当前位置:文档之家› 电压基准及时间基准

电压基准及时间基准

电压基准及时间基准
电压基准及时间基准

电压基准及时间基准

所有模数转换器(ADC)和数模转换器(DAC)都需要一个基准信号,通常为电压基准。 ADC的数字输出表示模拟输入相对于它的基准的比率;DAC的数字输入表示模拟输出相对它的基准的比率。有些转换器有内部基准,有一些转换器需要外部基准。不管怎样所有转换器都必须有一个电压(或电流)基准。

数据转换器的最早应用是用于缓慢变化信号的直流测量。在这种情况下,测量的精确定时并不重要。当[下载自.管理资源吧]今大多数数据转换器是应用在数据采集系统,在这种系统中必须处理大量等间隔的模拟采样值,而且频谱信息与幅度信息同样重要,这里涉及到的采样频率或时间基准(采样时钟或重建时钟)与电压基准一样重要。

电压基准

问:一个电压基准怎样才算好?

答:电压基准与系统有关。在要求绝对测量的应用场合,其准确度受使用基准值的准确度的限制。但是在许多系统中稳定性和重复性比绝对精度更重要;而在有些数据采集系统中电压基准的长期准确度几乎完全不重要,但是如果从有噪声的系统电源中派生基准就会引起误差。单片隐埋齐纳基准(如AD588和AD688)在10 V时具有1 mV初始准确度(001 %或100 ppm),温度系数为1 5 ppm/°C。这种基准用于未调整的12位系统中有足够的准确度(1 LSB=244 ppm) ,但还不能用于14或16位系统。如果初始误差调整到零,在限定的温度范围内可用于14位和16位系统(AD588或AD688限定40℃温度变化范围,1 LSB=61 ppm)。

对于要求更高的绝对精度,基准的温度需要用一个恒温箱来稳定,并对照标准校准。在许多系统中,12位绝对精度是不需要这样做的,只有高于12位分辨率才可能需要。对于准确度较低(价格也会降低)的应用,可以使用带隙基准。

问:这里提到的“隐埋齐纳”和“带隙”基准是什么意思?

答:这是两种最常见的用于集成电路中的精密基准。“隐埋”或表层下齐纳管比较稳定和精确。它是由一个具有反向击穿电压修正值的二极管组成,这个二极管埋在集成电路芯片的表层下面,再用保护扩散层覆盖以免在表面下击穿,见图11。

图1 1 表层齐纳二极管与隐埋齐纳二极管结构图

硅芯片表面和芯片内部相比有较多的杂质、机械应力和晶格错位。这是产生噪声和长期不稳定性的原因之一,所以隐埋式齐纳二极管比表层式齐纳二极管的噪声小,而且稳定得多,因此它被优先采用于芯片基准源上作为精密的集成电路器件。

但是隐埋式二极管的击穿电压标称值大约为5 V或更大一些,而且为了使它处于最佳工作状态,必须吸收几百微安的电流,所以这种方法对于必须工作在低电压并且具有低功耗的基准来说是不适宜的。对于这样的应用,我们宁愿用“带隙”基准。于是研制出一个具有一个正温度系数的电压用以补偿具有负温度系数的晶体管的V be ,用来维持一个恒定的“带隙”电压(见图12)三极管Q2发射极面积是Q1的8倍;这两个管子在R1上产生一个正比于绝对温度的电流,一个正比于绝对温度的电压与Q1的V be 串联,产生电压VZ,它不随温度变化并且可以被放大(见图12),这个电压等于硅的带隙电压(外推到绝对零度)。

图1 2 带隙基准原理图

带隙基准与最好的隐埋齐纳基准相比,其准确度和稳定性稍微差一点儿,但是温度特性可优于3 ppm/°C。

问:在使用电压基准时应注意些什么问题?

答:须记住好的模拟电路设计的基本考虑是:注意在高阻抗导体上的电压降、来自公共地线阻抗的噪声和来自不适当的电源去耦产生的噪声。考虑基准电流流动的方向,并且对容性负载要多加小心。

问:我知道电压降和噪声的影响,但是基准是不是必须向导体电压降提供足够大的电流影响才明显?

答:通常基准电路内部是经过缓冲的,大多数情况可流出或流入5~10 mA电流。有些应用需要这样大的或更大一点的电流,例如把基准作为系统的基准。另外一种情况是激励高速闪烁式ADC的基准输入,它具有非常低的阻抗。10 mA电流流过100 mΩ阻抗,产生1 mV电压降,这可能算是比较明显的了。最高性能的电压基准,如AD588和AD688,对于它们的输出和输出接地端采用开尔文接法(见图13)。接线时应靠近误差源周围的反馈回路避免电压降的影响;当电流缓冲放大器被用来驱动许多负载,或吸收流到错误方向的电流时它们也可修正增益和失调误差。检测端应该接到缓冲放大器的输出端(最好接在负载上)。问:什么叫开尔文接法? 答:开尔文接法(Kelvin connections)又称强制与检测接法

(force and sense connections ),是用来消除电路中导线上产生的电压降影响的一种简便方法。如图14(a)所示,负载电流 (IL)和导线电阻(R)在负载上产生一个电压误差,V ERROR =R×IL。图14(b)所示的开尔文接法解决了放大器的强制环路内的导线电阻和检测的负载电压所带来的问题。放大器对负载电压的任何误差都做了修正。在图14所示的电路中放大器的输出电压实际上应该为10 V+V ERROR ,在负载上的电压却是所要求的10 V。

AD588有三个放大器用来提供开尔文接法。放大器A2专门用来接地强制检测,而独立的放大器A3和A4可任意选用作为其它的强制检测接法的核心器件。

图1 3 AD588功能框图

图1 4 开尔文接法的优点

问:“流到错误方向”是什么意思?

