当前位置:文档之家› 周炳琨激光原理第二章习题解答

周炳琨激光原理第二章习题解答

周炳琨激光原理第二章习题解答
周炳琨激光原理第二章习题解答

周炳琨激光原理第二章习题解答(完整版)

1.试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

证明:设从镜M 1→M 2→M 1,初始坐标为???

? ??θ00r ,往返一次后坐标变为???? ??θ11r =T ????

??θ00r ,往返

两次后坐标变为????

??θ22r =T ?T ?

??

? ??θ00r 而对称共焦腔,R 1=R 2=L 则A=1-

2R L 2=-1 B=2L ???

?

??-2R L 1=0 C=-????

?????? ??-+121R L 21R 2R 2=0 D=-??

?

????

??? ??-???? ??--211R L 21R L 21R L 2=-1 所以,T=???

? ??--1001

故,????

??θ22r =???? ??--1001?

??? ??--1001???? ??θ00r =???

?

??θ00r 即,两次往返后自行闭合。

2.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 解:共轴球面腔的稳定性条件为0

R L

(a 对平凹腔:R 2=∞,则g 2=1,

0<1-

1

R L

<1,即0

?

??-???? ??-

21R L 1R L 1<1 L

R >1,

L R >2或L R <1L R <2且

L

R R >+21

(c)对凹凸腔:R 1=1R ,R 2=-2R ,

0

?+???? ?

?-21

R L 1R L 1<1,L R >1且L

R R <-||21

3.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为,求腔长L 在什么范围内是稳定腔。 解:

由图可见有工作物质时光的单程传播有效腔长减小为无工作物质时的??

?

??-

-=n 11L L L C e 由0

?

??-??? ??+

2111e e L L <1,得2m L 1m e << 则17m .2L 17m .1c <<

4.图所示三镜环形腔,已知l ,试画出其等效透镜序列图,并求球面镜的曲率半径R 在什么范围内该腔是稳定腔。图示环形强为非共轴球面镜腔。在这种情况下,对于在由光轴组成的平面内传输的子午光线,式(2.2.7)中的2/)cos (θR f =,对于在与此垂直的平面内传输的弧矢光线,)cos 2/(θR f =,θ为光轴与球面镜法线的夹角。 解:透镜序列图为

该三镜环形腔的往返矩阵为:

???? ??=???? ?

????? ?????? ?????? ?????? ?????? ??=D C B A 10L 11f 1-0110L 11f 1-0110L 11001T

=R ∞

=R

2

f L f L 31D A ??

?

??+-==

由稳定腔的条件:()1D A 211<+<

-,得:22f L 1f L 0

?

??-??? ??-< 2

L

f 3L <<或L f >。 若为子午光线,由ο30cos R 21

f =

32L R 33L 4<<或3

4L R > 若为弧矢光线,由ο

2cos30R f =,则2L

3R 3

L <<或R 3R >

5.有一方形孔径共焦腔氦氖激光器,L =30cm ,d=2a=0.12cm,nm 8.632=λ,镜的反

射率为

11=r ,96.02=r ,其他损耗以每程估计。此激光器能否作单模运转如果想在

共焦镜面附近加一个方形小孔阑来选择TEM 00,小孔边长应为多大试根据图2.5.5作一

大略的估计、氦氖增益由公式d l

e l

g 10*3140

+=-计算。

解: 菲涅耳数

9

.18.632*30)06.0(2

2

≈==nm cm cm L a N λ

增益为075.112

.030

10*314

=+=-e l

g

TEM

0模衍射损耗为9

10*7.4-

TEM 01模衍射损耗为106

-,总损耗为,增益大于损耗;

TEM 02

模衍射损耗为10*56

-,总损耗为,增益大于损耗;

衍射损耗与腔镜损耗和其它损耗相比均可忽略,三横模损耗均可表示为234.0=δ

105.1e *e 0g >=-l δ 因此不能作单模运转

为实现

TEM

0单横模运转所加小孔光阑边长为:

m L s 10*0.58

.632*302

2

24

0≈==-π

π

λ

ω

6.试求出方形镜共焦腔面上TEM 30模的节线位置,这些节线是等距分布的吗

解:

01283

3

)

(=-=X X H X

01=X ,

2

6

3,2±

=X ,由2

6,02±=x L λπ得节线位置:

1=x ,

π

λ433,2L x ±

=

因此节线是等间距分布的。

7.求圆形镜共焦腔TEM 20和TEM 02模在镜面上光斑的节线位置。

解:

TEM 02模的节线位置由缔合拉盖尔多项式:

由02)()42(2

102

=+-=ζζζL 得

2

22,1±=ζ,

ωζ2

022s

r =则

ωs r 02

21±=

TEM 20模的节线位置为0r =或sin2φ=0,

即:2

3,,2,0πππφ=

8.今有一球面腔,

m R 5.11=,m R 12-=,L =80cm 。试证明该腔为稳定腔;求出

它的等价共焦腔的参数。 解:g 1=1-

1R L =0.47 g 2=1-2

R L

= ,g 1?g 2=

即:0< g 1?g 2<1,所以该腔为稳定腔。 由公式(2.8.4) Z 1=

()

()()

212R L R L L R L -+--=-1.31m

Z 2=

()

()()

211R L R L L R L -+---=-0.15m

f 2=

()()()

()()[]

2

212121R L R L L R R L R L R L -+--+--=0.25m 2

f=0.5m

9.某二氧化碳激光器采用平凹腔,L =50cm ,R =2m ,2a =1cm ,

m μλ6.10=。试计算ω1

s 、ω2s 、

ω0、

θ0、

δ100、

δ2

00各为多少。

解:1

11

1

=-=R L g

,4

3

12

2

=-=R L g

?

?

????-+--=))(()(21122

1

4

11L R R L R L L R R L s πλω

)]([2

41L R L -=π

λ )(1∞→R

π

λ4

43=m 10*7.13

≈-

?

?

????

-+--=))(()

(2121224

12L R R L R L L R R L s πλω

)(222

41

L

R R L -=πλ,

)

(1∞→R

π

λ4

3

4=m

10*0.23

≈-

??

???

?

???

?--+=)1(]2[2212

1212124

10g g g g g g g g L πλθrad 10

*0.43

≈-

∞==

2

s1

21

ef1a N πω

, 01

00

05.2a N 2s2

22

ef2==πω, -10

20010

*8.1=δ

10.试证明,在所有λ

L a 2相同而R 不同的对称稳定球面腔中,共焦腔的衍射损耗最低。

这里L 表示腔长,

R R R ==21为对称球面腔反射镜的曲率半径,a 为镜的横向线度。

证明:在共焦腔中,除了衍射引起的光束发散作用以外,还有腔镜对光束的会聚作用。这两种因素一起决定腔的损耗的大小。对共焦腔而言,傍轴光线的几何偏折损耗为零。只要N 不太小,共焦腔模就将集中在镜面中心附近,在边缘处振幅很小,衍射损耗极低。

11.今有一平面镜和一R=1m 的凹面镜,问:应如何构成一平凹稳定腔以获得最小的基模远场角;画出光束发散角与腔长L 的关系曲线。

解:??

