领取低保金65元。城市居民低保制度的实施,对于巩固社会稳定, 促进社会进步和经济发展起到了极其重大作用。 但是低保制度在实施过程中,也存在一些具体问题。突出表现在以下两点:一是保障标准的确定问题。既要能维持保障对象的基本生活需求,又要避免标准设置过高降低工作的积极性;既要随着经济发展逐步提高,又要考虑财政承受力;既要和当地经济社会发展水平相适应,又要防止各地在标准的高低上互相攀比。二是保障对象的资格问题。如何实现动态管理下的“应保尽保”,如何合理平衡收入因素和资产、教育、住房、赡养问题等非收入因素,如何制定更为合理有效的“分类施保”政策,避免出现贫困家庭保障不足,相对富裕家庭领取低保的现象。对这些问题,定性分析较多,定量研究尚不多。 1.分析、确定制定保障标准的主要依据。 2.试就以上一个或两个问题,运用数学工具,建立数学模型,并给出相应的结论。 3.对模型作实证分析,并与当前的有关政策和规定进行比较。 B题房价问题 房价问题事关国计民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。我国自从取消福利分房制度以来,随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一,从国家领导人、地方政府官员,到开发商、专家学者、普通百姓通过各种媒体表达各种观点,但对于房价是否合理、未来房价的走势等关键问题,至今尚未形成统一的认识。 请根据中国国情,收集建筑成本、居民收入等与房价密切相关的数据,选取我国具有代表性的几类城市对房价的合理性及房价的未来走势等问题进行定量

上海海洋大学高数下册测试题

题目部分,(卷面共有100题,分,各大题标有题量和总分) 一、选择 (16 小题,共分) (2 分)[1] (3 分)[2] —重积分 xydxdy ( D 其中D: 2 0w y w x ,0 w x w 1)的值为 (A)- (B ) 1 (C ) 1 /、1 - (D)- 6 12 2 答() 2 2 (3 分)[3]若区域 D 为 0< y < x ,| x | < 2,则 xy dxdy = D (A ) 0; -64 (D ) 256 答( 设D 是由ox 轴,oy 轴及直线x +y =1所圈成的有界闭域, 上的连续函数,则二重积分 f (x 2, y 2)dxdy D (3 分)[4] 2 2 f(x , y )dxdy D 1 f 是区域 D : | x |+| y | w 1 (A ) 2 (B ) 4 (C ) 8 (3 分)[5] 设f (x , y )是连续函数,则二次积分 dx i 1 x 2 x 1 f(x, y)dy = (A) (B) 1 dy 0 J 1 dy 0丿 y 1 1 y 1 1 f (x, y)dx f (x,y)dx (C) (D) 1 °dy 2 dy 0 J (3 分)[6] 2 y 2 1 1 dy 1 f(x, y)dx f (x,y)dx . 厂1 1 f(x, y)dx -2 y 2 1 1 dy 1 f(x, y)dx 设函数f (x , y )在区域D: y 2w — x 答() y > x 2上连续,则二重积分 f (x, y)dxdy 可化累次积分为 0 (A) dx 1 1 (C) dy 0 x 2 7( x,y)dy y 2 f (x,y)dx y (B) (D) 0 dx 1 1 0dy x 2 -f (x,y)dy x y 2 羽 f (x, y)dx (3 分)[7] 设f (x , y )为连续函数,则二次积 分 3 y 2 dy 丄y 2 2 f (x, y )dx 可交换积分次序 为

(完整版)高数知识点总结(上册)