答:考虑一个工作电源电压为+10 V、输出为+5 V的基准。假如它的5 V输出端是通过一个接地的电阻器取出的,那么电流将从基准端流出。假如电阻器不接到电源的+10 V端,那么电流将流入基准端。大多数基准允许电流流入或流出。但是有些基准只允许提供电流而不吸收电流或者吸收能力比流出能力小得多。这样的器件,利用产品说明中规定的输出电流方式可以识别,对于有相当大的净电流必须流入基准端的应用场合,就不能使用这种器件。一个常见的例子是用一个正基准改为负基准(见图15)。

问:为什么不去买一个负基准呢?

答:因为大多数单极性电压输出的基准都是正基准。当然,两端有源基准可用于任何极性,它们的使用方法和齐纳二极管相同(并且它们通常是带隙基准)。

对于被用作负基准的三端正基准,它肯定会吸收电流。它的输出端连到接地端,而它的接地端(将成为负基准端)经过一个电阻器(或一个恒流源)接到负电源端。正电源端通常必须接到正电源,它至少比接地端要高几伏。但有一些器件也能用二端方式提供负基准:正电源端和输出端都接到接地端。

电阻器RS(或恒流源)必须选择适合于负电源所要求值,并且基准负载电流、接地端电流和输出端电流都在额定范围内。

图1 5 AD586负基准接线图

问:容性负载是怎么回事?

答:许多基准带有输出放大器,当接上大的容性负载工作时,输出会变得不稳定并且可能振荡。因此为了减少噪声,在基准输出端接上(几个μF或更大)的大电容是不妥当的,但1~10 nF的电容常常是允许的,有一些基准(如AD588)有减少噪声端,电容可以安全地接上去。假如提供强制检测端,在容性负载条件下有可能改善回路动态特性。为弄清楚,请查阅产品说明和咨询制造厂家应用工程师。即使电路是稳定的,使用大的容性负载也是不合理的,因为这样会使基准导通时间增加。

问:电源一接通,基准能立即导通吗?

答:决不是这样。在许多基准中驱动基准元件(齐纳管或带隙基准)的电流是从稳定输出中分流出来的。这种正反馈增加了直流稳定性,但却产生一个阻制启动稳定的“断”状态。芯片内部电路为了解决这个问题并且便于启动,通常设计成吸收接近最小的电流,所以许多基准要稍微慢一点才能达到指标(一般需要1~10 ms)。有些基准确实给出了比较快的启动特性,但也有一些还是比较慢的。

假如设计师需要在电源接通后要求基准电压能非常迅速地应用于电路中,就要挑选具有足够快的导通特性的基准,并且应使降噪电容(noise reduction capacitance)最小。为了使系统省电,基准导通延迟可能会限制数据转换系统选通供电的机会,即使基准位于转换器芯片内部,这个问题仍然应该考虑。另外考虑转换器的电源起动特性在这种系统中也是同样重要的。

高精度的基准在电源接通后,芯片达到热稳定之前可能需要一个额外的热稳定周期并且使得受热所引起的失调达到它们的最终稳定值,这种影响在产品说明中将会给出,一般不超过几秒钟的时间。

问:能否使用高精度基准来代替内部基准使转换器更准确?

答:不必要。例如常规的AD574的换代产品——高速AD674B出厂调整好的校准误差为 025%(±10 LSB),它带有内部基准准确度在±100 mV(1%)以内。因为10 V的025%为25 m V,所以满度为10000 V±25 mV。假如一个具有1%的AD674B,出厂调整时,用增加1%增益方法使满度成为10000 V 调整到

高的内部基准(101V),倘若把精确度基准为1000 V的基准AD588接到AD674B基准的输入端,满度就变为10100 V,误差是原来指标中最大误差的4倍,所以这种做法是不必要的。

时间基准

问:你为什么说系统的时钟是一种基准?

答:这个说法并不是指对模数转换器所施加的转换时钟。原则上它用于数据采集系统的采样时钟。在这些系统中,对于存储、通信、计算分析或其它处理需要对信号按照预定的间隔(通常是等间隔)重复采样。采样时钟的品质是系统性能的一个限制因素。

问:晶体振荡器是非常稳定的,是吗?

答:晶体振荡器虽然具有很好的长期稳定性,但它经常产生短期的相位噪声。如果设计者不使用晶体振荡器而使用RC弛张振荡器(如555或4046)也会导入相位噪声。弛张振荡器有很大的相位噪声。

问:怎样才能保证采样时钟具有低的相位噪声?

答:在你的微处理器或数字信号处理器中不能使用晶体振荡器电路作为采样时钟源。在晶体振荡器电路中尽可能不使用逻辑门电路。晶体振荡器通常是用逻辑门过激励晶体构成的,这不仅对长期稳定性没有好处,而且会引入比一个简单的晶体管振荡器还坏的相位噪声。另外来自处理器的数字噪声,或者从集成封装的其它门电路来的数字噪声(假设逻辑门用作振荡器)将作为相位噪声出现在振荡器输出端。

理想情况下,可使用一只晶体管或场效应管作为晶体振荡器和具有一个逻辑门的缓冲器。这个逻辑门和振荡器本身具有去耦极好的电源。集成封装的门电路将不被采用,因为来自那里的逻辑噪声将对信号相位调制(它们可以用在直流场合,但不能用于快速开关状态)。

假如在晶体振荡器和各种模数转换器的采样时钟输入端之间有一个分频器,要使这个分频器的电源与系统逻辑分别进行去耦,以使电源噪声避开相位调制时钟。

采样时钟电源线应远离所有的逻辑信号线以防止来自引入的相位噪声干扰。同时它还应远离低电平模拟信号线,以免使之恶化。

问:你已经告诉我不要使用处理器中的时钟振荡器作为采样的时钟源。为什么不能使用?因为这些信号之间有一个恒定的相位关系,所以两者用同一振荡器不是很合理吗?

