当前位置:文档之家› 高分子材料综述

高分子材料综述

高分子材料综述
高分子材料综述

不饱和聚酯合成及加工工艺进展

摘要:本文介绍了不饱和聚酯合成与加工工艺,不饱和聚酯的由来以及一些不饱和聚酯的最新科研成果,包括不饱和聚酯的合成原料、加工助剂、不饱和聚酯的改性以及新型的加工工艺等方面内容。

关键词:不饱和聚酯(UP);合成;加工工艺;改性;进展

0前言

不饱和聚酯树脂是热固性树脂中用量最大的树脂品种,也是FRP制品生产中用得最多的基体树脂。UPR生产工艺简便,原料易得,耐化学腐蚀,力学性能、电性能优良,可常温常压固化,具有良好的工艺性能,广泛应用于建筑、防腐、汽车、电子电器等多种复合材料。近年来,由于苯乙烯等主要原材料价格的大幅上涨,对低端产品的冲击很大,不饱和聚酯树脂行业的效益下滑。面对严峻的形势,各国纷纷加大研究开发的力度,研究出多种低成本、环境友好的复合材料,并将其应用领域不断拓宽。

1不饱和聚酯的概述

1.1不饱和聚酯的定义

人类最早发现的树脂是从树上分泌物中提炼出来的脂状物,如松香等,这是“脂”前有“树”的原因。直到1906年第一次用人工合成了酚醛树脂,才开辟了人工合成树脂的新纪元。1942年美国橡胶公司首先投产不饱和聚酯树脂,后来把未经加工的任何高聚物都称作树脂。但是早就与“树”无关了。树脂又分为热塑性树脂和热固性树脂两大类。对于加热熔化冷却变固,而且可以反复进行的可熔的树脂叫做热塑性树脂,如聚氯乙烯树脂(PVC)、聚乙烯树脂(PE)等;对于加热固化以后不再可逆,成为既不溶解,又不熔化的固体,叫做热固性树脂,如酚醛树脂、环氧树脂、不饱和聚酯树脂等。“聚酯”是相对于“酚醛”“环氧”等树脂而区分的含有酯键的一类高分子化合物。这种高分子化合物是由二元酸和二元醇经缩聚反应而生成的,而这种高分子化合物中含有不饱和双键时,就称为不饱和聚酯(英文名Unsaturated Polyester简称UP)。因此,不饱和聚酯可以定义为由饱和的和不饱和的二元酸(或酸酐)与多元醇缩聚而成的线型高分子化合物。不饱和聚酯是一种线性不饱和聚脂,当其在热、光照、高能辐射以及引发剂的作用下与交联剂反应,固化成为一种不溶不融的高分子网状的不饱和聚酯树脂(英文名Unsaturated Polyester Resin 简称UPR)。但这种聚合物机械强度很低,不能满足大部分使用的要求,当用玻璃纤维增强时可成为一种复合材料,俗称“玻璃钢”(英文名Fiber Reinforced Plastics 简称FRP)。"玻璃钢"的机械强度等各方面性能与树脂浇铸体相比有了很大的提高。

1.2不饱和聚酯的发展历史

不饱和聚酯树脂产品发展至今大约有70多年的历史,在这么短的时期内,不饱和聚酯产品无论从产量还是从技术水平方面均得到了飞速的发展。而在上世纪80年代后期,我国先后引进了美国、日本、意大利和德国的制造技术,使我

国多年来依赖手糊生产玻璃钢的成型技术得以改进。我国玻璃钢市场欣欣向荣,促进了国内不饱和聚酯树脂向多品种、多用途方向发展,开发出如拉挤树脂、RTM 用混杂树脂、乙烯基树脂、腻子树脂、玛瑙树脂、高氧指数阻燃树脂、喷涂树脂、柔性树脂等,另一特点是浇铸用、涂料用树脂产量急剧上升,但与国外相比还存在着差距。目前,不饱和聚酯树脂产品已发展成为热固性树脂行业中最大的品种之一。在不饱和聚酯树脂的发展过程中,从产品专利、商业杂志、技术书籍等方面的技术信息层出不穷。至今每年都有上百项发明专利是关于不饱和聚酯树脂的。由此可见,不饱和聚酯树脂制造和应用技术随着生产的发展也日益成熟,逐步形成了自己独特的完整的生产与应用理论的技术体系。在过去的发展过程中,不饱和聚酯树脂对于一般用途来说,具有特殊意义的贡献。

