当前位置:文档之家› 功能高分子材料综述

功能高分子材料综述

功能高分子材料综述
功能高分子材料综述

功能高分子材料综述

【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。

【关键词】材料;高分子;高分子材料;功能材料;

功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。

功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。

功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。

在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。

1 功能高分子材料研究

1.1 导电高分子材料

近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量轻,易加工成各种复杂的形状,化学稳定性好及电阻率可在较大范围内调节等特点。此外在电子工业中的应用日趋广泛,促进了现代科学技术的发展。因此,自然引起了学术界和工业界的广泛兴趣。

导电高分子材料根据材料的组成可以分成复合型导电高分子材料(composite conductive polymers)和本征型导电高分子材料(intrinsic conductive polymers)两大类。复合型导电高分子材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、

层合、梯度复合、表面镀层等复合方式构

,其导电作用主要通过其中的导电材料来完成。主要品种有:导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂及透明导电薄膜等可用于电气零件、电子照相、电路材料、防静电材料、电磁场屏蔽、光记录和磁记录材料等。其中,导电剂的体积电阻、形状、填充量及加工工艺等,对最终制品的性能影响很少。本征导电高分子材料也被称为结构型导电高分子材料(structure conductive polymes),其高分子本身具备传输电荷的能力,这种导电聚合物如果按其结构特征和导电机理还可以进一步分成以下三类:载流子为自由电子的电子导电聚合物;载流子为能在聚合物分子间迁移的正负离子的离子导电聚合物;以氧化还原反应为电子转移机理的氧化还原型导电聚合物。后者的导电能力是由于在可逆氧化还原反应中电子在分子间的转移产生的。

虽然导电高分子材料的发展史只有短短的30年,但当前导电高分子聚合物在国民经济中的地位,在许多方面不亚于20世纪50年代初传统塑料的地位。在合成、加工和应用方面取得了突破性进展,走向了实用化,同时很多潜在的应用正在探索研究中。目前其研究方向可以概括为以下几个主要方面高导电性,通过复合、改变分子结构等手段挖掘导电高分子材料潜在性能。最近已成功研制出导电率达3000S/cm的聚苯乙炔,其中包括光、电、磁之间的转换,改善稳定性、可加工性。提高导电材料的实用性,按实用要求确定攻关方向。多行业多学科交叉结合,开发导电高分子材料应用新领域,加速其商品化进程。

3 医用高分子材料

在功能高分子材料领域,生物医用高分子材料可谓异军突起,目前已成为发展最快的一个重要分支。医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的合成高分子材料,可以利用聚合的方法进行制备,是生物医用材料的重要组成之一。由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质,以满足不同的需求,耐生物老化,作为长期植入材料具有良好的生物稳定性和物理、机械性能,易加工成型,原料易得,便于消毒灭菌,因此受到人们普遍关注,已成为生物材料中用途最广、用量最大的品种,近年来发展需求量增长十分迅速。

医用高分子材料需长期与人体体表、血液、体液接触,有的甚至要求永久性植入体内。因此,这类材料必须具有优良的生物体替代性和生物相容性。一般要满足下列基本条件:(1) 在化学上是不活泼的,不会因与体液或血液接触而发生变化;(2) 对周围组织不会引起炎症反应;(3) 不会产生遗传毒性和致癌;(4) 不会产生免疫毒性;(5) 长期植入体内也应保持所需的拉伸强度和弹性等物理机械性能;(6) 具有良好的血液相容性;(7) 能经受必要的灭菌过程而不变形;(8) 易于加工成所需要的、复杂的形态。

目前用高分子材料制成的人工器官中,比较成功的有人工血管、人工食道、人工尿道、人工心脏瓣膜、人工关节、人工骨、整形材料等。已取得重大研究成果,但还需不断完善的有人工肾、人工心脏、人工肺、人工胰脏、人工眼球、人造血液等。另有一些功能较为复杂的器官,如人工肝脏、人工胃、人工子宫等。则正处于大力研究开发之中。从应用情况看,人工器官的功能开始从部分取代向完全取代发展,从短时间应用向长时期应用发展,从大型向小型化发展,从体外应用向体内植入发展、人工器官的种类从与生命密切相关的部位向人工感觉器官、人工肢体发展。医用高分子材料研发过程中遇到的一个巨大难题是材料的抗血栓问题。当材料用于人工器官植入体内时,必然要与血液接触。由于人体的自然保护性反应将产生排异现象,其中之一即为在材料与肌体接触表面产生凝血,即血栓,结果将造成手术失败,严重的还会引起生命危险。对高分子材料的抗血栓性研制是医用高分子研究中的关键问题,至今尚未完全突破。将是今后医用高分子材料研究中的首要问题。

4 高分子纳米复合材料

纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所以成为近些年来材料科学领域研究的热点之一,被誉为“21 世纪最有前途的材料”。

高分子纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,所采用的纳米单元按成分分可以是金属,也可以是陶瓷、高分子等;按几何条件分可以是球状、片状、柱状纳米粒子,甚至是纳米丝、纳米管、纳米膜等;按相结构分可以是单相,也可以是多相,涉及的范围很广,广义上说多相高分子复合材料,只要其某一组成相至少有一维的尺寸处在纳米尺度范围(1 nm~100nm) 内,就可将其看为高分子纳米复合材料。由于复合材料有着单一材料所不具备的可变结构参数( 复合度、联结型、对称性、标度、周期性等) ,改变这些参数可以在很宽的范围内大幅度地改变复合材料的物性;且复合材料的各组元间存在协同作用而产生多种复合效应,所以高分子基纳米复合材料的性能不仅与纳米粒子的结构性能有关,还与纳米粒子的聚集结构和其协同性能、高聚物基体的结构性能、粒子与基体的界面结构性能及加工复合工艺方式等有关。

高分子纳米复合材料的涉及面较宽,包括的范围较广,可分为四大类:纳米单元与高分子直接共混;在高分子基体中原位生成纳米单元;在纳米单元存在下单体分子原位聚合生成高分子及纳米单元和高分子同时生成。由于高分子纳米复合材料既能发挥纳米粒子自身的小尺寸效应、表面效应和量子效应,以及粒子的协同效应,而且兼有高分子材料本身的优点,使得它们在催化、力学、物理功能等方面呈现出常规材料不具备的特性,有广阔的应用前景。

5 高分子液晶材料

液晶的发现最早可追溯到1888 年,奥地利植物学家莱尼茨尔在做加热胆甾醇苯甲酸酯结晶的实验时发现。第二年,德国物理学家莱曼通过偏光显微镜发现这种材料具有双折射现象,并提出了“液晶”这一学术用语,现在人们公认这两位科学家是液晶领域的创始人。液晶高分子材料发展较晚,但目前已成为液晶中最令人关注的领域,世界各国都加大投入了围绕研究与开发液晶高分子系列产品的力量。

功能高分子液晶材料包括:光学非线性高分子液晶,铁电性和反铁电性高分子液晶,光导高分子液晶,生物性高分子液晶和高分子液晶膜等。由于它们的特殊性能将会有非常广阔的重要应用前景。例如,吴壁耀等报道了具有肉桂酸酯侧链基的热熔型高分子液晶的光交联行为。指出在20 min紫外光照射的条件下,形成液晶相的液晶高分子膜的光交联凝胶百分率要明显高于尚未形成液晶的同种高分子膜。由于液晶高分子中介晶基元的聚集和有序排列形成的微区结构也影响了大分子链铡基肉桂酸酯的聚集状态,从而使其光化学性质发生了变化,可望用于光固化涂料的改性。

总之,随着高分子液晶的理论日臻完善,其应用也日益广泛,人们不仅开发了大量的高强、高模以及具有显示和信息存储功能的高分子液晶材料,同时还在不断探索在其它领域的应用。可以肯定,作为一门交叉学科,高分子液晶材料科学在高性能结构材料、信息记录材料、功能膜及非线性光学材料等方面的开发中必将发挥越来越重要的作用。

6 高分子染料

高分子染料是高分子材料与染料分子在分子水平上的结合,在具有染料色彩性、透明性的同时还具有高分子材料的可加工性等特性,是有发展前途的功能高分子材料。它是通过一定的化学反应将发色基团引入高分子的主链或侧链而形成的一类有色高分子化合物,这种结合方式赋予了高分子染料的双重功能:即高分子的高强度、易成膜性、耐溶剂性、耐迁移性和耐热性以及有机染料对光的选择吸收性和多彩性。