???

??

??

?--+=)1(]2[221212121210g g g g g g g g L πλθ?

?????-=g g L 22124

1

πλ

,)

1(1

=g

???

? ??-=)(1

224

1

L R L L πλ

当m R L 5.02

2==时,

θ0最小.

12.推导出平凹稳定腔基模在镜面上光斑大小的表达式,作出:(1)当R =100cm 时,ω1s ,

ω2s 随L 而变化的曲线;(2)当L =100cm 时,ω1s ,ω2

s 随R 而变化的曲线。 解:

?

?

????-+--=))(()(2112214

1

1L R R L R L L R R L s πλω

)]([2

41L R L -=π

λ, )(1

∞→R ??

????-+--=

))(()

(2121224

1

2L R R L R L L R R L s π

λω

)(222

4

1

L

R R L -=πλ)

(1∞→R

(1)cm R R 1002==

(2)cm L 100=

13.某二氧化碳激光器,采用平凹腔,凹面镜的R =2m ,腔长L =1m 。试给出它所产生的高斯光束的腰斑半径ω0的大小和位置、该高斯光束的f 及θ

的大小。

解:

)]()[())()((212

21212R L R L L R R L R L R L f -+--+--=

2

1m )12(*1)(2

=-=-=L R L

即:

m 1=f

10*7.32

30

-≈=f

πλθ m

f 10*8.13

0-≈=

π

λ

ω

14.某高斯光束腰斑大小为mm 14.10=ω,m μλ6.10=。求与束腰相距cm 30、m 10、

m 1000远处的光斑半径ω及波前曲率半径R 。

解:2

)(1)(f

z z +=ωω,z f z z R 2)(+= 其中,m f 385.02

≈=λ

πω cm z 30=: mm cm 45.1)30(≈ω,m cm R 79.0)30(≈

m z 10=

: mm m 6.29)10(≈ω, m m R 0.10)10(≈ m z 1000=:m m 96.2)1000(≈ω,m m R 1000)1000(≈

15.若已知某高斯光束之mm 3.00=ω,nm 8.632=λ。求束腰处的q 参数值,与束腰相距

cm 30处的q 参数值,以及在与束腰相距无限远处的q 值。

解:

∞→-=)0(,)0(1120

0R i R q πωλ 束腰处:cm i if i q 66.4420

0?≈==λ

πω )8.10.2()(0K K z q z q +=

cm i cm q cm z )66.4430()30(:30+≈= ∞=∞∞=)(:q z

16.某高斯光束mm 2.10=ω,m μλ6.10=。今用cm F 2=的锗透镜来聚焦,当束腰与透镜的距离为m 10、m 1、cm 10、0时,求焦斑大小和位置,并分析所得的结果。

解:m f 43.020

≈=λ

πω 2

22

)()(f F l F F l F l +--+

=' ()

2

22

22

)(f l F F +-='ωω m l 10= m l 2

10004.2-?≈', m 60

1040.2-?='ω m l 1=: m l 210034.2-?≈', m 501025.2-?='

ω cm l 10=: m l 210017.2-?≈', m 501053.5-?='

ω 0=l : m l 210996.1-?≈', m 501062.5-?='

ω

可见,透镜对束腰斑起会聚作用,位置基本不变在透镜焦点位置。

17.2CO 激光器输出光m μλ6.10=,mm 30=ω,用一cm F 2=的凸透镜聚焦,求欲得到

m μω200

='及m μ5.2时透镜应放在什么位置。 解:m f 67.22

≈=λ

πω

2

22

22

)(f l F F +-='ωω (2.10.18) (1) 222

2

22

885.1)(m f F l F ≈-'=-ωω m l 39.1≈

(2) 2

22

2022

9.568)(m f F l F ≈-'=-ωω m l 87.23≈

18.如图光学系统,入射光m μλ6.10=,求0

ω''及3l 。 解: m f 67.22

≈=λ

πω m f F l F F l F l 02.0)()(2

2112

11111≈+--+='

m f

l F F 52

2112

210

1025.2)(-?≈+-='ωω

cm l l l 13122

='-=' m f 4201050.1-?≈'='λ

ωπ

m f F l F F l F l 0812.0)()(2

222

2222

23≈'+-'-'+= m f F l F 52222

2220

1041.1)(-?≈'+-''=''ωω

19.某高斯光束mm 2.10=ω,m μλ6.10=。今用一望远镜将其准直。主镜用镀金反射镜

m R 1=,口径为cm 20;副镜为一锗透镜,cm F 5.21=,口径为cm 5.1;高斯束腰与透镜

相距m l 1=,如图所示。求该望远系统对高斯束的准直倍率。

解:2

122)(1)(1f

l F F f l M M +=+=' m f 427.02

0≈=λπω ,m R F 5.022== 95.50='M

20.激光器的谐振腔由两个相同的凹面镜组成,它出射波长为λ的基模高斯光束,今给定功率计,卷尺以及半径为a 的小孔光阑,试叙述测量该高斯光束共焦参数f 的实验原理及步骤。

解: 由两个相同的凹面镜组成的谐振腔所对应共焦腔的焦距为:[]21)2(2

1

L R L f -=,束

腰半径:()[]41022L R L -=

π

λ

ω。当R L =时,束腰半径最大。所以,对称共焦腔有最大的束腰半径。

实验步骤:1,对某一腔长,测得束腰光斑的位置,此位置单位面积内具有该腔内光

束的最大光功率。

2,改变腔长,同1测量束腰光斑处小孔后的光功率。在束腰光斑光功率

最小时,用卷尺测得两腔镜间距L 。

则有,L f R L 2

1

,=

=。 21.已知一二氧化碳激光谐振腔由两个凹面镜构成,m R 11=,m R 22=,m L 5.0=。如何选择高斯光束腰斑0ω的大小和位置才能使它成为该谐振腔中的自再现光束 解:由式(2.12.3)及球面反射镜等价焦距R 2

1

F =

,有: ???????????? ??+=2120

111l l R λπω和???

?

???????? ??+=2220221l l R λπω 又L l l =+21,取m μλ6.10=。

得:m l m l 125.0,375.021==,m 3

010*28.1-=ω

22.(1)用焦距为F 的薄透镜对波长为λ、束腰半径为0ω的高斯光束进行变换,并使变换

后的高斯光束的束腰半径00ωω<'(此称为高斯光束的聚焦),在f F >和f

F <(λ

πω2

=f )两种情况下,如何选择薄透镜到该高斯光束束腰的距离l (2)在聚焦过程中,

如果薄透镜到高斯光束束腰的距离l 不能改变,如何选择透镜的焦距F

解: 2

22

22

0)(f l F F +-='ωω ,2

2

'011??