高数知识点总结(上册) 函数: 绝对值得性质: (1)|a+b|≤|a|+|b| (2)|a -b|≥|a|-|b| (3)|ab|=|a||b| (4)|b a |=)0(||||≠b b a 函数的表示方法: (1)表格法 (2)图示法 (3)公式法(解析法) 函数的几种性质: (1)函数的有界性 (2)函数的单调性 (3)函数的奇偶性 (4)函数的周期性 反函数: 定理:如果函数)(x f y =在区间[a,b]上是单调的,则它的反函数)(1 x f y -=存在,且是单 值、单调的。 基本初等函数: (1)幂函数 (2)指数函数 (3)对数函数 (4)三角函数 (5)反三角函数 复合函数的应用 极限与连续性: 数列的极限: 定义:设 {}n x 是一个数列,a 是一个定数。如果对于任意给定的正数ε(不管它多么小) , 总存在正整数N ,使得对于n>N 的一切n x ,不等式 ε <-a x n 都成立,则称数a 是数列 {}n x 的 极限,或称数列{}n x 收敛于a ,记做a x n n =∞ →lim ,或 a x n →(∞→n ) 收敛数列的有界性: 定理:如果数列 {}n x 收敛,则数列{}n x 一定有界 推论:(1)无界一定发散(2)收敛一定有界 (3)有界命题不一定收敛 函数的极限: 定义及几何定义 函数极限的性质: (1)同号性定理:如果A x f x x =→)(lim 0 ,而且A>0(或A<0),则必存在0x 的某一邻域,当x 在该邻域内(点0 x 可除外),有0)(>x f (或0)(

有关中考数学复习提纲

初中数学总复习提纲 第一章 实数 ★重点★ 实数的有关概念及性质,实数的运算 ☆容提要☆ 一、重要概念 1.数的分类及概念 说明:“分类”的原则:1)相称(不重、不漏)2)有标准 2.非负数:正实数与零的统称。(表为:x ≥0) 常见的非负数有: 性质:若干个非负数的和为0,则每个非负担数均为0。 3.倒数: ①定义:如果两个数的乘积为1.那么这两个数互为倒数. ②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。 4.相反数: ①定义:如果两个数的和为0.那么这两个数互为相反数. ②求相反数的公式: a 的相反数为-a. ③性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置关于原点对称;C.两个相反数 的和为0,商为-1。 5.数轴: ①定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴. ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.所有的有理数可以在数轴上表示出 都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。 6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1 偶数:2n (n 为自然数) 实数 无理数(无限不循环小数) 有理数 正分数 负分数 正整数0 负整数 (有限或无限循环小数) 整数 分数 正无理数 负无理数 0 实数 正数 │a │ 2a a (a ≥0) (a 为一切实数)

7.绝对值: ①代数定义:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反数。 几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。 ②│a │≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。 11.科学记数法:N=n a 10?(1≤a <10,n 是整数)。(1)当N 是大于1的数时,n =N 的整 数位数减去1。如:3 3241.56 3.2415610=?.(2) 当N 是小于1的数时,n =N 的第一个有效数字前0的 个数.如:5 0.0000324156 3.2415610-=? 12 有效数字:从左边第一个不是0的数字起到右边的所有数字止,所有的数字叫这个数的有效数 字。如:0.004015,有效数字是4,0,1,5.一共四个.又如:0.00401500,有效数字是4,0,1,5,0,0,一共六个. 二、实数的运算 1 运算法则(加、减、乘、除、乘方、开方) 2 运算定律(五个:加法交换律,加法结合律; 乘法交换律,乘法结合律,乘法对加法的分配律) 3 运算顺序:高级运算到低级运算,同级运算从左到右(如5÷ 5 1 ×5),有括号时由小。 4 逆运算:加法与减法互为逆运算,乘法与除法互为逆运算,乘方与开方互为逆运算。 三、应用举例(略) 附:典型例题 1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a. 2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。 第二章 代数式 ★重点★代数式的有关概念及性质,代数式的运算 ☆容提要☆ 一 重要概念 分类: 1.代数式、有理式、无理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 。没有根号的代数式叫有理式。如:a 、22 a b +。整式 和分式统称为有理式。 2.整式和分式 a(a≥0) -a(a<0) │a │= a x b 单项式 多项式 整式 分 有理式 无理式 代数式

武汉理工大学数学实报告

学生实验报告书 实验课程名称数学实验 开课学院理学院 指导教师姓名尹强 学生姓名李欣 学生专业班级电信科1201班 2013-- 2014学年第 2 学期

实验教学管理基本规范 实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。 1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参 照执行或暂不执行。 2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验 报告外,其他实验项目均应按本格式完成实验报告。 3、实验报告应由实验预习、实验过程、结果分析三大部分组成。每部分均在实验成绩中占一 定比例。各部分成绩的观测点、考核目标、所占比例可参考附表执行。各专业也可以根据具体情况,调整考核内容和评分标准。 4、学生必须在完成实验预习内容的前提下进行实验。教师要在实验过程中抽查学生预习情况, 在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。 5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。在完成所有 实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。 6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。