2不饱和聚酯的合成

2.1不饱和聚酯的合成原料

(1)二元醇

乙二醇是结构最简单的二元醇,由于其结构上的对称性,使生成的聚酯树脂具有明显的结晶性,这便限制了它同苯乙烯的相容性,因此一般不单独使用,而同其它二元醇结合起来使用,如将乙二醇和丙二醇混合使用,可提高聚酯树脂与苯乙烯的相容性;如果单独使用,则应将生成树脂的端基乙酰化或丙酰化,以改善其相容性。

1,2丙二醇由于结构上的非对称性,可得到非结晶的聚酯树脂,可完全同苯乙烯相溶,并且它的价格相对讲也较低,因此是目前应用最广泛的二元醇。

其它可用的二元醇有:

一缩二乙二醇——可改进聚酯树脂的柔韧性;

一缩二丙二醇——可改进树脂柔韧性和耐蚀性;

新戊二醇——可改进树脂的耐蚀性,特别是耐碱性和水解稳定性。

以上几种二元醇,或由于树脂柔韧性太大而失去强度,或应改善树脂与苯乙烯相溶性,它们一般不单独使用,应和其它二元醇混合使用。具有高度耐用化学腐蚀的聚酯树脂,常常用双酚A或氢化双酚A作原料,为生成一种适合与二元酸反应的二元醇,双酚A应预先同环氧丙烷或环氧乙烷反应,生成两端具有醇羟基的二元醇,如D-33二元醇。

用氯化或溴化的二元醇,不仅表现出阻燃性,也改善了耐蚀性。

加入少量的多元醇,如丙三醇和季戊四醇,可较大程度地改善树脂的耐热性。(2)不饱和二元酸

不饱和聚酯树脂中的双键,一般由不饱和二元酸原料提供。树脂中的不饱和酸愈多,双键比例愈大,则树脂固化时交联度愈高,由此使树脂具有较高的反应活性,树脂的固化物有较高的耐热性,在破坏时有较低的延伸率。

为改进树脂的反应性和固化物性能,一般把不饱和二元酸和饱和二元酸混合使用。

顺丁烯二酸酐(马来酸酐)和顺丁烯二酸(马来酸)是最常用的不饱和酸。由于顺丁烯二酸酐具有较低的熔点,并反应时可少缩合出一分子水,故用得更多。

反丁烯二酸(富马酸)是顺酸的反式异构体,虽然顺酸在高于180°C缩聚时,几乎完全可以异构化而变成反式结构,但用反丁烯二酸制备的树脂有较高的软化点和较大的结晶倾向性。

其他的不饱和酸,如氯化马来酸、衣康酸和柠康酸也可以用,但价格较贵,使用不普遍。此外,用衣康酸制造的树脂,也会出现树脂与苯乙烯混溶稳定性的问题,尽管氯化马来酸含26%的氯,但要作为阻燃树脂使用,含氯量仍是不够的,还必须加入其它阻燃成分。

(3)饱和二无酸

加入饱和二元酸的主要作用是有效地调节聚酯分子链中双键的间距,此外还可以改善与苯乙烯的相容性。

为减少或避免树脂的结晶问题,可将邻苯二甲酸酐作为饱和二元酸来制备不饱和聚酯树脂,所得的树脂与苯乙烯的相溶性好,有较好的透明性和良好的综合性能。此外,邻苯二甲酸酐原料易得,价格低廉,因此是应用最广的饱和二元酸。

间苯二甲酸与邻苯二甲酸酐相比,改进了邻苯型聚酯中由于两个酯基相靠太近而引起的相互排斥作用所带来的酯基稳定性问题,从而提高了树脂的耐蚀性和耐热性,此外还提高了树脂的韧性。间苯二甲酸可用于合成中等耐蚀的不饱和聚酯树脂。对苯二甲酸与间苯二甲酸相似,用对苯二甲酸制得的聚酯树脂有较好的耐蚀性和韧性,但这种酸活性不大,合成时不易反应,应用不多。

用脂肪族二元酸,如已二酸和癸二酸部分替代上述饱和二元酸,可增加所得树脂的柔韧性耐冲击性,但一般不单独使用。饱和二元酸不同对酯键的空间位阻作用也不同。

2.2不饱和聚酯的引发剂

引发剂是能使单体分子或含双键的线型高分子活化而成为游离基并进行连锁聚合反应的物质。引发剂一般为有机过氧化物,常用的有机过氧化物主要有:异丙苯过氧化氢、叔丁基过氧化氢、过氧化二叔丁基、过氧化二异丙苯、过氧化二苯甲酰、过氧化二月桂酰、过苯甲酸叔丁脂、过氧化环己酮、过氧化甲乙酮。这些有机过氧化物要超过临界温度才具有引发活性,而且温度一般都在60℃以上,对于固化温度要求在室温时,就不能满足要求。这时就需要加入能降低有机过氧化物分解温度的促进剂。有效的促进剂有二甲基苯胺、二乙基苯胺、二甲基对甲苯胺、一些可以变价的金属皂等。