? ??+??? ??

-=F f F l ωω

(1) 当f F >时,须2

2

11??

? ??->??? ??-F f F l 解得:22f F F l --<或2

2f F F l -+>

当f F <时,总满足10

'0

<ωω,并在F l =时,最小。

(2) l 不变:

l f l F f

l F F 21)(2

22

22+

23.试由自再现变换的定义式(2.12.2)用q 参数法来推导出自再现变换条件式()。 解:)0()(q l l q c c == (2.12.2)

22022

02

)()()(λπωλπω+-=l F F i q c 2

2

022

0220)()(λ

πω

ωω+-='l F F (2.10.18) 令00ωω=' 即2

20

22

22

)(

)(λ

πωωω+-=l F F 得:2

20

22

)(

)(1λ

πω+-=

l F F

故])(

1[21

220l

l F λπω+= (2.12.3)

24.试证明在一般稳定腔),,(21L R R 中,其高斯模在腔镜面处的两个等相位面的曲率半径分别等于各该镜面的曲率半径。

解:

?????

?

??+-+--+--

-=???? ?????? ??-???? ?????

? ??-=124424222211011201

10112

012212

1221122

221

R L R R L R L R R R L R R L L R L L R L R T

由(2.12.10),参考平面上的曲率半径为

112

12

1212

22114444)(2R R R R L R L

R L R R L R L L A D B R =--

=-

-=-= 25.试从式(2.14.12)导出式(),并证明对双凸腔042

>-C B 。 解:

2

212

11R l L l =-+ (2.14.12a) )(2)(121222L l l L l R l R +=+-

)

(2)

(12122L l R L l R l +-+=

? (1)

1

122

11R l L l =-+ (2.14.12b) )(2)(212111L l l L l R l R +=+- (2) 将(1)代入(2)得:

))

(2)

((2))(2)((

121211212111L L l R L l R l L L l R L l R R l R ++-+=++-+-

02)

(2)(22

121121221=---+---+

?R R L R L L R l R R L R L L l (2.4.13)

0121=++C Bl l

2122)(2R R L R L L B ---=

,2

1212)

(R R L R L LR C ---=

2

1212212222

2)

(4)2()(44R R L R L LR R R L R L L C B ----

---=- 对于双凸腔11R R -=,22R R -=

02)(4)

2()(442

1212

212222

>++++

+++=

-R R L R L R L R R L R L L C B

26.试计算m R 11=,m L 25.0=,cm a 5.21=,cm a 12=的虚共焦腔的单程ξ和往返ξ。若想保持1a 不变并从凹面镜1M 端单端输出,应如何选择2a 反之,若想保持2a 不变并从凸面镜2M 端单端输出,应如何选择1a 在这两种单端输出的条件下,单程ξ和往返ξ各为多大题中

1a 为镜1M 的横截面半径,1R 为其曲率半径,2a 、2R 的意义类似。

解:对于虚共焦腔:m R 11=,m L 25.0=。由L R R 221=+得m R 5.02-=,

1,212

1

2===

m R R m 。 cm a cm a 1,5.221==,16

.02

12

12=?

??? ??m a a ,16.01=Γ;

,

5625.12

2

2

21=?

??? ??m a a 11=Γ。 则6.0121=ΓΓ-=单程ξ,84.0121=ΓΓ-=往返ξ

(a ) 保持1a 不变,从凹面镜1M 端单端输出,要求2M 能接收从1M 传输的光线,则须:

121a a ,1≥=Γ,此时25.022

2

212≤????

??=Γm a a , 5.0a a

111221≥-=ΓΓ-=单程

ξ,75.0a a 112

1221≥???

? ??-=ΓΓ-=往返ξ (b ) 保持2a 不变,从凸面镜2M 单端输出须:

25.0a a 2

121≤???

? ??=Γ,

5.0a a 111221≥?

??

?

??-=ΓΓ-=单程

ξ,75.0a a 112

1221≥???? ??-=ΓΓ-=往返ξ

激光原理第二章答案

第二章开放式光腔与高斯光束 1.证明如图 2.1所示傍轴光线进入平面介质界面的光线变换矩阵为 1 2 1 0 η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为 22 ,rθ,根据几何关系可知211122 ,sin sin r rηθηθ ==傍轴光线sinθθ则 1122 ηθηθ =,写成矩阵形式 21 21 1 2 1 0 r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证 2.证明光线通过图2.2所示厚度为d的平行平面介质的光线变换矩阵为 1 2 1 0 1 d η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为 22 ,rθ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d,最后经界面2折射后出射。根据1题的结论和自由传播的光线变换矩阵可得 21 21 21 12 1 0 1 0 1 0 0 0 1 r r d θθ ηη ηη ???? ???? ?? ???? = ???? ?? ???? ?? ???? ???? ???? 化简后21 21 1 2 1 0 1 d r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证。 3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。 证:设光线在球面镜腔内的往返情况如下图所示:

其往返矩阵为: 由于是共焦腔,则有 12R R L == 将上式代入计算得往返矩阵 () ()()1 2 101 0110101n n n n n n r L r L ??????===-=-???????????? A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。 于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。 4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 解:共轴球面腔稳定性条件1201g g <<其中1212 11,1L L g g R R =-- =- 对平凹共轴球面镜腔有12,0R R =∞>。则122 1,1L g g R ==- ,再根据稳定性条件 1201g g <<可得2 2011L R R L <- <>?。 对双凹共轴球面腔有,120,0R R >>则1212 1,1L L g g R R =- =-,根据稳定性条件1201g g << 可得11221 212010 01 1R L R L R L R L R R L L R R L <?? <????<-- ?????? 或。 对凹凸共轴球面镜腔有,120,0R R ><则1212 1,1,0L L g g R R =- =>-根据稳定性条件1201g g << 可得121120111R L R R R L L R L ???? <--