实验课程名称:__数学实验_____________

实验课程名称:__数学实验_____________

高数下册复习提纲

第7章:微分方程 一、微分方程的相关概念 1. 微分方程的阶数:方程中所含未知函数导数的最高阶数叫做微分方程的阶. 2. 微分方程的解:使微分方程成为恒等式的函数称为微分方程的解. 通解:所含独立的任意常数的个数与方程的阶数相同的解称为微分方程的通解. 特解:确定了任意常数的通解称为微分方程的特解. 3. 特解与通解的关系:可通过初始条件确定通解中的常数而得到满足条件的特解; 也可通过方程的表达式直接观察得到特解,因此特解不总包含在通解中. 二、微分方程的常见类型及其解法 1. 可分离变量的微分方程及其解法 (1).方程的形式:dx x f dy y g )()(=. (2). 方程的解法:分离变量法 (3). 求解步骤 ①. 分离变量,将方程写成dx x f dy y g )()(=的形式; ②. 两端积分: ??=dx x f dy y g )()(,得隐式通解C x F y G +=)()(; ③. 将隐函数显化. 2. 齐次方程及其解法 (1).方程的形式: ?? ? ??=x y dx dy ?. (2).方程的解法:变量替换法 (3). 求解步骤 ①.引进新变量x y u = ,有ux y =及dx du x u dx dy +=; ②.代入原方程得:)(u dx du x u ?=+; ③.分离变量后求解,即解方程x dx u u du =-)(?; ④.变量还原,即再用 x y 代替u . 3. 一阶线性微分方程及其解法 (1).方程的形式: )()(x Q y x P dx dy =+. 一阶齐次线性微分方程:0)(=+y x P dx dy . 一阶非齐次线性微分方程: 0)()(≠=+x Q y x P dx dy . (2).一阶齐次线性微分方程 0)(=+y x P dx dy 的解法: 分离变量法. 通解为?-=x d x P Ce y )(,(R C ∈).(公式)

上海海洋大学高数下册测试题

题目部分,(卷面共有100题,405.0分,各大题标有题量和总分) 一、选择 (16小题,共53.0分) (2分)[1] (3分)[2]二重积分D xydxdy ?? (其中D :0≤y ≤x 2 ,0≤x ≤1)的值为 (A ) 16 (B )112 (C )12 (D )14 答 ( ) (3分)[3]若区域D 为0≤y ≤x 2 ,|x |≤2,则2 D xy dxdy =??= (A )0; (B ) 323 (C )64 3 (D )256 答 ( ) (3分)[4]设D 1是由ox 轴,oy 轴及直线x +y =1所圈成的有界闭域,f 是区域D :|x |+|y |≤1上的连续函数,则二重积分 22(,)D f x y dxdy =?? __________1 22(,)D f x y dxdy ?? (A )2 (B )4 (C )8 (D ) 12 答 ( ) (3分)[5]设f (x ,y ) 是连续函数,则二次积分0 1 1 (,)x dx f x y dy -+? = (A)11 2 11 1 (,)(,)y dy f x y dx dy f x y dx ---+?? ? (B)1 1 1 (,)y dy f x y dx --? ? (C)11 1 1 1 (,)(,)y dy f x y dx f x y dx ---+?? ? (D) 2 1 (,)dy f x y dx -? ? 答 ( ) (3分)[6] 设函数f (x ,y )在区域D :y 2 ≤-x ,y ≥x 2 上连续,则二重积分(,)D f x y dxdy ??可化累次积分为 (A)20 1(,)x dx f x y dy -? (B)2 1(,)x dx f x y dy -?? (C) 2 1 (,)y dy f x y dx -?? (D)210 (,)y dy f x y dx ? 答 ( ) (3分)[7]设f (x ,y ) 为连续函数,则二次积分 2 1 10 2 (,)y dy f x y dx ?? 可交换积分次序为