高分子染料可依据不同的方法进行分类。按聚合方式可分为加聚型和缩聚型等;按所连结的高分子单体的性质可分为苯乙烯类、聚丙烯酸酯类、有机硅类等。本文以染料发色体与高分子骨架的相对位置将高分子染料分为嵌段式高分子染料、垂挂式高分子染料以及金属络合高分子染料。

大分子骨架和发色基团的协同作用,使它的应用不仅仅限于在染色方面。作为一种特殊高分子材料,高分子染料的合成使其功能扩大。不仅具有染色的功能,还潜在着光致发光〕,光致变色,光聚合引发剂等功能。它在非线性光学、液晶显示等光电以及导电方面也都有广泛的应用前景。高分子染料是一种有前途的功能高分子材料,对于它的开发与应用都还有很大潜力可挖。同时对它的研究手段和方法随研究者研究的目的和侧重点不同而有很大差异队,属于多学科交叉领域。

1.2 感光高分子材料

感光性高分子是指具有感光性质的高分子材料。当这类材料吸收了光能后可导致体系发生分子内或分子间产生化学、物理变化,使未曝光部分的物理或化学性质产生强烈的反差,从而引起图像的出现。在印刷工业中已获得广泛应用的PS印刷版就是一种感光性高分子产品,它可分为阳图PS版和阴图PS版两大类。由于印刷业对于板材在质量上的严格要求和巨大需要,必然给感光高分子带来巨大的发展前景。在影像技术中用于微细加工光刻用的光致抗蚀剂是一类非常重要的感光高分子材料,是制造大规模集成电路必不可少的原料。它的出现是第二次世界大战后由Eastman Kodak的Mink等在研究聚乙烯醇肉桂酸酯的光二聚合反应基础上提出的。以后这种技术不仅应用于照相制版上,而且广泛应用于电子工业和机密机械加工等方面,并随着技术的不断进步,蚀刻的精度不断提高,由制作毫米级的印刷线路板发展到21世纪初期的微米级、亚微米级,甚至更高分辨率的大规模集成电路的制作。现代计算机技术的蓬勃发展是和这种微细加工技术的高灵敏度、高反差光致抗蚀剂的出现分不开的。

7 其他高分子材料

7.1 高分子表面活性剂

7.1.1 概述

分子中具有亲水基与疏水基,能富集(吸附)于界面,使界面性质发生显著改变而出现界面活性的物质称为表面活性剂。而高分子表面活性剂是指相对分子质量在数千以上,具有表面活性功能的高分子化合物。

最早使用的高分子表面活性剂有纤维素及其衍生物,以及作为胶体保护剂使用的天然海藻酸钠和各种淀粉。1951年Strauss将含有表面活性基团的聚合物—聚1-十二烷基-4-乙烯吡啶溴化物命名为聚皂,从而出现了合成高分子表面活性剂。1 9 5 4 年,美国Wyandotte公司报道了非离子型高分子表面活性剂聚氧乙烯聚氧丙烯嵌段共聚物的合成,并将其进行了工业化生产( 商品名为Pluronics),以后,各种合成高分子表面活性剂相继开发并应用于各种领域。

7.1.2 高分子表面活性剂的类型

高分子表面活性剂按离子分类,可分为阴离子型、阳离子型、两性型和非离子型四种高分子表面活性剂,如表1 所示。高分子表面活性剂按来源分类可分为天然高分子表面活性剂和合成高分子表面活性剂,前者包括半合成高分子表面活性剂。

天然高分子表面活性剂是从动植物分离、精制而得到的两亲性水溶性高分子。由海藻制得的藻朊酸,由植物制取的愈疮胶和黄原胶等树脂胶类;从动物制取的酪朊和白朊等均为高分子表面活性剂。而纤维素衍生物、淀粉衍生物以及制取亚硫酸纸浆的副产品木质素磺酸盐等叫做半合成高分子表面活性剂。天然高分子表面活性剂具有优良的增粘性、乳化

性、稳定性和结合力

,并且具有很高的无毒安全性和易降解等特点,所以广泛应用于食品、医药、化妆品及洗涤剂工业。

合成高分子表面活性剂是指亲水性单体均聚或与僧水性单体共聚而成,或通过合成高分子化合物改性而制得。根据单体的种类、合成方法、反应条件和共聚物的组成等的不同可以得到各种各样的高分子表面活性剂。合成高分子表面活性剂有着广阔的应用前景,有关高分子表面活性剂的合成及其应用的研究正日益得到人们的重视。

7.1.3 高分子表面活性剂的特性功能

和低分子表面活性剂相比,高分子表面活性剂具有以下特性:(1)具有较高的分子量,渗透能力差,可形成单分子胶束或多分子胶束;(2)溶液粘度高,成膜性好;(3)具有很好的分散、乳化、增稠、稳定以及絮凝等性能,起泡性差,常作消泡剂;(4)大多数高分子表面活性剂是低毒或无毒的,具有环境友好性;(5)降低表面张力和界面张力的能力较弱,且表面活性随分子量的升高急剧下降,当疏水基上引入氟烷基或硅烷基时其降低表面张力的能力显著增强。

1 降低表面张力的能力

因为高分子表面活性剂的亲水链段和疏水链段在表面或界面间具有一定的取向性,所以具有降低表面张力和界面张力的能力,但往往比低分子表面活性别差些。关于各种高分子表面活性剂的表面张力已有许多报道。

2 乳化分散功能

尽管分子量较高,有许多高分子表面活性别能够在分散相中形成胶束,并且具有CMC 值,发挥乳化功能,由于具有两亲结构,其分子的一部分可吸附在粒子表面,其它部分则溶于作为连续相的分散介质中,聚合物分子量不是太高时,具有空间阻碍效应,在单体液滴或聚合物粒子表面产生障碍,阻止它们接近缔合而产生凝聚。

3 凝聚功能

当高分子表面活性剂分子量很高时,则吸附于许多粒子上,在粒子之间产生架桥,形成絮凝物,起到絮凝剂的作用。

4 其它功能

许多高分子表面活性剂本身起泡力不太好,但保水性强,泡沫稳定性优良,因为高分子表面活性剂分子量高,所以具有随之而来的成膜性和粘附性等优良性能。

7.1.4 高分子表面活性剂的合成方法

1 加成聚合

在自由基或离子型引发剂存在下,由两亲性单体均聚,或由亲油/亲水单体共聚,可以制得高分子表面活性剂,该方法简便易行,单体种类选择和组成变化范围广。

2 缩合聚合

通过缩聚反应制备的聚酯、聚酰胺、烷基酚醛树脂及聚氨酯类型高分子表面活性剂,其组成和亲油亲水平衡值(HLB)易于调节,但一般分子量较低。

3 开环聚合

含活泼氢化合物引发烷基环状亚胺、内脂、酰胺及环氧化合物开环聚合,得到嵌段或无规高分子表面活性剂,结构易于控制,可根据性能要求调节链段长度和分布。利用开环聚合合成高分子表面活性剂的典型代表是以丙二醇为起始剂制得的嵌段聚醚“Pluronics”系列以及以己二胺为起始剂制得的具有阳离子特性的“Tatranics”系列嵌段聚醚。它们都是由环氧乙烷、环氧丙烷开环聚合而成的。通过改变聚氧丙烯的分子量(或引发剂的种类)及环氧乙烷、环氧丙烷的用量可获得具有不同亲水疏水性能的聚醚类高分子表面活性剂。近年来通过N-烷基环状亚胺醚开环反应制备多嵌段共聚物。这些产物表面活性优良,有良好的开发前景,存在的问题是离子聚合反应条件较为苛刻,共聚物分子量仍然偏低(Mn ≈

103)

4 高分子的化学反应

高分子化学反应是指通过化学反应的方法在聚合物上引入疏水基或亲水基,得到两亲性结构的高分子表面活性剂。其优点是可以直接用已商品化的聚合物作起始原料,得到的产物相对分子量较高,而缺点则是反应通常需要在高粘度的聚合物溶液中进行。如把长链烷基引入到聚乙烯醇、羧甲基纤维素、羟乙基纤维素中,或由磺化反应把SO3基团引入亲油性的聚丁二烯或聚异戊二烯分子链上,亦可通过活泼氢反应将两亲性的聚(氧化乙烯- 氧化丙烯)接枝到聚硅氧烷主链上。

7.1.5 展望

随着材料工业的发展,对高分子表面活性剂的需求必将日趋旺盛,人们对高分子表面活性剂的研究也在不断深人,开发新的品种和新的合成方法也是当前研究的热点。尽管在解决高分子表面活性剂同时具有高摩尔质量和高表面活性的问题上已有一定进展,但由于对结构和性能的关系认识不够,涉及物理化学性质的大分子水溶液体系又非常复杂,溶液性质的研究皆采用非水体系有机溶剂或摩尔质量低于 6 护岁3 的大分子表面活性剂水溶液体系,到目前为止具有超高分子量和高表面活性的高分子表面活性剂这一领域的研究仍然进展缓慢。因此研究其结构与性能的关系,重视新型高分子表面活性剂的研究与开发,合成高摩尔质量高赫度、高表面活性的两亲高分子化合物,具有重要的理论和应用价值。

7.2 吸附高分子性材料

随着科学研究和生产技术的不断发展,吸附性高分子材料正迅速进入人们的生产和生活领域中,目前已经成为重要的有机功能材料之一. 吸附性高分子材料主要是指那些对某些特定离子或分子有选择性亲和作用的高分子材料.