激光原理复习题答案

激光原理复习题 1. 麦克斯韦方程中 0000./.0t t μμερε????=-???????=+????=???=?B E E B J E B 麦克斯韦方程最重要的贡献之一是揭示了电磁场的在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。在方程组中是如何表示这一结果? 答:(1)麦克斯韦方程组中头两个分别表示电场和磁场的旋度,后两个分别表 示电场和磁场的散度; (2) 由方程组中的1式可知,这是由于具有旋度的随时间变化的电场(涡旋 电场),它不是由电荷激发的,而是由随时间变化的磁场激发的; (3)由方程组中的2式可知,在真空中,,J =0,则有 t E ??=? 00B *εμ ;这表明了随时间变化的电场会导致一个随时间变化的磁场;相反一个空间变化的磁场会导致一个随时间变化的电场。这 种交替的不断变换会导致电磁波的产生。 2, 产生电磁波的典型实验是哪个?基于的基本原理是什么? 答:产生电磁波的典型实验是赫兹实验。基于的基本原理:原子可视为一个偶 极子,它由一个正电荷和一个负电荷中心组成,偶极矩在平衡位置以高频做周期振荡就会向周围辐射电磁波。简单地说就是利用了振荡电偶极子产生电磁波。 3 光波是高频电磁波部分,高频电磁波的产生方法和机理与低频电磁波不同。对于可见光围的电磁波,它的产生是基于原子辐射方式。那么由此原理产生的光的特点是什么? 答:大量原子辐射产生的光具有方向不同,偏振方向不同,相位随机的光,它们是非相干光。 4激光的产生是基于爱因斯坦关于辐射的一般描述而提出的。请问爱因斯坦提出了几种辐射,其中那个辐射与激光的产生有关,为什么? 答:有三种:自发辐射,受激辐射,受激吸收。其中受激辐射与激光的产生有 关,因为受激辐射发出来的光子与外来光子具有相同的频率,相同的发射 方向,相同的偏振态和相同的相位,是相干光。

激光原理重点习题

1. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒 从上能级跃迁到下能级的粒子数各为多少? 答:粒子数分别为:188346 341105138.210 31063.6105.01063.61?=????=? ?= =---λ ν c h q n 239342100277.510 31063.61?=???== -νh q n 4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比 q q 激自1 = 2000 ,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ??=-νρ,λ为0.6328μm ,设μ=1,求 q q 激 自 为若干? 答:(1) ( 2 ) 94343 6333106.710510 63.68)106328.0(88?=?????==---πρπλρνπννh h c q q =自激 5.在红宝石Q 调制激光器中,有可能将全部Cr 3+ (铬离子)激发到激光上能级并产生巨脉冲。 设红宝石直径0.8cm ,长8cm ,铬离子浓度为2×1018cm - 3,巨脉冲宽度为10ns 。求:(1) 输出0.6943μm 激光的最大能量和脉冲平均功率;(2)如上能级的寿命τ=10- 2s ,问自发辐射功率为多少瓦? 答:(1)最大能量 J c h d r h N W 3.2106943.01031063.61010208.0004.06 834 61822=??????????=? ???=?=--πλ ρπν 脉冲平均功率=瓦8 961030.210 10103.2?=??=--t W (2)瓦自 自自145113.211200 2021=?? ? ??-?==? ? ? ??-==?-e h N P e n dt e n N t A τνττ 13.(1) 一质地均匀的材料对光的吸收为0.01mm -1、光通过10cm 长的该材料后,出射光强为入射光强的百分之几?(2)—光束通过长度为1m 的均匀激活的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。 答;(1)368.01 )0()()0()(10001.0===? =?--e e I z I e I z I Az

激光原理及应用试卷

激光原理及应用 考试时间:第 18 周星期五 ( 2007年1 月 5日) 一单项选择(30分) 1.自发辐射爱因斯坦系数与激发态E2平均寿命τ的关系为( B ) 2.爱因斯坦系数A 21和B 21 之间的关系为( C ) 3.自然增宽谱线为( C ) (A)高斯线型(B)抛物线型(C)洛仑兹线型(D)双曲线型 4.对称共焦腔在稳定图上的坐标为( B ) (A)(-1,-1)(B)(0,0)(C)(1,1)(D)(0,1) 5.阈值条件是形成激光的( C ) (A)充分条件(B)必要条件(C)充分必要条件(D)不确定 6.谐振腔的纵模间隔为( B ) 7.对称共焦腔基模的远场发散角为( C ) 8.谐振腔的品质因数Q衡量腔的( C ) (A)质量优劣(B)稳定性(C)储存信号的能力(D)抗干扰性 9.锁模激光器通常可获得( A )量级短脉冲 10.YAG激光器是典型的( C )系统 (A)二能级(B)三能级(C)四能级(D)多能级 二填空(20分) 1.任何一个共焦腔与等价, 而任何一个满足稳定条件的球面腔地等价于一个共焦腔。(4分) 2 .光子简并度指光子处于、 、、。(4分) 3.激光器的基本结构包括三部分,即、 和。(3分)

4.影响腔内电磁场能量分布的因素有、 、。(3分) 5.有一个谐振腔,腔长L=1m,在1500MHz的范围内所包含的纵模个数为 个。(2分) 6.目前世界上激光器有数百种之多,如果按其工作物质的不同来划分,则可分为四大类,它们分别是、、和。(4分) 三、计算题( 42分) 1.(8分)求He-Ne激光的阈值反转粒子数密度。已知=6328?,1/f()=109Hz,=1,设总损耗率为,相当于每一反射镜的等效反射率R=l-L=%,=10—7s,腔长L=。 2.(12分)稳定双凹球面腔腔长L=1m,两个反射镜的曲率半径大小分别为R 1=3m求它的等价共焦腔腔长,并画出它的位置。 =,R 2 3.(12分)从镜面上的光斑大小来分析,当它超过镜子的线度时,这样的横模就不可能存在。试估算在L=30cm, 2a= 的He-Ne激光方形镜共焦腔中所可能出现的最高阶横模的阶次是多大? 4.4.(10分)某高斯光束的腰斑半径光波长。求与腰斑相距z=30cm处的光斑及等相位面曲率半径。 四、论述题(8分) 1.(8分)试画图并文字叙述模式竞争过程

激光原理MOOC答案详解

1.2 1 谁提出的理论奠定了激光的理论基础? ?A、汤斯 ?B、肖洛 ?C、爱因斯坦 ?D、梅曼 正确答案:C 我的答案:C得分: 10.0分 2 氢原子3p态的简并度为? ?A、2 ?B、10 ?C、6 正确答案:C 我的答案:C得分: 10.0分 3 热平衡状态下粒子数的正常分布为: ?A、处于低能级上的粒子数总是等于高能级上的粒子数?B、处于低能级上的粒子数总是少于高能级上的粒子数?C、处于低能级上的粒子数总是多于高能级上的粒子数正确答案:C 我的答案:C得分: 10.0分 4 原子最低的能量状态叫什么? ?A、激发态 ?B、基态 ?C、.亚稳态 正确答案:B 我的答案:B得分: 10.0分 5 对热辐射实验现象的研究导致了? ?A、德布罗意的物质波假说 ?B、爱因斯坦的光电效应