答:确实如此,但在这种情况下使用一个独立的低噪声振荡器驱动处理器的时钟输入和经过分离缓冲的采样时钟分频器(虽然它们可封装在一起)常常是比使用处理器中的振荡器要好。在具有低采样速率中等精度的系统中使用处理器内部振荡器才有可能,但要用图16核对。

问:一个采样时钟上的噪声问题究竟怎样严重?这个问题在有关数据采集系统的文章中很少见。

答:因为使用系统的限制因素是采样保持电路的孔径抖动,所以采样时钟的相位噪声往往被忽视。但假如我们把系统作为一个整体考虑,那么孔径抖动恰恰是采样时钟链中总相位噪声的一个成分。最新的采样模数转换器的孔径抖动的重要性比相位噪声的其它成分要小。

图1 6 采样时钟的总相位抖动对信噪比或有效位数的影响

图16示出了采样时钟的总相位抖动对信噪比或有效位数(ENOB)的影响。这个抖动有效值为t ph ,它由采样时钟振荡器相位抖动、当传输采样时钟经过系统时引入的相位抖动和模数转换器的采样保持放大器的孔径抖动三者的平方和的平方根(rss)组成。图16的数据可能有一些不准确,因为它用来说明仅需不太大的相位噪声便会使高分辨率采样系统性能变坏。

带隙基准电压源的设计

哈尔滨理工大学 软件学院 课程设计报告 课程大三学年设计 题目带隙基准电压源设计 专业集成电路设计与集成系统班级集成10-2 班 学生唐贝贝 学号1014020227 指导老师董长春 2013年6月28日

目录 一.课程设计题目描述和要求………………………………………… 二.课程设计报告内容………………………………………………… 2.1课程设计的计算过程…………………………………………. 2.2带隙电压基准的基本原理……………………………………. 2.3指标的仿真验证结果…………………………………………. 2.4 网表文件……………………………………………………… 三.心得体会……………………………………………………………四.参考书目………………………………………………………….

一.课程设计题目描述和要求1.1电路原理图: (1).带隙基准电路 (2).放大器电路

1.2设计指标 放大器:开环增益:大于70dB 相位裕量:大于60度 失调电压:小于1mV 带隙基准电路:温度系数小于10ppm/C ? 1.3要求 1>手工计算出每个晶体管的宽长比。通过仿真验证设计是否正确,是否满足指标的要求,保证每个晶体管的正常工作状态。 2>使用Hspice 工具得到电路相关参数仿真结果,包括:幅频和相频特性(低频增益,相位裕度,失调电压)等。 3>每个学生应该独立完成电路设计,设计指标比较开放,如果出现雷同按不及格处理。 4>完成课程设计报告的同时需要提交仿真文件,包括所有仿真电路的网表,仿真结果。 5>相关问题参考教材第六章,仿真问题请查看HSPICE 手册。 二. 课程设计报告内容 由于原电路中增加了两个BJT 管,所以Vref 需要再加上一个Vbe ,导致最后结果为(ln )8.6M n β??≈,最后Vref 大概为1.2V ,且电路具有较大的电流,可以驱动较大的负载。 2.1课程设计的计算过程 1> M8,M9,M10,M11,M12,M13宽长比的计算 设Im8=Im9=20uA (W/L)8=(W/L)9=20uA 为了满足调零电阻的匹配要求,必须有Vgs13=Vgs6 ->因此还必须满足(W/L)13=(Im8/I6)*(W/L)6 即(W/L)13/(W/L)6=(W/L)9/(W/L)7 取(W/L)13=27 取(W/L)10=(W/L)11=(W/L)13=27 因为偏置电路存在整反馈,环路增益经计算可得为1/(gm13*Rb),若使环路

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

TL431可调电压基准的接法

TL431可调电压基准的接法 TL431是一个小个头(如同普通小三极管封装)而又便宜的可调电压基准芯片。具体的参数大家可以参考其pdf文档说明,这里给出其两种最常用的接法。 1.这种接法提供 2.5V基准电压,简单适用。 2.该接法可以提供一个可以调节的基准电压。电压输出为2.5×(1+R2/R1)。

TL431的几种基本用法 TL431的几种基本用法 作者:Panic2006年10月9日 TL431作为一个高性价比的常用分流式电压基准,有很广泛的用途。这里简单介绍一下TL431常见的和不常见的几种接法。 图(1)是TL431的典型接法,输出一个固定电压值,计算公式是:Vout = (R1 +R2)*2.5/R2, 同时R3的数值应该满足1mA < (Vcc-Vout)/R3 < 500mA 当R1取值为0的时候,R2可以省略,这时候电路变成图(2)的形式,TL431在这里相当于一个2.5V稳压管。 利用TL431还可以组成鉴幅器,如图(3),这个电路在输入电压Vin < (R1+R2) *2.5/R2 的时候输出Vout为高电平,反之输出接近2V的电平。需要注意的是当Vin在(R1+R2)*2.5/R2附近以微小幅度波动的时候,电路会输出不稳定的值。

TL431可以用来提升一个近地电压,并且将其反相。如图(4),输出计算公式为:Vout = ( (R1+R2)*2.5 - R1*Vin )/R2 特别的,当R1 = R2的时候,Vout = 5 - Vin。这个电路可以用来把一个接近地的电压提升到一个可以预先设定的范围内,唯一需要注意的是TL431的输出范围不是满幅的。 TL431自身有相当高的增益(我在仿真中粗略测试,有大概46db),所以可以用作放大器。 图(5)显示了一个用TL431组成的直流电压放大器,这个电路的放大倍数由R1和Rin决定,相当于运放的负反馈回路,而其静态输出电压由R1和R2决定。这个电路的优点在于,它结构简单,精度也不错,能够提供稳定的静态特性。缺点是输入阻抗较小,Vout的摆幅有限。