7.2.1 种类和特点

1 按性质和用途分类

根据吸附性高分子材料的性质和用途,可将其分为以下几类. ( 1) 非离子型高分子吸附树脂:对该材料非极性和弱极性有机物具有特殊的吸附作用,主要应用于分析化学和环境保护领域中,用于吸附和分离处在气相和液相( 主要是水相) 中的有机分子. ( 2) 亲水性高分子吸水剂:具有亲水性分子结构,可以被水以较大倍数溶胀,广泛用于土壤保湿和生理卫生用品等方面. ( 3) 金属阳离子配位型吸附剂:这种高分子材料的骨架上带有配位原子或配位基团,能与特定金属离子进行络合反应,生成配位键而结合. 这种材料也称为高分子螯合剂,多用于吸附和分离水相中的各种金属离子. ( 4) 离子型高分子吸附树脂:当高分子骨架中含有某些酸性或碱性基团时,在溶液中解离后具有与一些阳离子或阴离子相互以静电引力生成盐的趋势,因而产生吸附作用. 最常见的有各种离子交换树脂,它们被广泛地用来富集和分离各种阴离子和阳离子.

2 按使用条件和外观形态分类

根据使用条件和外观形态,吸附性高分子材料主要分为以下4 类. ( 1) 微孔型吸附树脂:外观呈颗粒状,在干燥状态下树脂内的微孔很小,当作为吸附剂使用时,必须用一定溶剂进行溶胀,溶胀后树脂的三维网状结构被扩展,内部空间被溶剂填充形成凝胶,因此也称为凝胶型树脂. ( 2) 大孔型吸附树脂:特点是在干燥状态下树脂内部就有较高的孔隙率、大量的孔洞和较大的孔径. 这种树脂不仅可以在溶胀状态下使用,也可在非溶胀状态下使用. 因这种树脂具有足够的比表面积,其孔洞是永久性的.( 3) 米花状吸附树脂:外观为白色透明颗粒,具有多孔性、不溶解性和较低的体积密度. 由于这种树脂在大多数溶剂中不溶解不溶胀,因此,只能在非溶胀的条件下使用,树脂中存在的微孔可允许小分子通过. ( 4) 交联网状吸附树脂:外观呈颗粒状,是三维交联的网状聚合物. 由于网状结构,其机械稳定性较差,使用受到一定限制. 交联网状吸附树脂是通过制备线性聚合物,引入所需的功能基团

,然后加入交联剂进行交联反应制得.

7.2.2 结构与吸附性能之间的关系

物质化学性能和物理结构不同,其吸附作用也不同. 吸附树脂表现出的吸附能力与其结构具有特定的对应关系.

1 化学组成与功能基团

在高分子吸附剂中,聚合物的化学组成与功能基团是最基本,也是最重要的结构因素. ( 1) 元素组成的影响:当聚合物分子中含有O,N,S 及P 等配位原子时,聚合物具有潜在的络合能力,可作为高分子螯合剂. ( 2) 功能基团的影响:聚合物中功能基团的性质决定了吸附树脂的选择性. 当聚合物链上连接强酸性基团时,解离后的高分子酸根能够与阳离子结合成盐,具有对阳离子交换和吸附能力;当连接季铵基团时,可以与阴离子结合,具有阴离子交换和吸附能力. 由于不同离子型基团与各种离子的结合能力及稳定性不同,各种离子型树脂呈现出选择性离子交换能力. ( 3) 分子极性的影响:当吸附树脂的化学结构中不含极性基团时,其适合于从极性溶剂如水中吸附非极性有机物. 当引入极性基团时,如引入氰基,将会使其转化成中等极性或强极性吸附树脂,适合于从非极性有机溶剂中吸附不同极性的物质.

2 聚合物的链结构

聚合物的链结构包括主链结构、分支结构( 分支的数目、长度及化学结构) 及交联度等. 聚合物带有支链与否及支链所占比例、聚合物的交联与否及交联的程度,直接影响聚合物的溶解度和溶胀度. 而溶胀度和溶胀后形成网状结构的孔径大小是影响树脂吸附量及吸附选择性的重要因素.

3 吸附树脂的宏观结构

吸附树脂的宏观结构主要对吸附剂的吸附量、机械强度及吸附度等性能有影响. 吸附树脂的宏观结构对吸附过程产生的影响主要有两方面:一方面是树脂的有效吸附面积和表面性质,主要是热力学影响,影响吸附树脂的吸附量、选择性及稳定性;另一方面是孔径大小、孔的长度、孔径分布及树脂的外观形状等,主要是动力学影响,影响被吸附物的扩散过程和吸附速度,孔径大小决定被吸附物的范围和吸附速度,孔径分布直接影响选择性高低.

7.2.3 高分子吸附剂的应用

1 水处理方面

随着工农业的发展,近岸海域的污染日趋严重,重金属离子浓度比深海水域高数十倍至数百倍. 因此,除去水中污染物及重金属离子是高分子吸附剂的重要任务.人用高分子吸附剂从动态和半静态的海水中吸附除去Cu2+ ,Pb2+ ,Zn2+ 及Cr3+ ,为消除重金属离子对海洋生物幼体的危害,提供了一种有效的方法. 曲荣君等人用壳聚糖与过渡金属离子Cu2+ 或Ni2+ 形成的配合物,在弱碱性条件下与环氧氯丙烷进行交联,合成出一系列具有不同交联度的壳聚糖树脂,并研究了该系列树脂对Cu2+ ,Ni2+ 的静态吸附性能. 结果表明,该系列树脂对Cu2+ ,Ni2+ 均具有良好的吸附能力,最佳吸附量分别达2. 62 mol/ kg 和2. 49 mol/ kg. 刘明华[ 13] 等人以棉花为原料,经过碱化和磺化等处理制得球形纤维素,在引发剂的作用下将丙烯腈接枝到交联后的球形纤维素骨架上,合成了球形羧基纤维素吸附剂,并对Cr3+ 的吸附和解吸进行了研究. 结果表明,吸附过程是络合吸附与离子交换吸附共同作用的结果,并以络合吸附为主. 在吸附温度为25 e ,pH 为5. 0 的条件下,静态吸附和动态吸附的吸附率均达90% 左右. 采用浓度为1. 2 mol/ L 的H C1 溶液作解吸液,Cr3+ 的解吸率达85% 以上. 由此可见,高分子吸附剂不但可以用来去除废水中的重金属离子,而且可以用来回收海水中的金属,应用前景十分广阔.

2 医药卫生方面

高分子吸附剂被广泛用在吸附血红细胞中的胆红素、去除肾衰竭患者血液中积累的毒性成分肌酐、生物制药的分离纯化、作缓释药物的基体、药片药丸的崩解剂及药物微胶囊的皮膜等方面.张跃华等人以天然甲壳素为原料合成出珠状高分子吸附剂,并研究了对非结合型胆红素的吸附性能,指出交联甲壳糖吸附剂对非结合型胆红素有良好的吸附作用. 魏斌等人合成出含氨基和羟基的高分子吸附剂,并研究了对胆红素的吸附性能,指出含氨基和羟基的吸附剂对胆红素的吸附率可达80% 以上. 何炳林、顾觉奋、左晓霞等人分别研究了高分子吸附剂在血液净化及在生物制药分离等方面的作用,指出高分子吸附剂在微生物制药及在微生物发酵液中分离、提取、浓缩和纯化等方面发挥着重要的作用. 此外,高分子吸附剂还可以应用于人工肾脏的过滤材料、人造皮肤、消炎止疼膏的凝化剂、隐形眼镜的本体材料等方面.