?C、普朗克的辐射的量子论 正确答案:C 我的答案:A得分: 0.0分 6 以下关于黑体辐射正确的说法是: ?A、辐射的能量是连续的 ?B、黑体一定是黑色的 ?C、 辐射能量以hν为单位 正确答案:C 我的答案:C得分: 10.0分 7 热平衡状态下各能级粒子数服从: ?A、A. 高斯分布 ?B、玻尔兹曼分布 ?C、正弦分布 ?D、余弦分布 正确答案:B 我的答案:B得分: 10.0分 8 以下说法正确的是: ?A、受激辐射光和自发辐射光都是相干的 ?B、受激辐射光和自发辐射光都是非相干的 ?C、受激辐射光是非相干的,自发辐射光是相干的 ?D、受激辐射光是相干的,自发辐射光是非相干的正确答案:D 我的答案:D得分: 10.0分 9 下列哪个物理量不仅与原子的性质有关,还与场的性质有关??A、自发跃迁几率 ?B、受激吸收跃迁几率 ?C、受激辐射跃迁爱因斯坦系数 正确答案:B 我的答案:B得分: 10.0分 10

激光原理第二章习题解答

《激光原理》习题解答 第二章习题解答 1 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限次,而且两次往返即自行闭合. 证明如下:(共焦腔的定义——两个反射镜的焦点重合的共轴球面腔为共焦腔。共焦腔分为实共焦腔和虚共焦腔。公共焦点在腔内的共焦腔是实共焦腔,反之是虚共焦腔。两个反射镜曲率相等的共焦腔称为对称共焦腔,可以证明,对称共焦腔是实双凹腔。) 根据以上一系列定义,我们取具对称共焦腔为例来证明。 设两个凹镜的曲率半径分别是1R 和2R ,腔长为L ,根据对称共焦腔特点可知: L R R R ===21 因此,一次往返转换矩阵为 ?????? ?????????????????? ??-???? ??---?????????? ??-+-???? ??--=??????=211121222121221221221R L R L R L R L R R R L L R L D C B A T 把条件L R R R ===21带入到转换矩阵T ,得到: ? ? ? ???--=??????=1001D C B A T 共轴球面腔的稳定判别式子()12 1 1<+<-D A 如果 ()121 -=+D A 或者()12 1=+D A ,则谐振腔是临界腔,是否是稳定腔要根据情况来定。本题中 ,因此可以断定是介稳腔(临界腔),下面证明对称共焦腔在近轴光线条件下属于稳定腔。 经过两个往返的转换矩阵式2 T ,?? ? ? ??=10012T 坐标转换公式为:?? ????=??????? ?????=??????=???? ??1111112221001θθθθr r r T r 其中等式左边的坐标和角度为经过两次往返后的坐标,通过上边的式子可以看出,光线经过 两次往返后回到光线的出发点,即形成了封闭,因此得到近轴光线经过两次往返形成闭合,对称共焦腔是稳定腔。 2 试求平凹、双凹、凹凸共轴球面腔的稳定条件。 解答如下:共轴球面腔的()2 12 21222121R R L R L R L D A + --≡+,如果满足()1211<+<-D A ,

激光原理第七章答案

第七章 激光特性的控制与改善 习题 1.有一平凹氦氖激光器,腔长0.5m ,凹镜曲率半径为2m ,现欲用小孔光阑选出TEM 00模,试求光阑放于紧靠平面镜和紧靠凹面镜处的两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的3.3倍时,可选出基模。) 解:腔长用L 表示,凹镜曲率半径用1R 表示,平面镜曲率半径用2R 表示,则 120.5m ,2m ,L R R ===∞ 由稳定腔求解的理论可以知道,腔内高斯光束光腰落在平面镜上,光腰半径为 0121 4 1 ()] 0.42m m w L R L = = -≈ 共焦参量为2 207 0.420.87m 632810 w f ππλ -?= = ≈? 凹面镜光斑半径为 10.484m m w w w ==≈ 所以平面镜端光阑直径为 03.3 1.386m m D w =?=平 凹面镜端光阑直径为 13.3 1.597m m D w =?=凹 2.图7.1所示激光器的M 1是平面输出镜,M 2是曲率半径为8cm 的凹面镜,透镜P 的焦距F =10cm ,用小孔光阑选TEM 00模。试标出P 、M 2和小孔光阑间的距离。若工作物质直径是5mm ,试问小孔光阑的直径应选多大? 图 7.1 1 2

解:如下图所示: 1 2 P 小孔光阑的直径为: 3 1.0610100 2 2mm 0.027mm 2.5 f d a λππ-??==? ≈? 其中的a 为工作物质的半径。 3.激光工作物质是钕玻璃,其荧光线宽F ν?=24.0nm ,折射率η=1.50,能用短腔选单纵模吗? 解:谐振腔纵模间隔 2 22q q c L L νηλ λη?=?= 所以若能用短腔选单纵模,则最大腔长应该为 2 15.6μm 2L λ ηλ = ≈? 所以说,这个时候用短腔选单纵模是不可能的。 6.若调Q 激光器的腔长L 大于工作物质长l ,η及' η分别为工作物质及腔中其余部分的折射率,试求峰值输出功率P m 表示式。 解:列出三能级系统速率方程如下: 2121 (1) 2 (2) R dN l N cN n dt L d n N n dt στσυ=?-'?=-? 式中,()L l L l ηη''=+-,η及' η分别为工作物质及腔中其余部分的折射率,N 为工作物质中的平均光子数密度,/,/R c L c υητδ'==。 由式(1)求得阈值反转粒子数密度为:

周炳琨激光原理第一章习题解答(完整版)

周炳琨<激光原理>第一章习题解答(完整版) 1.为使氦氖激光器的相干长度达到1km ,它的单色性 λλ ?应是多少? 解:相干长度 υ υυ -=?=12c c L c 将 λυ1 1c =, λυ22c =代入上式,得: λ λλλλλ?≈-=0 2 2 121L c ,因此 c λλλ 00=?,将 nm 8.6320=λ,km L c 1=代入得: 10*328.68.632100-==?nm λλ 2.如果激光器和微波激射器分别在 m μλ10=, nm 500=λ和 MHz 3000=υ输出1W 连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是 多少? 解:ch p h p n λ υ== (1) 个10*03.510*3*10*626.610*1191 8 34 ≈= --ms Js m W n μ (2)个10*52.210*3*10*626.6500*1181834≈=--ms Js nm W n (3)个10*03.53000*10*626.612334 ≈=-MHz Js W n 3.设一对激光能级为 E 2和E 1(f f =12) ,相应频率为υ(波长为 λ ),能级上的粒