新人教版初中数学知识点总结(完整版)

人教新版初中数学知识点总结(全面最新) 目录 一、七年级数学(上)知识点 1、有理数 2、整式的加减 3、一元一次方程 4、图形的认识初步 二、七年级数学(下)知识点 5、相交线与平行线 6、实数 7、平面直角坐标系 8、二元一次方程组 9、不等式与不等式组 10、数据的收集、整理与描述 三、八年级数学(上)知识点 11、三角形 12、全等三角形 13、轴对称 14、整式的乘除与分解因式 15、分式

四、八年级数学(下)知识点 16、二次根式 17、勾股定理 18、平行四边形 19、一次函数 20、数据的分析 五、九年级数学(上)知识点 21、一元二次方程 22、二次函数 23、旋转 24、圆 25、概率 六、九年级数学(下)知识点 26、反比例函数 27、相似 28、锐角三角函数 29、投影与视图 七年级数学(上)知识点

第一章有理数 一.知识框架 二.知识概念 1.有理数: (1)凡能写成)0 p q,p( p q ≠ 为整数且形式的数,都是有理数. (2)有理数的分类: ① ? ? ? ? ? ? ? ? ? ? ? ? ? 负分数 负整数 负有理数 零 正分数 正整数 正有理数 有理数 ② ? ? ? ? ? ? ? ? ? ? ?? ? ? ? 负分数 正分数 分数 负整数 零 正整数 整数 有理数 注意:0即不是正数,也不是负数; -a不一定是负数,+a也不一定是正数; π不是有理数; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,互为相反数,即a和- a互为相反数;

0的相反数还是0; (2) a+b=0 ? a 、b 互为相反数. 4.绝对值: (1)绝对值的意义是数轴上表示某数的点离开原点的距离; (2) ?? ???<-=>=) 0()0(0) 0(a a a a a a 或???<-≥=)0a (a ) 0a (a a 或???≤->=)0()0(a a a a a ; 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组; 5.有理数比大小: 两个负数比大小,绝对值大的反而小; 数轴上的两个数,右边的数总比左边的数大; 大数-小数 > 0,小数-大数 < 0. 6.倒数:乘积为1的两个数互为倒数; 注意:0没有倒数; 若 a ≠0,那么a 的倒数是a 1; 若ab=1? a 、b 互为倒数; 若ab=-1? a 、b 互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对

高等数学B(上)复习资料

华南理工大学网络教育学院 《高等数学(上)》辅导 一、 求函数值 例题: 1、若2()f x x =,()x x e ?=,则(())f x ?= . 解:() 2 2(())()x x x f x f e e e ?=== 2、若(1)21f x x -=+,则()f x = . 解:令1x t -=,则1x t =+ 所以()2(1)123f t t t =++=+ 即 ()23f x x =+ 二、 常见的等价无穷小及等价无穷小替换原理 常见的等价无穷小: 0~sin ~tan ~arcsin ~arctan x x x x x x →时, ~ln(1)~x x x e +-1 211cos ~,2x x -1 1~2 x -

无穷小替换原理:在求极限过程中,无穷小的因子可以用 相应的等价无穷小替换 例题: 1、320sin 3lim x x x →=? 解:当0sin3~3x x x →,, 原式=3 200(3)lim lim 270x x x x x →→== 2、0sin3lim x x x →=? 解:原式=03lim 3x x x →= 3、201-cos lim x x x →=? 解:当2 10cos ~2x x x →,1- 原式=220112lim 2x x x →=

4、0ln(13) lim x x x →+=? 解:当03)~3x x x →,ln(1+ 原式=.03lim 3x x x →=. 5、201 lim x x e x →-=? 解:当201~2x x e x →-, 原式=.02lim 2x x x →=. 三、 多项式之比的极限 2lim 03x x x x →∞=+,22 11lim 33x x x x →∞-=+,23lim x x x x →∞+=∞ 四、 导数的几何意义(填空题) 0()f x ':表示曲线()y f x =在点00(,())M x f x 处的切线斜率 曲线..()y f x =..在点00(,())M x f x 处的切线方程为: 000()()()y f x f x x x '-=- 曲线()y f x =在点00(,())M x f x 处的法线方程为:

知到网课答案高等数学下经管类上海海洋大学版课后作业答案.docx

知到网课答案高等数学下经管类上海海洋 大学版课后作业答案 问:燃料棒在组件内排列规律 答:对 问:肖斯塔科维奇的《第七交响曲》时间最长的是哪一乐章:() 答:一 问:丁香结能在登山者在速降过程中来达到固定的效果。() 答:正确 问:尽管在苹果馅饼中存在苹果籽,但它不会导致出现食品安全问题。 答:对 问:人体肌肉之间的固定是依靠骨骼固定来完成的。() 答:错误 问:案例:患者男性,38岁,发热5天,尿量减少3天,于2006年1月入院,查体:体温39OC,球结合膜充血,水肿,腋窝处皮肤可见条索状出血点,右臀部皮肤可见5cm×8cm瘀斑,浅表淋巴结未见肿大。实验室检查:血小板 21×109/L,BU34.5mmol/L。下列哪项处理是不恰当的 答:肥皂水灌肠 问:案例“西游记团队的几点管理启示”告诉我们,作为一名优秀的管理者或领导者,要做到()? 答:准确把握团队的前进目标和方向

在完成目标的过程中坚定不移 高超的用人艺术和技巧 合理分工,用人所长 问:案例表明,心脏病发作病例中,大部分的患者表现为猝死,之前没有心脏病的症状而突然发病。() 答:错 问:案例的分析需要()的指导。 答:理论 问:案例分析:一个处男,以前谈过女朋友,但没有破处。新女友不是处女,和前三任都发生过性关系,而且诚实坦白,刚在一起时没有处女情节,但时间久了,处女情结越来越严重困扰他,每天都睡不着觉。针对此案例中这个男生痛苦的原因,下列说法正确的是 答:因为他的女友违背了宜慢不宜快原则 男性心底里想要的是纯洁的女性 刚开始不爱她,但是因为越来越爱,所以越来越在乎 中国传统文化对女性贞洁态度影响较深 问:下列哪些是按钮元件的正确状态和拥有的功能? 答:一共四帧状态 可做多个图层 拥有点击热区 拥有滤镜 问:下列哪些是表示层的例子?() 答:MPEG JPEG

(完整版)高等数学(下)知识点总结

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ , 22 22 22 21 21 2 1 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

武汉理工大学网络教育学院大学入学考试复习资料高等数学C 答案 2010-6-3 10:31

武汉理工大学网络学院试卷参考答案 课程名称:高等数学 专业班级:2010秋入学考试 一、选择题(5×3分 = 15分) B;A;D;B;A; 二、填空题(5×3分 = 15分) 1、2350x y +-= 2、1,1==b a 3、2=x 4、x e 2 5、2 121cos 2y x x c x c =-+++ 三、计算题(5×8分 = 40分) 1、由 ???≥-≥00 x x x 得 ???≥≥x x x 20 或 ? ??≥-≥0)1(0x x x , 从而定义域为 {}01=≥x x x 或. 2、2 22 21)1)(1(ln )1ln()(x x x x x x x x x y ++++-++=++-=- )()1ln(11ln 22 x y x x x x -=++-=++=; 故)(x y 为奇函数. 3、1 sin 1sin x y e x '??'= ??? 1 sin 11 cos x e x x '??=?? ???1 sin 211cos .x e x x =-? 4、令2sin x t =,得2cos dx tdt =,,22t ππ?? ∈- ??? 原式(2sin )2cos t tdt =? 322232sin cos 32sin (1cos )cos t tdt t t tdt ==-?? 2432(cos cos )cos t t d t =--? 351 132cos cos 35t t C ??=--+ ???