电流与电压的关系向量图

用多功能电工表检验保护装置能否投入运行 发布时间:2007-1-22 10:50:20 浏览次数:20 古育文广东省梅县供电局(514011) 用负荷电流和工作电压检验是继电保护装置投入运行前的最后一次检查,对于某些保护装置是非常必要的,特别是在带有方向性的继电保护装置中,为了保护其动作正确,在投入运行前必须测量带负荷时的电流与电压的向量图,借此判断电流回路相序、相别及相位是否正确。通过多功能电工表可方便地实现上述功能,替换了以前用相位电压表法和瓦特表法两种繁琐的测量方法。下面结合实际谈谈如何用多功 能电工表来判断方向性的继电保护的接线是否正确。 在2002年10月28日我局所属的一个110kV变电所的电气设备进行电气试验, 经对试验结果进行分析、判断,发现110kV母线的B、C两相电压互感器内部绝 缘介质不良,严重威胁设备的安全运行。为了保证设备的安全运行,对这两相的电压互感器进行了更换。更换后,为了确保继电保护装置的动作正确,我们用多功能电工表(ST9040E型),进行了方向性继电保护装置的电流与电压的相位检查。 1测量方法 在测量前应先找出接入方向性的继电保护装置的电流、电压端子,在电压端子上用相序表检查所接入的电压互感器的二次接线相序应是正序(即是U A-U B-U C)。 然后用多功能电工表的电流测量钳钳住电流端子的A相电流线(假定电流端子接线正确),用多功能电工表的电压测量表笔依次与A、B、C三相的电压端子接触牢靠,将所测得的数据填入表1。用此法依次测量B、C相的电流与电压的相位值,所测得的数据也填入表1。

表1电流、电压和相位值 电压(V) 电流(A) 相位(°) I A=0.9I B=0.91I C=0.9 U A=60197316.873 U B=60.577.8195313.5 U=60 31776.3193 据上表的数据用AUTOCAD2002软件绘出电流向量图,见图1。 图1电流向量图(六角图) 2根据六角图判断接线 六角图作出后,根据测量时的功率的送受情况,判断接线是否正确。这对检验方向 保护,特别是差动保护接线是行之有效的。 功率的送受情况有以下四种: (1)有功与无功功率均从母线送往线路,电流向量应位于第I象限; (2)有功功率从母线送往线路,无功功率由线路送往母线,电流向量应位于第II象

3.7、基准参考电压

3.7基准参考电压源的选择 大多数数字电路、混合信号和模拟电路需要使用电压基准源,因此了解基准源的工作原理、参数和选择方法,对於系统设计是一个很重要的。本节比较了齐纳二极管、隐埋齐纳二极管和带隙电压基准三种电压基准源的优点和缺点,列出了使用时潜在的问题,介绍了它们的应用范围。讨论了在设计系统时,选择电压基准源需要考虑的问题。 3.7.1基准源的类型 基准源主要有齐纳二极管、隐埋齐纳二极管和带隙电压基准三种,它们都可以设计成两端并联式电路或者三端串联式电路。齐纳二极管是工作在反向偏置的二极管,需要一个串联的限流电阻。在要求高精度和低功耗的情况下,齐纳二极管通常是不适合的。例如,BZX84C2V7LT1齐纳二极管的标称输出电压Vout是2.5V,有±8%的公差,各个器件之间的输出电压会在2.3V到2.7V的范围内变化。 理想的电压基准源应该是内阻为零,不论电流是流进去还是流出来,都应当保持输出电压恒定。内阻为零的基准源是不存在的,然而内阻只有毫欧数量级的基准源是可以做得到的。齐纳二极管的内阻较大,电流为5mA时内阻为100Ω,1mA时600Ω。齐纳二极管在电压箝位电路中很有用,它们的箝位电压范围宽,从2V至200V,功率可以从几毫瓦到几瓦。表1比较了这三种电压基准源的优点、缺点,列出了使用时潜在的问题。 表3.7.1. 三种电压基准源的比较

注1:带隙半导体、直接带隙和间接带隙 ZnO是一种直接带隙半导体材料,为什么说它是直接带隙的?直接带隙会导致它有什么样的特点? 直接带隙半导体材料就是导带最小值(导带底)和满带最大值在k空间中同一位置。电子要跃迁到导带上产生导电的电子和空穴(形成半满能带)只需要吸收能量。 间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置。形成半满能带不只需要吸收能量,还要改变动量。 间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置。电子在k状态时的动量是(h/2pi)k,k不同,动量就不同,从一个状态到另一个必须改变动量。 采用带隙半导体材料制造的电压基准源温度稳定性好! 3.7.2电压基准源的选择 选择电压基准源时,应当针对系统的要求,综合考虑电压基准源的技术指标。电压基准源的技术指标很多,主要的指标是: ★初始精度 ★输出电压温度漂移 ★提供电流以及吸入电流的能力 ★静态电流 ★长期稳定性 ★输出电压温度迟滞 ★噪音 ★此外还有价格。 噪音是无法补偿的误差,因而基准源的噪音应当低。对于16位分辨率的数字系统,它的LSB值为1/65536,如果ADC是16位,满量程输入是0到5V,它能分辨的输入是1LSB,大约为76.3μV。可以选用MAX6150(35μVP-P),MAX6250(3μVP-P)