子数密度分别为 n 2和n 1,求: (a )当 MHz 3000=υ,T=300K 时,=n n 12? (b )当 m μλ1=,T=300K 时,=n n 1 2? (c )当 m μλ1=,1.01 2=n n 时,温度T=? 解: e e f n h E E ==---υ121 212 (a )110 *8.4300 *10*38.110*300010*626.64 23 6 *341 2≈≈= -----e e n n (b )10 *4.121 6238 34 1 2 10*8.410*1*300*10*38.110*3*10*626.6≈≈==--- ----e e e n n kT hc λ (c )1.010*1*10*38.110*3*10*626.68 341 2===---e e n n T hc λ 得: K T 10*3.63 ≈ 4.在红宝石Q 调制激光器中,有可能将几乎全部Cr + 3离子激发到激光上能级并产生激光 巨脉冲。设红宝石棒直径1cm,长度7.5cm , Cr + 3浓度为 cm 3 1910*2-,巨脉冲宽度为 10ns ,求输出激光的最大能量和脉冲功率。 解:由于红宝石为三能级激光系统,最多有一般的粒子能产生激光: J nhc nh E 1710*3.69410 *3*10*626.6*10*2*5.7*)5.0(2 19 8 34 19 2 max 2 121====--πλυW E P R 10*7.19 max ==τ 5.试证明,由于自发辐射,原子在 E 2 能级的平均寿命 A s 21 1=τ 证明:自发辐射,一个原子由高能级 E 2自发跃迁到E 1,单位时间内能级E 2减少的粒子

激光原理及应用(第二版)课后习题答案(全)

思考练习题1 1. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒 从上能级跃迁到下能级的粒子数各为多少? 答:粒子数分别为:18 8 346341105138.21031063.6105.01063.61?=????=? ?==---λ ν c h q n 23 9 342100277.510 31063.61?=???==-νh q n 2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高? 答:(1)(//m n E E m m kT n n n g e n g --=) 则有:1]300 1038.11031063.6exp[23 93412≈?????-==---kT h e n n ν (2)K T T e n n kT h 3 6 23834121026.61.0]1011038.11031063.6exp[?=?=???????-==----ν 3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0- 18J ,设火焰(T =2700K)中含有1020个氢原子。设原子按玻尔兹曼分布,且4g 1=g 2。求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦? 答:(1)1923 181221121011.3]2700 1038.11064.1exp[4----?=???-?=?=??n n e g n g n kT h ν 且20 2110=+n n 可求出312≈n (2)功率=W 918 8 10084.510 64.13110--?=??? 4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比 q q 激自1 = 2000 ,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ??=-νρ,λ为0.6328μm ,设μ=1,求 q q 激 自 为若干? 答:(1)

激光原理教学大纲

《激光原理》课程教学大纲 课程代码:090631009 课程英文名称:Principles of Laser 课程总学时:48 讲课:48 实验:0 上机: 适用专业:光电信息科学与工程 大纲编写(修订)时间:2017.10 一、大纲使用说明 (一)课程的地位及教学目标 本课程是光电信息科学与工程专业的必修主干专业基础课程,主要讲授有关激光的基本知识和基本理论,在光电信息科学与工程专业培养计划中,它起到由专业基础理论课向专业课过渡的承上启下的作用。本课程在教学内容方面除基本知识、基本理论的教学外,还通过课程设计培养学生的理论分析及其实际应用能力。 通过本课程的学习,可以使学生: 1. 掌握激光的概念及产生原理、光学谐振腔理论、速率方程理论、激光器的特性及其控制和改善的原理。了解激光技术新的发展和应用; 2. 具有综合运用数学、物理等学科知识对实际与激光有关的问题进行理论分析的能力; 3. 获得初步的激光器件设计技能,为后续课程的学习以及相关课程设计、毕业设计等奠定重要的基础。 (二)知识、能力及技能方面的基本要求 1. 知识方面的基本要求 通过本科程的学习,使学生掌握:激光的概念、特性及产生原理;激光器的构成及工作原理;光学谐振腔与高斯光束知识;光与物质的共振相互作用的速率方程理论;激光的振荡特性、放大特性及其特性的控制和改善知识。 2. 能力方面的基本要求 通过本科程的学习,培养学生:光学谐振腔分析能力及其初步设计能力;激光器的振荡特性、放大特性的分析能力;激光器特性的控制与改善的初步设计能力。 3. 技能方面的基本要求 通过本课程的学习,使学生获得:光学谐振腔设计的初步技能;激光器特性的控制与改善的初步的理论设计能力。 (三)实施说明 1.教学方法:课堂中要重点突出对基本概念和基本原理的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导学生主动思考,提高学生的自学能力;鼓励学生参与讨论和课堂发言,调动学生学习的积极性;教学中注意理论联系实际,培养学生的工程意识(创新、实践、安全、标准、竞争、法律和管理等意识)和工程能力(思维、自学、研究、操作和创造能力等)。 2.教学手段:本课程属于专业基础课,在教学中采用电子教案和多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 本教学大纲是根据光电信息科学与工程专业的特点和学科内容要求而制定的,在执行本大纲时应注意以下几点: 1. 在授课过程中要由易到难,循序渐进。重点是物理概念和物理模型的讲解,其次是数学理论与方法的具体应用;

激光原理与技术试题答案

2006-2007学年 第1学期 《激光原理与技术》B 卷 试题答案 1.填空题(每题4分)[20] 激光的相干时间τc 和表征单色性的频谱宽度Δν之间的关系为___1c υτ?= 一台激光器的单色性 为5x10-10,其无源谐振腔的Q 值是_2x109 如果某工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105 S -1,该跃迁的受激辐射爱因斯坦系数B 10等于_____6x1010 m 3s -2J -1 设圆形镜共焦腔腔长L=1m ,若振荡阈值以上的增益线宽为80 MHz ,判断可能存在_两_个振荡频率。 对称共焦腔的 =+)(2 1 D A _-1_,就稳定性而言,对称共焦腔是___稳定_____腔。 2. 问答题(选做4小题,每小题5分)[20] 何谓有源腔和无源腔?如何理解激光线宽极限和频率牵引效应? 有源腔:腔内有激活工作物质的谐振腔。无源腔:腔内没有激活工作物质的谐振腔。 激光线宽极限:无源腔的线宽极限与腔内光子寿命和损耗有关:122' c R c L δ υπτπ?= = ;有源腔由于受到自发辐射影响,净损耗不等于零,自发辐射的随机相位造成输出激光的线宽极限 220 2()t c s t out n h n P πυυυ?= ?。 频率牵引效应:激光器工作物质的折射率随频率变化造成色散效应,使得振荡模的谐振频率总是偏离无源腔相应的模的频率,并且较后者更靠近激活介质原子跃迁的中心频率。这种现象称为频率牵引效应。 写出三能级和四能级系统的激光上能级阈值粒子数密度,假设总粒子数密度为n ,阈值反转粒子数密度为 n t. 三能级系统的上能级阈值粒子数密度22 t t n n n += ;四能级系统的上能级阈值粒子数密度2t t n n ≈。 产生多普勒加宽的物理机制是什么? 多普勒加宽的物理机制是热运动的原子(分子)对所发出(或吸收)的辐射的多普勒频移。 均匀加宽介质和非均匀加宽介质中的增益饱和有什么不同?分别对形成的激光振荡模式有何影响? 均匀加宽介质:随光强的增加增益曲线会展宽。每个粒子对不同频率处的增益都有贡献,入射的强光不仅使自身的增益系数下降,也使其他频率的弱光增益系数下降。满足阀值条件的纵模