3 5 32 32.35C =-+ + 5、标准化得1 ln y y x x '- =,其中1()P x x =-,()ln Q x x =, 通解为()()[()]P x d x P x d x y e Q x e d x C -??=+?l n l n [l n ]x x e xe dx C -=+?]ln [?+=C dx x x x ]ln [ln C x x +=. 代入初始条件,x e y e ==,得所求特解为)ln ln 1(x x y +=. 四、应用题(2×10分 = 20分) 1、设2r A π=,10=r 厘米,05.0=?r 厘米 r r dA A ??=≈?∴π205.0102??=ππ =(厘米2),即面积大约增大了π厘米2. 2、?-=10 22)1(2dx x V π ?-+=1024)21(2dx x x π ππ154 )32 511(2=-+= 五、证明题(1×10分 = 10分) 1、证: 设x e x x f -+=2)(, 则有2(0)10,(2)40f f e =>=-<,显然()f x 在[0,2]连续,故由零点定理知,存在)2,0(0∈x 使0)(0=x f ,即方程02=-+x e x 在(0,2)有实根.

高等数学3复习提纲

复习提纲 注意:以下出现的Ex1表示的对应习题中的第一题,其余表示符号类推。 1、掌握三重积分在直接坐标系下、柱面坐标系下、球面坐标系下化三次积分的方法并计算三重积分 直角坐标系下: 把三重积分化为先二后一或先一后二的积分顺序,再把其中的二重积分化为二次积分,由此把三重积分化为三次积分。 先一后二:先把Ω向某个坐标面投影得到平面闭区域D(比如向xOy 面投影得到Dxy),再以Dxy 的边界曲线为准线作母线平行于z 轴的柱面,把Ω的边界曲面分为上下部分,其方程分别记作()()21,,,z z x y z z x y ==,()()12,,z x y z x y ≤。则Ω表示为:()()()12,,,xy x y D z x y z z x y ∈≤≤,。再把Dxy 上的二重积分化为二重积分即得三重积分对应的三次积分。 先二后一:先把Ω向某个坐标轴投影得到区间I(比如向z 轴投影得到[Z1,Z2]),再从[Z1,Z2]上任取一点z ,过该点作一垂直于z 轴的平面,截Ω得到平面闭区域Dz ,则Ω表示为:()12,z z z z x y D ≤≤∈, 。再把Dz 上的二重积分化为二重积分即得三重积分对应的三次积分。 柱面坐标系下:实为直角坐标系下使用先一后二的做法时,选择Dxy 为极坐标系,把Ω表示为如下形式:()()()12,,,xy D z z z ρθρθρθ∈≤≤,。Dxy 下,ρθ的取值范围可参照二重积分(有两种情形)。当Ω的边界曲面是球面、圆柱面、圆锥面、旋转抛物面等围成或与平面围成时,可考虑使用柱面坐标系。 球面坐标系下:当Ω的是球体或半球体或球面与锥面围成时,可考虑使用球面坐标系,其积分变量,,r θ?的范围的确定请参照课堂例题。 示例:159页 例1,例2,例3;习题10-3,Ex1,Ex4,Ex9,Ex10。 2、了解曲面面积的计算公式、平面薄片的质量、质点公式,会套用公式计算。 示例:167页 例1,例4习题10-4,Ex1,Ex5 3、掌握对弧长的曲线积分的基本计算方法,曲线质量、质心的求法 L 是平面曲线时,其方程是直角坐标方程或参数方程或极坐标方程,化弧长的曲线积分为定积分的关键点:曲线方程代入被积函数进行化简;弧微分ds 套公式化简;由曲线方程确定积分限。 L 是空间曲线时,只考虑其方程是参数方程的情形,做法同上。 示例:习题11-1,Ex3 (1),(2),(4),(6),(7),Ex4。

(完整版)高考数学高考必备知识点总结精华版

高考前重点知识回顾 第一章-集合 (一)、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ; ③空集是任何非空集合的真子集; ①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n -2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 2、集合运算:交、并、补.{|,} {|}{,} A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?I U U 交:且并:或补:且C (三)简易逻辑 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 ①、原命题为真,它的逆命题不一定为真。 ②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。 6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。 若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q. 第二章-函数 一、函数的性质 (1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=- ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。 (4)函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数 指数函数)10(≠>=a a a y x 且的图象和性质

相关主题
文本预览
相关文档 最新文档