ADC选择最合适的基准电压源和放大器

如何为您的ADC选择最合适的基准电压源和放大器 主题: 驱动精密ADC:如何为您的ADC选择最合适的基准电压源和放大器? 在线问答: [问:callhxw] 如何评定一颗ADC非线性?丢码? [答:Jing] you can use ADC"s INL and DNL parameter to evaluate the non-linearity and you can also use ENOB parameter to check code loss. Thanks!Generally ENOB releated with ADC"s SNR [2006-2-28 10:32:08] [问:吉星] 在差分输入时,不考虑直流,使用差分放大器和变压器哪个更好.[答:Mariah] Transformer is better for the better noise and distortion performance, especially in very high frequencies. [2006-2-28 10:32:14] [问:Jane Yang] 请问应如何处理板级噪声对于高精度AD的影响?特别是输入部分的噪声? [答:Jing] This is a good question and it"s very difficult to answer. Generally, You should consider all the input noise derived from sensor/AMP/BUFFER. You can also use a LPF to reduce the input noise. Remember the BGP of AMP should be 100x of ADC"s throughput. Thanks! [2006-2-28 10:34:30] [问:石林艳] AD变换的参考基准源很重要,对模拟供电电源和数字供电电源的要求也很高吗 [答:Rui] 模拟供电电源,和数字供电电源相对基准源来说,精度要求相对较低,一般情况下用10uF的电容和0.1uF滤波即可。 [2006-2-28 10:34:31] [问:zcs_1] 请解释一下,分辨率和转换精度之间的区别 [答:Mariah] For conversion accuracy, it involves many aspecs. For example, INL, DNL, offset, gain error. [2006-2-28 10:34:46] [问:Leemour] 對不起能否講一下什麼是:RAIL TO RAIL,這個我一直不太明白。 [答:Xiangquan] 轨到轨指输入轨到轨,或输出轨到轨,具体指的是输入信号或者输出信号的范围基本接近于电源,譬如电源是+-5V,输入信号或输出信号可以达到+-4.9几V以上 [2006-2-28 10:35:25] [问:jlwg] 很多种adi的a/d转换器件都自带有标准电压源,请问是使用器件自带的标准电压源好还是另外使用独立的标准电压源更精确? 另外使用ad7710时,每次转换通道后的第一次转换结果是否是有效的? [答:Troy] Use an independant reference to get the highest accuracy and lowest temperature drift. It depends on how much accuracy your application needs over temperature. [2006-2-28 10:37:14] [问:xwlcba] 您提到驱动AD的运放增益带宽积要求大于100倍采样速率,请问对运放的转换速率有何具体要求? [答:Troy] To get the lowest distortion (THD), we recommend using an amplifier with at least 100x gain-bandwidth product greater than the sample rate. [2006-2-28 10:39:36] [问:bly1979m] 本人最近做了一个项目用于精确测量温度的,就用到了这两种器件!请推荐几款贵司产品?并说说它的大概价格是多少? [答:Jing] It"s depend on the accuracy of your system requirement. I am

常用电源芯片大全

常用电源芯片大全 第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596

18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875

电压基准芯片的参数解析及应用技巧(精)

电压基准芯片的参数解析及应用技巧 电压基准芯片是一类高性能模拟芯片,常用在各种数据采集系统中,实现高精度数据采集。几乎所有电压基准芯片都在为实现“高精度”而努力,但要在各种不同应用场合真正实现高精度,则需要了解电压基准的内部结构以及各项参数的涵义,并要掌握一些必要的应用技巧。 电压基准芯片的分类 根据内部基准电压产生结构不同,电压基准分为:带隙电压基准和稳压管电压基准两类。带隙电压基准结构是将一个正向偏置PN结和一个与VT(热电势)相关的电压串联,利用PN结的负温度系数与VT的正温度系数相抵消实现温度补偿。稳压管电压基准结构是将一个次表面击穿的稳压管和一个PN结串联,利用稳压管的正温度系数和PN结的负温度系数相抵消实现温度补偿。次表面击穿有利于降低噪声。稳压管电压基准的基准电压较高(约7V);而带隙电压基准的基准电压比较低,因此后者在要求低供电电压的情况下应用更为广泛。 根据外部应用结构不同,电压基准分为:串联型和并联型两类。应用时,串联型电压基准与三端稳压电源类似,基准电压与负载串联;并联型电压基准与稳压管类似,基准电压与负载并联。带隙电压基准和稳压管电压基准都可以应用到这两种结构中。串联型电压基准的优点在于,只要求输入电源提供芯片的静态电流,并在负载存在时提供负载电流;并联型电压基准则要求所设置的偏置电流大于芯片的静态电流与最大负载电流的总和,不适合低功耗应用。并联型电压基准的优点在于,采用电流偏置,能够满足很宽的输入电压范围,而且适合做悬浮式的电压基准。 电压基准芯片参数解析 安肯(北京)微电子即将推出的ICN25XX系列电压基准,是一系列高精度,低功耗的串联型电压基准,采用小尺寸的SOT23-3封装,提供1.25V、2.048V、2.5V、3.0V、3.3V、4.096V输出电压,并提供良好的温度漂移特性和噪声特性。