3 机械加工方面

高分子吸附剂在机械加工领域中的应用主要体现在对油中微量水的吸附. 当机器在运行时,汽轮机油会被水污染,它会降低汽轮机油的性能及造成设备故障,所以除去油中微量的水就成为必须的环节.Tanaka等人采用丙烯腈或其他聚合物纤维制成管状脱水过滤器,利用纤维材料将油中细小、稳定的水变成大的水滴,达到除水的目的. 该法对去除油中微量的水效果较好. 张秀玲等人合成了除去汽轮机油中微量水的高分子吸附剂,这种吸附剂可使汽轮机油中的水分降至0. 03% 以下. 它不但净化效果好,成本低,而且不会改变汽轮机油的原有品质. 此外,利用高分子吸附剂去除气体中有害成分的研究也有了一定进展. 曹爱丽等人研制出一种新型高分子吸附剂,以丙烯腈、苯乙烯为共聚单体,二乙烯基苯为交联剂,进行致孔悬浮交联共聚,制成多孔网络状树脂,经性能检测能很好地吸附二氧化硫气体,在常温下的吸附量为0. 3~ 0. 4 g/ g.

2展望

功能高分子材料是未来材料科学与工程技术领域的重要发展方向,现代多学科交叉的特点促进了新型功能高分子材料的研究与发展,也孕育了新一代的功能高分子材料。由于高分子材料在结构上的复杂性和多样性,可以在分子结构(包括支链结构) 、聚集态结构、共混、复合、界面和表面甚至外观结构等诸多方面,进行单一或多种结构的综合利用,因此最大程度地满足了其他高技术要求材料技术为他们提供的更多、更好的功能。随着纳米技术研究的深入,在分子、甚至原子水平上实现材料的功能结构设计、复合与加工生产成为可能,材料的功能将会进一步得到扩展,呈现前所未有的创新。可以预言,新一代功能高分子材料的春天已经来临,纳米材料必将成为新世纪材料发展的主流,也必将对新世纪的高新技术如电子、生物技术、生命科学的研究产生极为深远的影响。

7.2.4 展望

随着科学研究和生产技术的不断发展,涌现出大量具有高吸附量、高选择性的吸附性高分子材料.各种离子交换树脂被广泛应用于离子色谱分离、酸碱催化反应等方面;带有各种配位基团的高分子螯合剂在环境保护、物质分离、化学分析中有着广泛的应用;各种亲脂性高分子吸附树脂被大量用于含有各种功能团的有机化合物、乳化剂、表面活性剂、润滑剂、氨基酸的分离及用于抗生素药物、天然植物药物的分离提纯;吸水性高的高分子树脂可以吸收超过自身重量的水分,在干旱地区作为保水剂可以提高种子成活率,提高农作物的产量。

8 结语

材料是人类赖以生存和发展的物质基础,是工业革命的先导,关系到国民经济、社会

发展和国家安全

,是国家综合实力的重要标志。高分子材料是现代工业和高新技术的重要基石,已经成为国民经济基础产业以及国家安全不可或缺的重要保证。由于高分子材料具有许多优良性能,适合现代化生产,经济效益显著,且不受地域、气候的限制,因而高分子材料工业取得了突飞猛进的发展,如今高分子材料已经不再是传统材料的代用品,而是与金属、水泥、木材并列,在国民经济和国防建设中的扮演着重要作用的四大材料。与此同时,高分子科学的三大组成部分――高分子化学、高分子物理和高分子工程也已经日趋成熟。因此,量大面广的通用高分子材料通过不断地升级改造,成本大幅度降低、使用性能明显提高;各类新型的、适应现代技术发展的高分子材料不断涌现。

参考文献

[1]田乃林·导电高分子材料的研究与应用现状·承德石油高等专科学校学报,2003,(3)

[2]杨永芳,刘敏江·导电高分子材料研究进展·工程塑料应用,2002,(7)

[3]戈明亮·导电高分子材料的研究概况·现代塑料加工应用,2002,(4)

[4]杨永芳,刘敏江·导电高分子材料的进展·塑料科技,2002,(4)

[5]张凯,曾敏,雷毅,江潞霞·导电高分子材料的进展·化工新型材料,2002,(7)

[6]杨永芳,刘敏江·导电高分子材料的应用和进展·广州化学,2002,(4)

[7]寇建兰,叶德胜·导电高分子材料·江西化工,2000,(4)

[8]李英,赵地顺·导电高分子材料·河北科技大学学报,2000,(2)

[9]王瑾菲,蒲永平,杨公安,杨文虎,·高分子液晶材料的应用及发展趋势·陶瓷,2009,(3)

[10]李岳姝,·高分子液晶材料及应用·黑龙江科技信息,2008,(24)

[11]新型高分子液晶材料·中国科技信息,2003,(19)

[12]我国新型高分子液晶材料研发获得重大突破·发明与创新,2003,(11)

[13]郭玉国,张亚利,赵文元,孙典亭·高分子液晶材料的研究现状及开发前景·青岛大学学报(工程技术版),2000,(3)

[14]程旭辉,杨欣,·医用高分子材料的应用及发展前景·医疗装备,2006,(10)

[15]赵成如,夏毅然,史文红,·医用高分子材料在医疗器械中的应用·中国医疗器械信息,2006,(5)

[16]张承焱,·医用高分子材料的应用研究及发展(二)·中国医疗器械信息,2005,(6)

[17]张承焱·医用高分子材料的应用研究及发展·中国医疗器械信息,2005,(5)

[18]张立英·我国医用高分子材料的发展现状·山西化工,2005,(3)

[19]K·L·Vidur,桑榆·医用高分子材料·国际纺织导报,2005,(2)

[20]宋恩兰· 1999年中国医用高分子材料研究与应用文摘·化工新型材料,2000,(5)

[21]赵声贵,钟宏,刘广义,·吸附性高分子材料概述·广东有色金属学报,2006,(2)

[22]王延君,·高分子纳米复合材料的制备、表征和应用前景·内蒙古石油化工,2008,(6)

[23]何小红,徐越,·高分子纳米复合材料制备方法探讨·杨凌职业技术学院学报,2005,(4)

[24]谢兵,马永梅,李新红·高分子纳米复合材料的功能特性·塑料,2003,(6)

[25]王慧菊· 2001年中国高分子纳米复合材料研究与应用题录·化工新型材料,2002,(4)

[26]王慧菊· 2000年中国高分子纳米复合材料研究与应用文摘·化工新型材料,2001,(2)

[27]王慧菊· 2000年中国高分子纳米复合材料研究与应用文摘·化工新型材料,2001,(1)

[28]王慧菊· 1999年中国高分子纳米复合材料研究与应用文摘·化工新型材料,2000,(2)

[29]曾戎,章明秋,曾汉民·高分子纳米复合材料研究进展(Ⅱ)──高分子纳米复合材料的结构和性能·宇航材料工艺,1999,(3)

[30]曾戎,章明秋,曾汉民·高分子纳米复合材料研究进展(Ⅰ)──高分子纳米复合材料的制备、表征和应用前景·宇航材料工艺,1999,(2)

[31]曾戎,章明秋,曾汉民·高分子纳米复合材料研究进展(Ⅰ)──高分子纳米复合材料的制备、表征和应用前景·宇航材料工艺,1999,(1)

[32]赖小娟,·高分子表面活性剂的合成及其应用·中国洗涤用品工业,2007,(1)

[33]王翔,代加林,杨梦,·高分子表面活性剂的发展及应用现状·塑料工业,2007,(S1)

[34]金勇,董阳,魏德卿·高分子表面活性剂的合成·化学进展,2005,(1)

[35]高分子阻燃剂的研究现状与发展趋势·阻燃材料与技术,2002,(1)

[36]李文涛,唐颂超·高分子阻燃剂的研究现状与发展趋势·上海塑料,2001,(1)

[37]胡官斌,·高分子染料的研究进展·国外丝绸,2008,(4)

[38]功能高分子染料·针织工业,2006,(4)

[39]王世敏,余响林,周丽荣,许祖勋,董兵海·功能高分子染料在高新技术中的应用·精细石油化工进展,2004,(9)

[40]彭勇刚,赵振河,栾野梅·高分子染料的合成及应用·纺织高校基础科学学报,2002,(2)

[41]杨虎,朱谱新,吴大诚·高分子染料的合成与应用及展望·染料工业,2000,(6)

[42]Deberry Dw. J Eletrochem Soc. 1985. 132 :1022.

[43]Kitani A. Yano J . Sa Sakik. J Electronal chem. Interfacial Electro2chem. 1986 ,209 :227.

[44]Damie A.Bharathi A. Subramanyam S V. Polymer. 1996. 37 :5295~5302.