周炳琨激光原理第二章习题解答(完整版)

周炳琨激光原理第二章习题解答(完整版) 1.试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。 证明:设从镜M 1→M 2→M 1,初始坐标为??? ? ??θ00r ,往返一次后坐标变为???? ??θ11r =T ???? ??θ00r ,往返两次后坐标变为???? ??θ22r =T ?T ??? ? ??θ00r 而对称共焦腔,R 1=R 2=L 则A=1- 2R L 2=-1 B=2L ??? ? ??-2R L 1=0 C=-?????????? ??-+121R L 21R 2R 2=0 D=-??? ??????? ??-???? ? ?--211R L 21R L 21R L 2=-1 所以,T=??? ? ??--1001 故,???? ??θ22r =???? ??--1001???? ??--1001???? ??θ00r =??? ? ??θ00r 即,两次往返后自行闭合。 2.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 解:共轴球面腔的稳定性条件为01, L R >2或 L R <1L R <2且 L R R >+21 (c)对凹凸腔:R 1=1R ,R 2=-2R ,

01且L R R <-||21 3.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。 解: 由图可见有工作物质时光的单程传播有效腔长减小为无工作物质时的 ?? ? ??--=n 11L L L C e ? 由0

千份热门课后习题答案大全

【800份热门课后习题答案大全】 ▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆ 熊金城点集拓扑讲义第六章答案分离性公理 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0522/2447.html 刘振鹏《操作系统》习题答案 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0519/2397.html 《编译原理》答案蒋立源 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0519/2393.html 陈火旺《编译原理》课后习题答案 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0519/2390.html (简明版)Visual FoxPro及其应用系统开发习题答案 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0519/2387.html 谭浩强《Visual FoxPro及其应用系统开发》课后答案 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0519/2384.html 刘卫国《Visual FoxPro程序设计教程》习题答案 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0519/2381.html 《SQL SERVER 2005 数据库开发与实现》课后答案微软公司 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0519/2379.html 21世纪大学实用英语第二册课后翻译答案UNIT3 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0519/2372.html 21世纪大学实用英语第二册课后翻译答案 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0519/2369.html 有机化学第二版课后习题答案王积涛 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0519/2365.html 徐寿昌有机化学第二版课后习题答案第8章 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0516/2338.html NEIE全新版视听说4网络版答案 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0515/2330.html NEIE全新版视听说3答案 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0515/2329.html NEIE全新版视听说2网络版答案 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0515/2328.html C程序设计(第二版)答案谭浩强 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0512/2210.html 谭浩强《C程序设计》(第三版)习题答案 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0512/2206.html 吕凤翥《C++语言程序设计教程》习题解答 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0512/2202.html 李椿《热学》课后答案 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0510/2103.html 《热力学·统计物理》习题答案汪志诚 https://www.doczj.com/doc/cd15471883.html,/html/lxda/2010/0510/2097.html

激光原理及应用习题

《激光原理及应用》习题 1. 激光的产生分为理论预言和激光器的诞生两个阶段?简述激光理论的创始人,理论要点和提出理论的时间。简 述第一台激光诞生的时间,发明人和第一台激光器种类? 答:激光理论预言是在1905年爱因斯坦提出的受激辐射理论。世界上第一台激光器是于1960年美国的梅曼研制成功的。第一台激光器是红宝石激光器。 2. 激光谱线加宽分为均匀加宽和非均匀加宽,简述这两种加宽的产生机理、谱线的基本线型。 答:如果引起加宽的物理因数对每一个原子都是等同的,则这种加宽称为均匀加宽,线型为洛仑兹线型。自然加宽、碰撞加宽及晶格振动加宽均属均匀加宽类型。 非均匀加宽是原子体系中每一个原子只对谱线内与它的表观中心频率相应的部分有贡献,线型为高斯线型。多普勒加宽和固体晶格缺陷属于非均匀加宽。 3. 军事上的激光器主要应用那种激光器?为什么应用该种激光器? 答:军事上主要用的是CO 2激光器,这是因为CO 2激光波长处于大气窗口,吸收少,功率大,效率高等特点。 4. 全息照相是利用激光的什么特性的照相方法?全息照相与普通照相相比有什么特点? 答:全息照相是利用激光的相干特性的。全息照片是三维成像,记录的是物体的相位。 1. 激光器的基本结构包括三个部分,简述这三个部分 答:激光工作物质、激励能源(泵浦)和光学谐振腔; 2. 物质的粒子跃迁分辐射跃迁和非辐射跃迁,简述这两种跃迁的区别。 答:粒子能级之间的跃迁为辐射跃迁,辐射跃迁必须满足跃迁定则;非辐射跃迁表示在不同的能级之间跃迁时并不伴随光子的发射或吸收,而是把多余的能量传给了别的原子或吸收别的原子传给他的能量。 3. 工业上的激光器主要有哪些应用?为什么要用激光器? 答:焊接、切割、打孔、表面处理等等。工业上应用激光器主要将激光做热源,利用激光的方向性好,能量集中的特点。 4. 说出三种气体激光器的名称,并指出每一种激光器发出典型光的波长和颜色。 答:He-Ne 激光器,632.8nm (红光),Ar+激光器,514.5nm (绿光),CO 2激光器,10.6μm (红外) 计算题 1.激光器为四能级系统,已知3能级是亚稳态能级,基态泵浦上来的粒 子通过无辐射跃迁到2能级,激光在2能级和1能级之间跃迁的粒子产 生。1能级与基态(0能级)之间主要是无辐射跃迁。 (1)在能级图上划出主要跃迁线。 (2)若2能级能量为4eV ,1能级能量为2eV ,求激光频率; 解:(1)在图中画出 (2)根据爱因斯坦方程 21h E E ν=- 得 ()1914213442 1.610 4.829106.62610E E Hz h ---??-===??ν 2.由凸面镜和凹面镜组成的球面腔,如图。凸面镜的曲率半径为2m ,凹面镜的曲率半径为3m ,腔长为1.5m 。发光波长600nm 。判断此腔的稳定性; 解: 激光腔稳定条件 R3 32ω 21ω