电压基准及时间基准解析

01电压基准及时间基准 所有模数转换器(ADC )和数模转换器(DAC )都需要一个基准信号,通常为电压基准 。ADC 的数字输岀表示 模拟输入相对于它的基准的比率; DAC 的数字输入表示模拟输 岀相对它的基准的比率。有些转换器有内部 基准,有一些转换器需要外部基准。不管怎样所 有转换器都必须有一个电压(或电流)基准。 数据转换器的最早应用是用于缓慢变化信号的直流测量。在这种情况下,测 量的精确定时并不重要。当 今大多数数据转换器是应用在数据采集系统, 在这种系统中必须处 理大量等间隔的模拟采样值, 而且频谱 信息与幅度信息同样重要,这里涉及到的采样频率或 时间基准(采样时钟或重建时钟)与电压基准一样重 要。 电压基准 问:一个电压基准怎样才算好 ? 答:电压基准与系统有关。在要求绝对测量的应用场合,其准确度受使用基准值 的准确度的限制。但是在 许多系统中稳定性和重复性比绝对精度更重要; 而在有些数据采集系统中电压基准的长期准确度几乎完全 不重要,但是如果从有噪声的系统电源中派生基准就 会引起误差。单片隐埋齐纳基准 (如AD588和AD688) 在10 V 时具有1 mV 初始准确度(0 01 %或100 ppm ),温度 系数为1 5 ppm/ ° C 。这种基准用于未调 整的12位系统中有足够的准确度(1 LSB=244 ppm ),但 还不能用于14或16位系统。如果初始误差调整 到零,在限定的温度范围内可用于 14位和16位系统(AD588或AD688限定40C 温度变化范围,1 LSB=61 ppm )。 对于要求更高的绝对精度,基准的温度需要用一个恒温箱来稳定,并对照标准校准。在 许多系统中,12 位绝对精度是不需要这样做的,只有高于 12位分辨率才可能需要。对于准确 度较低(价格也会降低)的应 用,可以使用带隙基准。 问:这里提到的“隐埋齐纳”和“带隙”基准是什么意思 ? 答:这是两种最常见的用于集成电路中的精密基准。“隐埋”或表层下齐纳管比 较 稳定和精确。它是由 一个具有反向击穿电压修正值的二极管组成, 这个二极管埋在集成电路 芯片的表层下面,再用保护扩散层 覆盖以免在表面下击穿,见图 1 1。 图1-1我层齐抽二极管与睫埋齐纳二扱省结鞫图 图1 1表层齐纳二极管与隐埋齐纳二极管结构图 硅芯片表面和芯片内部相比有较多的杂质、 机械应力和晶格错位。这是产生噪声和长期 不稳定性的原因之 一,所以隐埋式齐纳二极管比表层式齐纳二极管的噪声小, 而且稳定得多,因此它被优先采用于芯片基准 源上作为精密的集成电路器件。 E- 1 厂 隐埠齐纳二械野

带隙基准电压源设计解析

0 引言 基准电压是集成电路设计中的一个重要部分,特别是在高精度电压比较器、数据采集系统以及A/D和 D/A转换器等中,基准电压随温度和电源电压波动而产生的变化将直接影响到整个系统的性能。因此,在高精度的应用场合,拥有一个具有低温度系数、高电源电压抑制的基准电压是整个系统设计的前提。传统带隙基准由于仅对晶体管基一射极电压进行一阶的温度补偿,忽略了曲率系数的影响,产生的基准电压和温度仍然有较大的相干性,所以输出电压温度特性一般在20 ppm/℃以上,无法满足高精度的需要。 基于以上的要求,在此设计一种适合高精度应用场合的基准电压源。在传统带隙基准的基础上利用工作在亚阈值区MOS管电流的指数特性,提出一种新型二阶曲率补偿方法。同时,为了尽可能减少电源电压波动对基准电压的影响,在设计中除了对带隙电路的镜相电流源采用cascode结构外还增加了高增益反馈回路。在此,对电路原理进行了详细的阐述,并针对版图设计中应该的注意问题进行了说明,最后给出了后仿真结果。 l 电路设计 1.1 传统带隙基准分析 通常带隙基准电压是通过PTAT电压和CTAT电压相加来获得的。由于双极型晶体管的基一射极电压Vbe呈负温度系数,而偏置在相同电流下不同面积的双极型晶体管的基一射极电压之差呈正温度系数,在两者温度系数相同的情况下将二者相加就得到一个与温度无关的基准电压。 传统带隙电路结构如图1所示,其中Q2的发射极面积为Q1和Q3的m倍,流过Q1~Q3的电流相等,运算放大器工作在反馈状态,以A,B两点为输入,驱动Q1和Q2的电流源,使A,B两点稳定在近似相等的电压上。

假设流过Q1的电流为J,有: 由于式(5)中的第一项具有负温度系数,第二项具有正温度系数,通过调整m值使两项具有大小相同而方向相反的温度系数,从而得到一个与温度无关的电压。理想情况下,输出电压与电源无关。 然而,标准工艺下晶体管基一射极电压Vbe随温度的变化并非是纯线性的,而且由于器件的非理想性,输出电压也会受到电源电压波动的影响。其中,曲线随温度的变化主要取决于Vbe自身特性、集电极电流和电路中运放的失调电压,Vbe

电流电压功率之间的关系及公式.

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F W=I2乘以R V=IR W=V2/R 电流=电压/电阻 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦 特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 还有P=I2R P=IU R=U/I 最好用这两个;

3、如电动机电能转化为热能和机械能: 电流符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式= 1.732*线电压U*线电流I(星形接法) = 3*相电压U*相电I(角形接法)三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ 星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P P=I2R 4、串联电路 P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时

基准电压模块mc1403

MC1403简介 MC1403是低压基准芯片。一般用作8~12bit的D/A芯片的基准电压等一些需要基本精准的基准电压的场合。 输出电压: 2.5 V +/- 25 mV 输入电压范围: 4.5 V to 40 V 输出电流: 10 mA 芯片引脚图: .........+--+--+--+ ...Vin.|1.+---+.8|.NC .Vout.|2..........7|.NC .GND.|3..........6|.NC ....NC.|4..........5|.NC .........+---------+ 因为输出是固定的,所以电路很简单。就是Vin接电源输入,GND 接底,Vout加一个0.1uf~1uf的电容就可以了。Vout一般用作8~12bit的D/A芯片的基准电压。 MC1403是美国摩托罗拉公司生产的高准确度、低温漂、采用激光修正的带隙基准电压源,国产型号为5G1403和CH1403。它采用

DIP-8封装,引脚排列如图7-1-2所示。UI=+4.5V~+15V,UO =2.500V(典型值),αT可达10×10-6/℃。为了配8P插座,还专门设置了5个空脚。其输出电压UO=Ug0(R3+R4)/R4= 1.205× 2.08=+2.5V。 MC1403的输入-输出特性 输入电压UI/V 10 9 8 7 6 5 4.5 输出电压UO/V 2.5028 2.5028 2.5028 2.5028 2.5028 2.5028