[45]Goh ,S. H. ,Chan ,S. H. O. ,Ong ,C. H. . Polymer. 1996. 16(1) :92.

[46]Addreatla A. Polym. Communication. 1990 ,31(7) :275.

[47] Sakovich G V et al. Production of diamond clusters by ex2

[48]plosion and their practical atilization. Zhurnal Vsesoyznogo Khimich2eskogo Obshchestva IM. D. I.Mendeleeva,1990; 35( 5) : 600~ 602

[49]Chepovetskii I Kh et al. Effect of mental lubricants contain2ing ultradisperse diamond on wear resistance elements. SverkhtverdMater. ,1994;( 3) : 62~ 63

[50]Yashchenko et al. Diamond2based antifriction material. USAUS 5 158 695,1992

[51]Chkhalo NI et al. Ultradispersed diamond powders of deto2nation nature for polishing X) raymirrors. In: 10th Synchrotron Ra2diation Conference(SR. 94) . 1994

[52] Karlgard C C S,Wang N S,Jones L W. [J]. InternationalJournal of Pharmaceutics,2003,257(6): 141~151

[53]Belanger M C,Marois Y,Roy R,et al. Artificial Organs,2000,24(11):879-888

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

高分子材料环氧树脂综述

高分子材料环氧树脂综述 摘要:环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。本文将简单介绍环氧树脂的结构、性能、应用及研究现状,重点介绍环氧树脂的应用前景和研究现状。 关键词:高分子材料;环氧树脂;结构;研究现状 一、前言 在世界范围内, 高分子材料的制品属于最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱. 面向21 世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21 世纪的材料将是一个光辉灿烂的高分子王国. 环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。双酚A 型环氧树脂不仅产量最大,品种最全,而且新的改性品种仍在不断增加,质量正在不断提高。我国自1958年开始对环氧树脂进行了研究,并以很快的速度投入了工业生产,至今已在全国各地蓬勃发展,除生产普通的双酚A-环氧氯丙烷型环氧树脂外,也生产各种类型的新型环氧树脂,以满足国防建设及国家经济各部门的急需。 二、基本分类 1.分类标准 环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐高温胶、耐低温胶、水中及潮湿面用胶、导电胶、光学胶、点焊胶、环氧树脂胶膜、发泡胶、应变胶、软质材料粘接胶、密封胶、特种胶、潜伏性固化胶、土木建筑胶16种。 2.几种分类 对环氧树脂胶黏剂的分类在行业中还有以下几种分法: (1)按其主要组成分为纯环氧树脂胶黏剂和改性环氧树脂胶黏剂; (2)按其专业用途分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等; (3)按其施工条件分为常温固化型胶、低温固化型胶和其他固化型胶; (4)按其包装形态可分为单组分型胶、双组分胶和多组分型胶等; 还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。 三、几种常见环氧树脂结构

有机高分子材料介绍

第四章有机高分子材料 第一节概述 有机高分子材料包括两种: 天然高分子材料:木材、棉花、皮革等; 有机聚合物合成材料:塑料、合成纤维、合成橡胶、涂料及粘合剂等。 有机高分子材料的特点:质地轻、原料丰富、加工方便、性能良好、用途广泛,因而发展速度很快。且随着合成、加工技术的发展,耐高温、高强度、高模量和具有特定性能和功能的高分子材料也应运而生。 有机聚合物(有机玻璃、橡胶等等)具有与金属相反的物理性能: 大部分是电和热的绝缘体 不透明 硬度低 大部分不能禁受200℃以上的温度 有机聚合物材料的加工工艺 有机聚合物材料的加工工艺路线 有机物原料或型材 成形加工 切削加工 零件 热处理、焊接等 热压、注塑、挤压、喷射、真空成形等 高分子材料的基本概念 高分子材料是由可称为单体的原料小分子通过聚合反应而合成的。绝大部分原料单体为有机化合物。在有机化合物中,除碳原子外,其他主要元素为氢、氧、氮等。在碳原子与碳原子之间、碳原子与其它元素的原子之间能形成稳定的共价键。由于碳原子是4价,所以可以形成为数众多、结构不同的有机化合物,已知的有机化合物的总数已接近千万,而且新的有机化合物还不断合成出来。 高分子的链结构 高分子的聚合度及其计算 立构规整性 碳链高分子与杂链高分子 共聚物 高分子的相对分子质量与机械强度 1、高分子的链结构 一个大分子往往由许多相同的、简单的结构单元通过共价键重复连接而成,因此高分子又称为聚合物(polymer)。 也就是说高分子化合物是由许多结构单元相同的小分子化合物通过化学键连接而成的。 高分子的一个重要特点: 当一个化合物的相对分子质量足够大,以至多一个链节或少一个链节不会影响其基本性能。 方括号内是聚氯乙烯结构单元,并简称结构单元。 许多重复单元连接成线型大分子,类似一条链子,因此有时又将重复单元称为链节。 由形成结构单元的小分子组成的化合物,称为单体,是合成高分子的原料。 式中括号表示重复连接,通常用n代表重复单元数,由又称聚合度。聚合度是衡量高分子大小的指标。 2、高分子的聚合度及其计算 由聚氯乙烯的结构式很容易看出,高分子的相对分子质量是重复单元的相对分子质量(M0)与聚合度( )(或重复单元数n)的乘积,即 根据化合物的相对分子质量大小来划分高分子和小分子:相对分子质量小于1000的,一般为小分子化合物;而相对分子质量大于10000的,称为高分子或高聚物;处于中间范围的可能为高分子(低聚物),也可能为小分子。 3、立构规整性

有机高分子磁性材料研究综述

有机磁性材料研究综述 摘要:有机磁性材料是最近二十多年发展起来的新型的功能材料,因为其结构的多样性,可用化学方法合成,相比传统磁性材料具有比重低、可塑性强等等优点,因此在新型功能材料方面有着广阔的应用前景。本文综述了高分子有机磁性化合物的发展和研究近况,及其有机高分子磁性材料的分类及其应用前景。 关键词:有机磁性材料结构型复合型 Review on the research of organic magnetic material Abstract: organic magnetic material is a new functional material in recent twenty years, because of the diversity of its structure, synthetized by chemical method , compared with the traditional magnetic materials with a low specific gravity, high plasticity, and so on, so it has a broad application prospect in the new functional materials.This paper reviews the development and research status of high polymer organic magnetic materials’compounds, classification and its application prospect. Key word: organic magnetic material intrinsic complex

(发展战略)光功能高分子材料的研究发展及应用

论光功能高分子材料的研究发展及应用综述 吴俊杰 化工081班 前言:光功能高分子材料研究是光化学和光物理科学的重要组成部分,近年来随着现代科学技术的发展,光功能高分子材料研究在功能材料领域占有越来越重要的地位,光功能高分子材料日益受到重视。光功能高分子材料的应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,正在快速发展之中,光功能高分子材料研究与应用也将越来越广。 1光功能高分子材料及分类 光功能高分子材料是指能够对光进行传输、吸收、储存、转换的一类高分子材料。 表1 光功能高分子材料的分类 剂等构成。 光致抗蚀剂:主要包括正性光致抗蚀剂和负性光致抗蚀剂等。 高分子光稳定剂:主要包括光屏蔽剂、激发态狙灭剂抗氧剂和聚合型光稳定剂等。 光致变色高分子材料:主要包括含硫卡巴腙络合物的光致变色聚合物、含偶氮苯的光致变色高分子和含螺苯并吡喃结构的光致变色高分子等。 光导电高分子材料:由光导电聚合物材料构成。

2光功能高分子材料的类别和应用 表2 光功能高分子材料的类别和应用 3光功能高分子材料的发展概况 1954年,美国柯达公司的Minsk等人开发出光功能高分子聚乙烯醇肉桂酸酯,并成功应用于印刷制版。而现在光功能高分子材料应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,发展之势方兴未艾。 光功能高分子材料能够对光能进行传输、吸收、储存、转换.塑料光导纤维是利用高分子的光曲线传播性而制成的非线性光学元件。塑料光纤一般以有机玻璃为芯材,以含氟透明树脂为皮层,用柔软的有机硅树脂进行一次包覆,然后用硬质高分子材料进行二次包覆。有机玻璃、含氟透明树脂、有机硅树脂都是高分子材料,芯材有高折光率,皮层为低折光率材料。光纤的直径范围为几十到约1000微米,光纤在光纤芯内通过反复反射而向前传输,由于塑料光纤在目前传输损耗仍较高,主要应用于飞机、舰船和汽车内部的短距离光通信系统。此外,还应用于光纤显示器、图像的缩小和放大、火焰及高温监视器、光开关、巨点折象器、阅读穿孔卡片、道路标志和装饰照明等。近来,对有机玻璃采用重氢化技术,已使塑料光纤的传输损耗有所降低,为较长距离应用创造了条件。 以高性能有机玻璃或聚碳酸酯透明塑料的高分子材料为基材制成的光盘,是80年代新开发成功的先进信息、记录、储存元件,适应了激光技术的发展和对大容量、高信息密