激光原理部分题答案

07级光信息《激光原理》复习提纲 简答题 1、 简述自发辐射、受激辐射和受激吸收之间的联系与区别。 (1)受激辐射过程是一种被迫的、受到外界光辐射控制的过程。 没有外来光子的照射,就不可能发生受激辐射。 (2) 受激辐射所产生的光子与外来激励光子属于同一光子状态, 具有相同的位相、传播方向和偏振状态。 (3) 激光来自受激辐射,普通光来自自发辐射。两种光在本质 上相同:既是电磁波,又是粒子流,具有波粒二象性;而 不同之处:自发辐射光没有固定的相位关系,为非相干光, 而激光有完全相同的位相关系,为相干光。 (4) 自发辐射跃迁几率就是自发辐射系数本身,而受激辐射的跃 迁几率决定于受激辐射系数与外来光单色能量密度的乘积。 (5)受激吸收是与受激辐射相反的过程,它的几率与受激辐射几率一样取决于吸收系数和外来光单色辐射能量密度的乘积。 2、二能级系统有无可能通过光泵浦实现稳态粒子数反转?(不能,PPT 上有) 在光和原子相互作用达到稳定条件下 得到 不满足粒子数反转,所以不能实现。 3、简述均匀增宽和非均匀增宽的区别。(类型,贡献不同ppt 上有) 4、简述光谱线增宽类型,它们之间的联系与区别 均匀增宽的共同特点 引起加宽的物理因素对每个原子都是等同的 都是光辐射偏离简谐波引起的谱线加宽 非均匀增宽的共同特点 原子体系中每个原子只对谱线内与它的表观中心频率相应的部分有贡 献,因而可以区分谱线上某一频率范围是由哪一部分原子发射的。 E 1 E 2 B 12 B 21 A 21 W W W B B ===2112 2112 即当t n B t n B t n A ννd d d 1122212 21ρρ=+W A W n n +=2112

激光原理习题

第一章:激光的基本原理 1.为使He-Ne激光器的相干长度达到1km,它的单色性?λ/λ0应是多少? 2.设一对激光能级为E2和E1(f1=f2),相应的频率为v(波长为λ),能级上的粒子 数密度分别为n2和n1,求: (a)当v=3000MHz,T=300K时,n2/n1=? (b)当λ=1μm,T=300K时,n2/n1=? (c)当λ=1μm,n2/n1=0.1时,温度T=? 3.设一对激光能级为E2和E1(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n1和n2,求 (a)当ν=3000Mhz,T=300K时,n2/n1=? (b)当λ=1um,T=300K时, ,n2/n1=? (c)当λ=1um, ,n2/n1=0.1时,温度T=? 4.在红宝石Q调制激光器中,有可能将几乎全部Cr+3离子激发到激光上能级并产生激光巨脉冲。设红宝石棒直径1cm,长度7.5cm,Cr+3离子浓度为2×1019cm-3,巨型脉冲宽度为10ns,求输出激光的最大能量和脉冲功率。 5.试证明,由于自发辐射,原子在E2能级的平均寿命t s=1/A21。 6.某一分子的能级E4到三个较低能级E1,E2和E3的自发跃迁几率分别是A43=5*107s-1,A42=1*107s-1和A41=3*107s-1,试求该分子能级的自发辐射寿命τ4。若τ1=5*107s-1,τ2=6*10-9s,τ3=1*10-8s在对E4连续激发并达到稳态时,试求相应能级上的粒子数比值n1/n4,n2/n4,n3/n4,并回答这时在哪两个能级间实现了集居数反转。 7.证明当每个膜内的平均光子数(光子简并度)大于1时,辐射光中受激辐射占优势。 8.(1)一质地均匀的材料对光的吸收系数为0.01mm-1,光通过10cm长的该材料后,出射光强为入射光强的百分之几?(2)一光束通过长度为1m的均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。 第二章:开放式光腔与高斯光束 1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

激光原理第二章习题答案

2.19某共焦腔氦氖激光器,波长λ=0.6328μm ,若镜面上基模光斑尺寸为0.5mm ,试求共焦腔的腔长,若腔长保持不变,而波长λ= 3.39μm ,问:此时镜面上光斑尺寸多大? 解:2 0/ 1.24s L m ωπλ=≈ 01.16mm s ω= = 2.20考虑一台氩离子激光器,其对称稳定球面腔的腔长L=1m ,波长λ= 0.5145μm ,腔镜曲率半径R=4m ,试计算基模光斑尺寸和镜面上的光斑尺寸。 解: 1/4 2021/4 2 2 42()(2)(22)(2) 4.65104L R L R L R L RL L m ωλπ-??--=??-?? ??-==????? 1/4 2121/4 22 2 42 2()()(2)4.9810(2)R R L L R L R L R L m RL L ωωλπ-??-== ??--?? ?? ==??? -?? 2.21腔长L =75cm 的氦氖平凹腔激光器,波长λ=0.6328μm ,腔镜曲率半径R =1m ,试求凹面镜上光斑尺寸,并计算该腔基模远场发散角θ。 解: 1/4 1/4 212211121121/4 1/4 2 2112212212()0.295mm ()()(1)()0.591()()(1)s s R R L g w L R L R R L g g g R R L g w mm L R L R R L g g g ??-= = =??-+--? ? ???-= = =???-+--? ?? 1/4 1/4 22 21212120212121212(2)(2)20.0014rad=0.0782()()()(1)L R R g g g g L R L R L R R L g g g g λθπ??? --+-===? ?? --+--??? o 2.22设稳定球面腔的腔长L =16cm ,两镜面曲率半径为1R =20cm ,2R =-32cm ,波长λ=4 10-cm ,试求:(1)最小光斑尺寸0ω和最小光斑位置;(2)镜面上光斑尺寸1s ω、2s ω;(3)0ω和1s ω、2s ω分别与共焦腔(1R =2R =L )相应值之比。

激光原理 周炳琨版课后习题答案

激光原理 周炳琨 (长按ctrl键点击鼠标即可到相应章节) 第一章激光的基本原理 (2) 第二章开放式光腔与高斯光束 (4) 第三章空心介质波导光谐振腔 (14) 第四章电磁场和物质的共振相互作用 (17) 第五章激光振荡特性 (31) 注:考华科者如需激光原理历年真题与答案可联系 E-mail:745147608@https://www.doczj.com/doc/cd15471883.html,

第一章激光的基本原理 习题 2.如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000MHz ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少? 解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中34 6.62610 J s h -=??为普朗克常数,8310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ? =500nm λ时: 18-1=2.510s n ? =3000MHz ν时: 23-1=510s n ? 3.设一对激光能级为2E 和1E (21f f =),相应的频率为ν(波长为λ),能级上的粒子数密度分别为2n 和1n ,求 (a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=? 解:当物质处于热平衡状态时,各能级上的粒子数服从波尔兹曼统计分布: (a) 当ν=3000MHz ,T=300K 时: (b) 当λ=1μm ,T=300K 时: c P nh nh νλ ==P P n h hc λν= =2211()exp exp exp n E E h hc n KT KT K T νλ-??????=-=-=- ? ???????? ?3492 231 6.62610310exp 11.3810300n n --?????=-≈ ????? 3482 2361 6.62610310exp 01.381010300n n ---?????=-≈ ??????

相关主题
文本预览
相关文档 最新文档