2.5027 当UI从10V降至4.5V时,UO只变化0.0001V,变化率仅为-0.0018%。

在三相电路电压电流关系

在三相电路中,三相电源及三相负载都有两种连接方式:星形连接和三角形连接。 8.2.1 星形连接 在图8.3所示的三相电路中,三相电压源及三相负载都是星形连接的。各相电压源的负极性端连接在一起,称为三根电源的中点或零点,用N 表示。各相电压源的正极性端A 、B 、C 引出,以便与负载相连。这就是星形连接方式,或称Y 形连接方式。三相负载Z A 、Z B 、Z C 也是星形连接的。各相负载的一端连接在一起,称为负载的中点或零点,用N ’表示。各相负载的另一端A ’、B ’、C ’引出后与电源连接。电源与负载相应各相的连接线AA ’、BB ’、CC ’称为端线。电源中点与负载中点的连线NN ’称为中线或零线。具有三根端线及一根中线的三相电路称为三相四线制电路;如果只接三根端线而不接中线,则称为三相三线制电路。 N -+-B I C I A E B E C E B - --+ + -+’ C ’ AN V BN V 图8.3 电源与负载均为星形连接的三相电路 在三相电路中,电源或负载各相的电压称为相电压。例如AN V g 、BN V g 、CN V g 为电源相电压,'' A N V g 、'' B N V g 、''C N V g 为负载相电压。端线之间的电压称为线电压。例如AB V g 、BC V g 、CA V g 是电源的线电压,'' A B V g 、'' B C V g 、''C A V g 是负载的线电压。流过电源或负载各相的电流称为相电流。流过各端线的电流称为线电流,流过中线的电流称为中线电流。 当电源或负载为星形连接时,线电压等于两个相应的相电压之差,例如在电源侧,各线电压为

电流电压功率的关系及公式

电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电流=电压/电阻 功率=电压*电流*时间 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特)之间的关系是:V=IR,N=IV =I*I*R, 或也可变形为:I=V/R,I=N/V等等.但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用.如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P

就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流= I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流处处相等I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2

常用芯片型号大全

常用芯片型号大全 4N35/4N36/4N37 "光电耦合器" AD7520/AD7521/AD7530/AD7521 "D/A转换器" AD7541 12位D/A转换器 ADC0802/ADC0803/ADC0804 "8位A/D转换器" ADC0808/ADC0809 "8位A/D转换器" ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器 CA3140/CA3140A "BiMOS运算放大器" DAC0830/DAC0832 "8位D/A转换器" ICL7106,ICL7107 "3位半A/D转换器" ICL7116,ICL7117 "3位半A/D转换器" ICL7650 "载波稳零运算放大器" ICL7660/MAX1044 "CMOS电源电压变换器" ICL8038 "单片函数发生器" ICM7216 "10MHz通用计数器" ICM7226 "带BCD输出10MHz通用计数器" ICM7555/7555 CMOS单/双通用定时器 ISO2-CMOS MT8880C DTMF收发器 LF351 "JFET输入运算放大器" LF353 "JFET输入宽带高速双运算放大器" LM117/LM317A/LM317 "三端可调电源" LM124/LM124/LM324 "低功耗四运算放大器" LM137/LM337 "三端可调负电压调整器" LM139/LM239/LM339 "低功耗四电压比较器"

LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器 LM231/LM331 "精密电压—频率转换器" LM285/LM385 微功耗基准电压二极管 LM308A "精密运算放大器" LM386 "低压音频小功率放大器" LM399 "带温度稳定器精密电压基准电路" LM431 "可调电压基准电路" LM567/LM567C "锁相环音频译码器" LM741 "运算放大器" LM831 "双低噪声音频功率放大器" LM833 "双低噪声音频放大器" LM8365 "双定时LED电子钟电路" MAX038 0.1Hz-20MHz单片函数发生器 MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路" MC1404 5.0v/6.25v/10v基准电压 MC1413/MC1416 "七路达林顿驱动器" MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器" MC145406 "RS232驱动器/接收器"

电压基准及时间基准

电压基准及时间基准The document was prepared on January 2, 2021

电压基准及时间基准 所有模数转换器(ADC)和数模转换器(DAC)都需要一个基准信号,通常为电压基准。 ADC的数字输出表示模拟输入相对于它的基准的比率;DAC的数字输入表示模拟输出相对它的基准的比率。有些转换器有内部基准,有一些转换器需要外部基准。不管怎样所有转换器都必须有一个电压(或电流)基准。 数据转换器的最早应用是用于缓慢变化信号的直流测量。在这种情况下,测量的精确定时并不重要。当[下载自.管理资源吧]今大多数数据转换器是应用在数据采集系统,在这种系统中必须处理大量等间隔的模拟采样值,而且频谱信息与幅度信息同样重要,这里涉及到的采样频率或时间基准(采样时钟或重建时钟)与电压基准一样重要。 电压基准 问:一个电压基准怎样才算好 答:电压基准与系统有关。在要求绝对测量的应用场合,其准确度受使用基准值的准确度的限制。但是在许多系统中稳定性和重复性比绝对精度更重要;而在有些数据采集系统中电压基准的长期准确度几乎完全不重要,但是如果从有噪声的系统电源中派生基准就会引起误差。单片隐埋齐纳基准(如AD588和 AD688)在10 V时具有1 mV初始准确度(001 %或100 ppm),温度系数为1 5 ppm/°C。这种基准用于未调整的12位系统中有足够的准确度(1 LSB=244 ppm) ,但还不能用于14或16位系统。如果初始误差调整到零,在限定的温度范围内可用于14位和16位系统(AD588或AD688限定40℃温度变化范围,1 LSB=61 ppm)。 对于要求更高的绝对精度,基准的温度需要用一个恒温箱来稳定,并对照标准校准。在许多系统中,12位绝对精度是不需要这样做的,只有高于12位分辨