功能高分子材料讲义

第三章功能高分子材料 3.1 概述 功能高分子是高分子化学的一个重要领域,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。 3.1.1 功能高分子材料的概念和分类 高分子材料按其使用性能可以分为结构高分子材料和功能高分子材料,结构高分子材料具有较高的比刚度和比强度,可以代替金属作为结构材料,如我们熟知的工程塑料和聚合物基复合材料。 对功能高分子材料,目前尚未有明确的定义,一般认为是指

除了具有一定的力学功能之外还具有特定功能(如导电性、光敏性、化学性和生物活性等)的高分子材料,所谓材料的功能,从根本上说,是指向材料输入某种能量,经过材料的传输转换等过程,再向外界输出的一种作用。材料的这种作用与材料分子中具有的特殊功能的基团和分子结构分不开的。 请注意,不可将功能高分子和功能高分子材料混为一谈,这两者是有明显区别的。功能高分子材料从组成和结构上可以分为结构型和复合型两大类。结构型功能高分子材料是指在高分子链中具有特定功能基团的高分子材料,这种材料所表现的特定功能是由高分子本身的因素决定的。构成结构型功能高分子材料中的高分子叫功能高分子,而复合型功能高分子材料,是指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、导磁)的其它材料进行复合而制得的功能高分子材料,这种材料的特殊功能不是由高分子本身提供的。 功能高分子材料涉及范围广、品种繁多,还未有统一的分类方法,一般按其使用功能来分类,大致可以分为以下几类:(1)化学功能高分子材料 主要包括离子交换树脂,高分子催化剂、高分子试剂、螯合树脂、高分子絮凝剂和高吸水性树脂等。

电致发光高分子材料综述

电致发光高分子材料综述 作者:张祺夏沣任彤尧汤伟 摘要:高分子发光二极管(PLED)是由英国剑桥大学的杰里米伯勒德及其同事首先发现的。聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管,因其巨大的科学和商业价值而得到了广泛的关注,是近来国际上的研究热点。对于各种新材料的不断开发和深入研究,PLED器件日益实用化。本文主要综述了近几年国内外关于高分子聚合物在电致发光材料领域的研究进展,介绍了有机高分子发光材料的发展现状,概述了其市场前景及相关的应用,并展望了高分子电致发光材料的发展趋势。 关键词:高分子;电致发光;研究现状 Abstract:Polymer light-emitting diode (PLED) first discovered by Jerry Mibo Lede of the University of Cambridge and his colleagues. Most organic polymer molecules from the small ones to chain together by a spin-coating to form polymer organic light-emitting diodes, because of its great scientific and commercial value ,it has been widespread concerned, and becomes the recent international researchs’ focus. For the continuous development of new materials and in-depth researchs, PLED devices become increasingly practical. This paper mainly overviews the recent years’domestic and foreign polymer progress of research in electroluminescent materials, describes the recent status of the development of organic polymer light-emitting materials, overviews the market prospects and related applications, and prospects of polymer electroluminescent material trends. Keywords:Polymer; EL; Research status

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

功能高分子材料发展概述

功能高分子材料发展概述 1.速干衣 速干的由来:所谓速干实际上是由英文QUICK-DRY或DRY-EASY等类似单词直译过来的,而速干是指该面料的衣物与毛质或棉质的衣物相比时,在外界条件相同的情况下,更容易将水分挥发出去,干得更快。速干衣顾名思义就是干的比较快的衣服,它并不是把汗水吸收,而是将汗水迅速地转移到衣服的表面,通过空气流通将汗水蒸发,从而达到速干的目的,一般的速干衣的干燥速度比棉织物要快50%。 速干衣物最初的设计理念主要是 基于两个方面的考虑:A、内部因素, 由于从事野外活动的人比较容易出 汗。如果运动量大的时候,全身则会 大汗淋漓。如果此时你穿的是普通的 衣物,那么它们会紧紧贴在你的皮肤 上,特别难受。但速干衣物呢,它们 能使挥发的汗水迅速得以挥发到体 外;B、外部因素,野外行走时,早 晨的露珠或是毛毛细雨都会将你的 衣物打湿,如果裤腿紧贴在腿上,那 会带来不舒服的感觉。如果是速干衣 物,那么它们的速干性能及防泼水性 能就会使你免除这些不必要的麻烦。 速干的面料:市场上的速干衣物 品牌林林总总,所使用的面料也 是数不胜数,更是令人眼花缭 乱。其实常见的户外速干衣物所 采用的面料无非是以下几种常见 面料,COOLMAX这是一种最为常 见,使用范围相对较为广泛的一 种面料,由杜邦公司研制。该面 料的突出特点是具有很强的吸汗 排汗功能,这得归功于COOLMAX 的中空结构,但选购时必须看清 楚COOLMAX在面料中所含的比 例;THEMOLITE这种聚脂纤维的保 暖性能不错,属于中空涤纶纤维 系列,但缺点是排汗性能相对要 差一些;MONI-DRY属于吸湿速干 面料,有COLUMBIA公司研制出品。其主要特点是超强的挥发性和吸水性,比一般的棉布要强2--3倍,从而有效地保持穿着者的舒适干爽;CIBAULTRAPHIL这

有机高分子材料

聚焦新型有机高分子材料 在近几年的高考中,有机高分子的命题大都以合成纤维、橡胶和塑料为背景,并和生产实际相结合。主要形式包括:一是由一种或几种单体加聚成高分子化合物或由加聚产物反推其单体;二是由一种或几种单体缩聚成高分子化合物或已知高分子的链节求其组成的单体。由于大多数合成材料的废弃物会给环境造成污染,因此“白色污染”与治理等都是高考命题的热点。 一、塑料 1.塑料的成分 塑料的主要成分是合成树脂,它的组成中还要根据需要加入某些具有特定用途的添加剂,如能提高塑料的增塑剂、防止老化的防老化剂等。 二、纤维 1.用木材、草类的纤维经化学加工制成的黏胶纤维又叫人造纤维。利用石油、天然气、煤和农副产品作原料制成单体,再经聚合制成的是合成纤维。二者均称化学纤维。

三、橡胶 1.根据来源不同,橡胶可分为天然橡胶和合成橡胶。 2.合成橡胶的原料:以石油、天然气为原料,以二烯烃和烯烃为单体聚合而成的高分子。 应用举例: 【例题1】某高分子化合物的部分结构如下: ,下列说法不正确的是 A.聚合物的结构单元为 B.聚合物的分子式为(C2H2Cl2)n

C.聚合物的单体为CHCl=CHCl D.若n表示结构单元重复的次数,其相对分子质量为97n 解析:因为高分子主链上均为碳原子,又由于单体是重复的结构单元,且碳碳单键, 单键可以旋转,所以链节是 ,单体是CHCl=CHCl。 答案:A 点拨:有机高分子几个概念比较 【例题2】卤代烃分子里的卤原子易与活泼金属阳离子结合,发生下列反应(X代表卤原子): R-X + 2Na + X-R' R-R' + 2NaX R-X + NaCN R-CN + NaX 根据下列各物质的转化关系:

电致发光高分子功能材料的应用..

电致发光高分子材料及其应用进展 孙东亚*,1,何丽雯2 (1 厦门理工学院材料科学与工程学院福建厦门361024) (2华侨大学材料科学与工程学院福建厦门361021) 摘要:主要介绍了导电高分子的一个重要门类-电致发光(有机EL,也称作OLED)聚合物材料的发光机理、制备工艺及应用现状。结合有机OLED相比于传统显示材料及器件具有发光效率高、波长易调节、寿命长、机械加工性能好等优势,综述了OLED材料及器件在环保照明及平板显示领域取得进展和未来的发展方向。 关键词:电致发光;高分子材料;平板显示; Abstract:An important category of conductive polymer-electroluminescent (organic EL, also known as OLED) luminescence mechanism, preparation process and application status of polymer materials has been introduced. Compared to traditional display materials and devices, the organic combination of OLED has high luminous efficiency, long life, easy to adjust the wavelength, good machining performance and other advantages. At the same time, we summarized the progresses and future development of OLED materials and devices in the green lighting and panel display. 0 前言 有机高分子光电材料由于其诱人的应用前景而得到了人们的广泛关注和研究[1-10]。近年来,导电高分子的研究取得了较大的进展,科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,已使其成为一门相对独立的学科。目前,有机电致发光平面显示器(OLED)在一些领域里已经取代了液晶显示器占有平面显示器的主要市场。与液晶平面显示器相比, 有机电致发光平面显示器以及高效率的节能照明设备具有主动发光、轻薄、色彩绚丽、全角度可视、能耗低等显著特点,吸引很多国内外研究机构和国际知名大电子、化学公司都投入了巨大的人力财力研究这一领域[11-15]。虽然在应用研究领域已经取得了巨大的成功,但是无论从综合发光效率、发光波长的调整、稳定性和寿命等方面还有待更进一步的发展。本文综述了近年来OLED材料与器件在制备工艺及品质质量方面所取得的进展及需要解决的主要问题。 1 有机电致发光器件及原理 由电能直接激发产生的发光现象称为电致发光。如图1所示,电致发光材料是通过电极向材料注入空穴和电子,两者通过在材料内部的相对迁移在材料内部发生复合形成激子(激发态分子),然后激子导带中的电子跃迁到价带的空穴中,多余的能量以光的形式放出,产生发光现象。 福建省中青年教师教育科研项目(JB14077) Education Scientific Project of Young Teacher of Fujian Province(JB14077) 作者简介:孙东亚(1982-),男,硕士,工程师,从事光电功能材料制备与表征,E-Mail:

最新功能高分子材料综述

功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、

转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量

07370420功能高分子材料盛维琛

功能高分子材料 Fun cti onal Polymer Materials 课程编号:07370420 学分:2 学时:45 (其中:讲课学时:30自学学时:15 实验学时:0上机学时:0)先修课程:有机化学、无机化学、分析化学、物理化学、高分子物理、高分子化学适用专业:高分子材料与工程、金属材料工程、无机非金属材料工程、复合材料与工程、化学工程与工艺、化学等专业本科四年级学生选修课 教材:王国建.功能高分子材料?北京:化学工业出版社,2010年第一版开课学院:材料科学与工程学院 一、课程的性质与任务: 功能高分子课程是一门高分子材料专业的专业选修课。它是建立在高分子物理,高分子化学和高分子结构与性能基础上,并与物理学、医学、甚至生物学密切联系的一门学科。它是研究功能高分子材料化学规律的一门科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域,对于设计和制备高性能高分子材料起着指导作用。 功能高分子课程的基本任务: 通过课堂讲授和研究进展介绍,使学生能了解几种重要的功能高分子材料的制备方法、性能与结构的一般关系等,对功能高分子材料科学有一个概括性认识,能理解功能的产生机理,并可根据所需功能设计出一些简单的具有相应功能基团的高分子材料。 本课程主要介绍功能高分子材料的发展状况,功能高分子的种类与功能,功能高分子材料的结构与性能的关系,功能高分子材料的制备策略,并结合近年来国际,国内在功能高分子材料方面的研究成果详细介绍常用的物理化学功能高分子(高吸水性树脂、离子交换树脂、高分子试剂及催化剂等)、电功能高分子(复合导电型、电子导电型、离子导电型等导电高分子材料、电致发光、电致变色等电活性高分子材料)、光功能高分子(感光性树脂、光致变色高分子、光降解、光转换高分子材料等)、生物医用高分子(生物惰性、生物降解、组织工程、药物高分子材料等)、高分子助剂(高分子絮凝剂、高分子电解质、高分子染料、高分子食品添加剂等)其它一些类型功能高分子材料制备方法,机理,应用。 二、课程的基本内容及要求:第一章功能高分子材料概述 1. 教学内容 1)功能高分子材料的研究对象和研究内容 2)功能高分子材料的发展历程

功能高分子材料

《功能高分子材料》复习 1、说明离子交换树脂的类型及作用机理?试述离子交换树脂的主要用途。 类型与作用机理:(1)离子交换树脂分为阳离子交换树脂和阴离子交换树脂两大类。能解离出阳离子、并能与外来阳离子进行交换的树脂被称作阳离子交换树脂;能解离出阴离子、并能与外来阴离子进行交换的树脂被称作阴离子交换树脂。 (2)按其物理结构的不同,可将离子交换树脂分为凝胶型、大孔型和载体型三类。 (3)氧化还原树脂。指带有能与周围活性物质进行电子交换、发生氧化还原反应的一类树脂。在交换过程中,树脂失去电子,由原来的还原形式转变为氧化形式,而周围的物质被还原。 (4)两性树脂。两性树脂中的两种功能基团是以共价键连接在树脂骨架上的,互相靠得较近,呈中和状态。但遇到溶液中的离子时,却能起交换作用。树脂使用后,只需大量的水淋洗即可再生,恢复到树脂原来的形式。 (5)热再生树脂。在同一树脂骨架中带有弱酸性和弱碱性离子交换基团。(6)螯合树脂。 用途:(1)水处理。水处理包括水质的软化、水的脱盐和高纯水的制备等。(2)冶金工业。离子交换是冶金工业的重要单元操作之一,离子交换树脂还可用于选矿。(3)原子能工业。利用离子交换树脂对核燃料进行分离、提纯、精制、回收等。离子交换树脂还是原子能工业废水去除放射性污染处理的主要方法。(4)海洋资源利用。利用离子交换树脂,可从许多海洋生物中提取碘、溴、镁等重要化工原料。(5)化学工业。离子交换树脂普遍用于多种无机、有机化合物的分离、提纯,浓缩和回收等。离子交换树脂用作化学反应催化剂,可大大提高催化效率。(6)食品工业。离子交换树脂在制糖、酿酒、烟草、乳品、饮料、调味品等食品加工中都有广泛的应用。(7)医药卫生。离子交换树脂在医药卫生事业中被大量应用。(8)环境保护。离子交换树脂在废水,废气的浓缩、处理、分离、回收及分析检测上都有重要应用。 2、按膜的功能简述高分子分离膜的分类及其分离机理。 (1)分离功能膜(包括气体分离膜、液体分离膜、离子交换膜、化学功能膜)

有机高分子材料概述

有机高分子材料概述和发展趋势 陈彪 2011327120112 材料科学与工程11(1)班 摘要:有机高分子材料包括木材、棉花、皮革等天然高分子材料和朔料、合成纤维及合成橡胶等有机聚合物合成材料。它们质地轻、原料丰富、性能良好、用途广泛,因而发展速度很快。塑料、橡胶和合成纤维是有机高分子材料的典型的代表,此外,还有涂料和粘合剂等。 关键词:有机高分子材料;发展趋势 高分子材料是由可称为单体的原料小分子通过聚合反应而合成的。绝大部分原料单体为有机化合物。在有机高分子化合物中,除碳原子外,其他主要元素为氢、氧、氮等。在碳原子与碳原子之间、碳原子与其他元素的原子之间能够形成稳定的共价键组成高分子化合物。 人们使用高分子材料的历史很早,由于它们质地轻、原料丰富、性能良好、用途广泛,因而发展速度很快,自20世纪20年代以来,就已经发展了人工合成的各种高分子材料。 高分子材料有各种不同的分类方法。例如,按来源可以分为天然高分子材料和合成高分子材料。按大分子主连接结构可分为碳链高分子材料、杂链高分子材料及元素有机高分子材料等。最常用的是根据高分子材料的性能和用途进行分类。 根据性能和用途,高分子材料可分为橡胶、塑料、纤维、粘合剂、涂料、功能高分子材料以及复合材料等不同的类别。 下面以介绍这几大类高分子材料为主。 1橡胶 橡胶是有机高分子弹性化合物。在很宽的温度范围内具有优异的弹性,所以又称为高弹体。按其来源可分为天然橡胶和合成橡胶两大类。天然橡胶是从自然界含胶植物制取的一种高弹物质。合成橡胶是用人工合成的方法制得的高分子弹性材料。 橡胶具有独特的高弹性,还具有良好的疲劳强度、点绝缘性、耐化学腐蚀以及耐磨性等使它成为国民经济中不可缺少和难以代替的重要材料。 2塑料 塑料是以聚合物为主要成分,在一定条件下可塑成一定形状并且在常温下保持其形状不变的材料,习惯上包括塑料的半成品,如压塑粉等。 作为塑料基础组分的聚合物,不仅决定塑料的类型而且决定塑料的主要性能。一般而言,塑料用聚合物的内聚能介于纤维与橡胶之间,使用温度范围在其脆化温度和玻璃化温度之间。应当注意,同一种聚合物,由于制备方法、条件及加工方法的不同,常常既可作塑料用,也可做纤维用。 塑料是一类重要的高分子材料,具有质地轻、电绝缘、耐化学腐蚀、容易加工成型等特点,其性能可调范围宽,具有广泛的应用领域。 3纤维 纤维是指长度比直径大很多倍,并具有一定韧性的纤细物质。纤维的特点是分子间次价力大、形变能力小、模量高,一般为结晶聚合物。 纤维可分为两大类:一类是天然纤维,如棉花、羊毛、蚕丝和麻等,另一类是化学纤维,即用天然或合成高分子化合物经化学加工而制得的纤维。