产生稳定电压的基准电压元件

产生稳定电压的基准电压元件 技术分类:电源技术 | 2010-12-28 Paul Rako,EDN技术编辑: EDN China 基准电压元件是低输出功率的线性稳压电源,它提供一个固定的(或恒定的)电压,而与器件负载、电源变动、温度变化以及时间无关。基准电压元件遍布于电源稳压器、数据采集系统、ADC、DAC,以及其它各种测量与控制系统中。虽然基准电压元件无处不在,但性能却有很大不同。例如,一款用于计算机电源的稳压器可能要将其值稳定在标称值附近的几个百分点以内,而实验室基准电压元器件的精度与稳定性要以百万分之一计。 几十年前的基准电压元器件提供的初始精度只有±10%,而现代的基准电压IC可以提供100 ppm(即0.01%)的初始精度。Analog Devices公司应用工程经理Reza Moghimi指出:“我们试图要让器件对线路、负载和温度的变动不敏感,以用于工业、科研与医疗市场中高要求的任务。”这些市场中的专业公司也可以很容易地进入对精度要求很严格军用市场与汽车市场。] 稳压芯片亦有串联与并联之分(图1与参考文献1)。串联稳压器有两只分别用于输入电源与地的管脚;第三只管脚输出一个固定的或可调的电压。双端并联稳压器工作在一个限流的固定电压下。实际上每个稳压器采用的都是并联架构,因为一个串联基准电压元件也不过是一个并联基准电压元件加上一个电流馈送电路和一个缓冲输出。

在电子业的早期,工程师们是采用霓虹辉光管作基准电压元件(图2)。霓虹辉光管是一个有两只导电端子的玻璃容器,其中填充了稀薄的惰性气体(具有类似特性的化学元素)。在标准情况下,惰性气体都是无嗅、无色的单原子气体,化学活性低。自然界存在的六种惰性气体是:氦、氖、氩、氪、氙和氡。当在这些气体上施加66V?200V的直流电压时,它们会被电离。一旦发生了离子击穿,则辉光管两侧的电压就降至直流48V?80V的维持电压。如果跨辉光管的电压跌至低于这个维持电压,灯就会熄灭,必须再次为其施加离子击穿电压,使之发光(图3)。一只霓虹辉光管工作时通过的电流低至10A?12A,或1 pA。1996年,Signalite做出了可以在±0.5V内稳压的辉光管(参考文献2)。 不过到了20世纪70年代,齐纳二极管(为并联式基准电压元件)取代了这些冷阴极辉光管(图4)。齐纳二极管的名称源于研究者Clarence Zener,他发现了这个效应(参考文献3)。虽然一些工程师将齐纳二极管看作雪崩二极管,但这两种二极管的物理原理并不相同(参考文献4、5、6)。齐纳击穿源于通过一个PN结产生量子力学隧道效应的电荷载流子。这种击穿出现在重掺杂的节点。PN结上的大电场加速电荷载流子,使之形成雪崩击穿。这些高速载流子造成碰撞电离,随之又造成了电荷载流子的倍增。这种效应出现在轻掺杂的PN结。齐纳二极管制造商通过改变PN

电流电压电阻三者的关系

电流、电压、电阻三者的关系 学习目标要求: 1.知道研究电流跟电压、电阻关系的实验方法。 2.知道电流跟电压、电阻的关系。 3.能初步分析在相同的电压下,通过不同导体的电流强度不同的现象。 4.知道用实验研究欧姆定律的方法。 5.掌握欧姆定律的内容及公式。 6.能应用欧姆定律公式进行简单的计算。 7.理解伏安法测电阻的原理及方法。 知识要点: 1.正确理解电流跟电压、电阻的关系 在利用实验的方法研究物理规律时,往往采用“控制变量”的实验方法,即先保持一个物理量不变(如不变),研究其他两个物理量(如和)之间的关系,分别得出不同条件下的 实验结论。 通过实验归纳总结出的电流与电压的关系是:在电阻一定的情况下,导体中的电流跟导体两端的电压成正比。应该注意:(1)这里导体中的电流和导体两端的电压都是针对同一导体来说的;(2)不能反过来说,电阻一定时,电压与电流成正比;这里存在一定的因果关系,这里电压是原因,电流是结果,是因为导体两端加了电压,导体中才有电流,不是因为导体中通了电流才加了电压。 电流跟电阻的关系是:在电压一定时,导体中的电流跟导体的电阻成反比。在理解时要注意:(1)电流和电阻也是针对同一导体而言的;(2)不能说导体的电阻与通过它的电流成反比。因为电阻是导体本身的一种特性,即使导体中不通过电流,它的电阻也不会改变,更不会因导体中电流的增大或减小而使它的电阻发生改变。 2.正确理解欧姆定律的物理含义 应将欧姆定律结合实验来理解,在导体的电阻不变时,导体中的电流与导体两端的电压成正比,导体两端电压改变时,流过导体的电流随着改变;在电压不变时,导体中的电流与电阻成反比,即在同一电压下,接不同的电阻时,电流也不相同,当所接电阻越大时,通过的电流越小。 欧姆定律的实质是:通过导体的电流随导体两端的电压的改变而改变,也可随导体的电阻大小的改变而改变。但导体两端的电压不一定随电流或电阻的改变而改变,导体的电阻更不会随流 过导体的电流或导体两端的电压的改变而改变。因此,将公式变形为时,不能说电压与电流成正比,也不能说电压与电阻成正比。同样,将公式变形为时,绝不能说电阻 与电压成正比,与电流成反比。公式表明:导体两端的电压与通过它的电流的比值,等 于导体的电阻大小,但不能决定、也不能改变导体的电阻的大小。决定导体电阻大小的因素是导体的材料、长度、横截面积及温度,与其两端的电压及通过它的电流大小无关。 3.应用欧姆定律应注意的问题

相关主题
文本预览
相关文档 最新文档