高分子材料聚合工艺综述

高分子材料聚合工艺综述 姓名:王庆阳 班级:高分子材料与工程1301班 学号:0707130104

高分子材料聚合工艺综述 高分子材料与工程1301班王庆阳 0707130104 摘要:介绍高分子材料的主要工业合成工艺,以及产品的形貌及使用性能。 关键词:高分子材料;合成工艺;自由基聚合;缩合聚合;逐步加成聚合 一、前言 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。 而作为高分子材料生产的工业基础,高分子材料的合成工艺及其重要,因为它不仅关乎到高分子材料后续产品的性能,并且易于改良、优化从而提高材料的综合性能;因此,本文将对高分子材料的主要合成工艺,即:自由基聚合工艺、缩合聚合工艺、逐步加成聚合工艺,作简单的探讨,为今后在高分子材料工业合成方面的学习及工作奠定基础。 二、自由基聚合工艺 2.1综述 自由基聚合反应是当前高分子合成工业中应用最广泛的化学反应之一。工业中,我们将自由基聚合工艺定义为:单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性单体自由基,再与单体连锁聚合形成高聚物的化学反应;通过高分子化学的学习,我们知道自由基聚合化学反应主要包括链引发、链增长和链终止三个“基元反应”;同时,在链引发阶段,我们通常选择引发剂作为产生自由基的物质,并通过改变自由基的种类来适应不同的聚合生产工艺。 通常而言,我们将自由基聚合工艺,以实施方法的为分类标准,继续细分为本体聚合、乳液聚合、悬浮聚合和溶液聚合。每种聚合方法聚合体系、产品形态、产品用途各具特色,具体可见表2-1高聚物生产中采用的聚合方法、产品形态与用途。 下面,我们将对这几种自由基聚合工艺的聚合体系组成、产品形貌及性能、适用范围做详细介绍。

完整word版,功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量轻,易加工成各种复杂的形状,化学稳定性好及电阻率可在较大范围内调节等特点。此外在电子工业中的应用日趋广泛,促进了现代科学技术的发展。因此,自然引起了学术界和工业界的广泛兴趣。 导电高分子材料根据材料的组成可以分成复合型导电高分子材料(composite conductive polymers)和本征型导电高分子材料(intrinsic conductive polymers)两大类。复合型导电高分子材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯

材料概论

第二章 1 普通的混凝土中有几种相?请分别写出各种相的名称。若在其中加入钢筋,则钢筋起到什么作用?此时又有几种相? 答:3相;砂子、碎石、水泥浆;增强作用;4。 2 比较晶体与非晶体的结构特性,了解晶体的结构不完整性有哪些类型?并区分三大材料的结构类型与比较其各自的特点。 答:晶体结构的基本特征是原子或分子在三维空间呈周期性的规则而有序地排列,即存在长程的几何有序。 结构的不完整性:实际上,极大多数晶体都有大量的与理想原子排列的轻度偏离存在,依据其几何形状而分为点缺陷、线缺陷和面缺陷。 金属材料的结构:一般都是晶体。金属键无方向性,晶体结构具有最致密的堆积方式。体心立方、面心立方和紧密堆积六方结构,金刚石结构。 无机非金属材料的结构:金刚石型结构;硅酸盐结构; 玻璃结构; 团簇及纳米材料 高分子材料的结构包括高分子链的结构及聚集态结构 各自的特点: 3 高分子材料其聚集态结构可分为:晶态和非晶态(无定形)两种,与普通的晶态和非晶态结构比较有什么特点? 答:晶态有序程度远小于小分子晶态,但非晶态的有序程度大于小分子物质液态。 4 如何区分本征半导体与非本征半导体材料? 答:本征半导体:材料的电导率取决于电子-空穴对的数量和温度的材料。 非本征半导体:通过加入杂质即掺杂剂而制备的半导体,杂质的多少决定了电荷载流子的数量。

5 极大多数晶体实际上都存在有种种与理想原子排列的轻度偏离,依据结构不完整性的几何形状可分为哪几种缺陷类型?按溶质原子在溶剂晶格中的位置不同,固溶体可分成哪几种类型? 答:依据其几何形状而分为点缺陷、线缺陷和面缺陷。 按溶质原子在溶剂晶格中的位置不同,固溶体可分成: 置换型固溶体(或称取代型):溶剂A晶格中的原子被溶质B的原子取代所形成的固溶体。原子A同B的大小要大致相同。 填隙型固溶体(也称间隙型):在溶剂A的晶格间隙内有溶质B的原子填入(溶入)所形成的固溶体。B原子必须是充分小的,如C和N等是典型的溶质原子。 6 比较热塑性高分子材料和热固性高分子材料的结构特点,并说明由于结构的不同对其性能的影响。 答:线型结构的高分子化合物:在适当的溶剂中可溶胀or溶解,升高温度时则软化、流动,∴易加工,可反复加工使用,并具有良好的弹性和塑性。(热塑性) 交联网状结构高分子:性能特点:较好的耐热性、难溶剂性、尺寸稳定性和机械强度,但弹性、塑性低,脆性大。∴不能进行塑性加工,成型加工只能在网状结构形成前进行,材料不能反复加工使用。(热固性) 7 聚二甲基硅氧烷的结构式为?其柔顺性怎么样? 答:非常好 8 何为材料的力学强度?影响力学强度的主要因素有哪些?按作用力的方式不同,材料的力学强度可分为哪几种强度? 答:材料在载荷作用下抵抗明显的塑性变形或破坏的最大能力。 通常材料中缺陷越少、分子间键合强度越大,材料的强度也越高。 按作用力的方式不同,可分为:拉伸强度;压缩强度;弯曲强度;冲击强度;疲劳强度等。 9 区分高分子材料的大分子之间的相互作用中的主价力和次主价力,比较两者对其性能的影响。 答:大分子链中原子间、链节间的相互作用是强大的共价键这种结合力称为主价力,大小取决于链的化学组成→键长和键能。对性能,特别是熔点、强度等有重要影响。 大分子之间的结合力是范德华力和氢键,称为次价力,比主价力小得多(只有主价力1-10%),但对高分子化合物的性能影响很大。如乙烯呈气态,而聚乙烯呈固态并有相当强度,∵后者的分子间力较前者大得多。 10 按电阻率的大小,可将材料分成哪几类?何谓超导性? 答:按电阻率的大小,可将材料分:超导体;导体;半导体;绝缘体。 超导性:一旦T< Tc(超导体临界T)时,电阻率就跃变为零。Tc依赖于作用于导体的磁场强度。

纳米结构高分子材料综述

纳米结构高分子材料的制备、表征、应用前景 花生 (湖南工程学院化学化工学院湖南湘潭 411104) 摘要:纳米结构高分子材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料。本文综述了纳米结构高分子材料的结构、性能和表征技术,并对其 应用进行了讨论。 关键字:纳米结构高分子材料插层复合溶胶-凝胶纳米改性 Preparation ,Characterization, Application of Nano-structural Polymer Materials huasheng (College of Chemistry and Chemical Engineering, Hunan Institute of Engineering,Xiangtan Hunan 411104,China ) Abstract:Nano-structural polymer materials are a class of composite materials which are Compound from polymer and nano-materials. This article introduces nano-structured polymer materials as follow: structure , properties , characterization techniques and its applications . Key word:Nano-structural polymer materials intercalation solution-gel modification of polymer 纳米结构聚合物材料由于具有独特的性能而在机械、光、电、 磁、微处理器件、药物控释、环境保护、纳米反应器及生物化学等方 面具有广阔的应用前景,近年来掀起了对纳米结构聚合物材料研究的 热潮。各国学者分别在化学分子设计、结构分析、组装方法和应用等 方面进行了广泛的研究。我国的科学工作者也对其开展了许多卓有成 效的工作。关于纳米结构超薄膜的综述文献已有很多,本文主要就

相关主题
文本预览
相关文档 最新文档