2.3不饱和聚酯的交联剂

交联剂除在固化时能同树脂分子链发生交联产生体型结构的大分子外,还起着稀释剂的作用,形成具有一定粘度的树脂溶液。

苯乙烯是最常用的交联剂,其优点:

苯乙烯为一低粘度液体,与树脂及各种辅助组分有很好的相溶性。

与不饱和聚酯树脂进行共聚时,能形成组分均匀的共聚物。

苯乙烯原料易得,价格低廉,有利于降低树脂和玻璃钢制品的成本。

苯乙烯的缺点是蒸气压较高、沸点较低(145°C )易于挥发,有一定气味,造成施工条件较差,应采取一定的劳动保护措施。目前,一些国家提出应把苯乙烯在空气中的含量降低到100ppm (420 mg/m3)以下。在一定范围内调节苯乙烯用量,还可影响其它性能,苯乙烯用量增加,使树脂溶液粘度降低和树脂体系双键含量增加,因而凝胶时间缩短、软化点增高,树脂耐蚀性增加,固化时收缩率增加,反之亦然。一般,苯乙烯的加入量应以保证施工时所需粘度为佳。

根据对树脂性能和用途的特殊需要,还可选用许多其它种类的交联剂(如乙烯基甲苯、二乙烯基苯等),但它们的应用量都远不能与苯乙烯相比。

用甲基丙烯酸甲酯作交联剂,因其折射率较低,接近玻璃纤维的折射率,并具有良好的耐风蚀性,故主要用于制造透明玻璃钢制品。甲基丙烯酸甲酯的缺点是沸点较低(1000℃--1010℃),挥发性更大;价格较高;甲基丙烯酸甲酯和聚酯树脂中不饱和双键的共聚倾向小,产物交联度较低、结构较疏松且制品表面硬度也较柢。

邻苯二甲酸二烯丙酯单位作为交联剂时,所得制服品的耐热性和电性能均较好,固化时放热较少,收缩率较低,适宜做大型制件和要求尺寸稳定性好的制品。缺点是要加温固化,粘度较高,价格也较高。

除此之外,a--甲基苯乙烯因其固化时有较低的收缩率和制品韧性较好,适用于浇铸和密封用的配方中;氯化和溴化苯乙烯适用于阻燃制品;三聚氰酸三丙烯酯作为交联剂可提高制品的耐热性。但这些交联剂由于价格较高而限制了它们的应用。

2.4不饱和聚酯的阻聚剂

在自由基聚合反应里,一些微量物质的加入,可以在一定时间范围,延缓或减慢聚合的速度,这类物质称为阻聚剂。阻聚剂通常在缩聚反应结束后加入,既可避免在较高温度下树脂与苯乙烯单体混溶时发生凝胶,也可延长树脂溶液产品的贮存期。

和聚合单体一样,阻聚剂也和树脂体系里的自由基发生作用,产生新的自由基,但不同的是自由基同阻聚剂反应生成的新自由基一般不再发生链增长反应,它们或比较稳定,或相互作用进行链终止反应,实质上起着吸收和消耗系统里产生的自由基的作用,从而表现出明显的阻聚作用。对苯二酚是最常用的阻聚剂,其用量视树脂的种类而异,常用量为树脂总量的0.5/10000 到5/10000。

温度不同,各种阻聚剂的阻聚效果也不同。例如,叔丁基邻苯二酚在中温(约600℃左右)起阻聚作用;环烷酸铜在室温下起作用。这两种化合物也是常用的阻聚剂。又如,空气中的氧在常温下对树脂有明显的阻聚作用(这是不饱和聚酯树脂室温固化时表面发粘的原因所在),但在高温下氧却表现出明显的促进聚合的作用。对不同的交联剂单体,阻聚剂的效果也不相同。如对苯二酚对苯乙烯单体有良好的阻聚效果,,但对甲基丙烯酸甲酯单体的阻限聚效果却较差。

不饱和聚酯树脂的贮存期要求大于6个月,可通过加热试验决定。一般认为,在800℃条件下,聚酯树脂液在24小时内不发生凝胶,则相当于该树脂液在室温下有6个月的贮存期。阻聚剂的最少加入量应保证室温下6个月的贮存期。

3不饱和聚酯的加工工艺

3.1传统加工工艺

不饱和聚酯在固化可以在常温常压下成型,具有很高的固化能力,施工方便,加工工艺有:

手糊成型法,又称接触成型,是以手工作业形式把玻璃纤维和树脂交替的层铺起来。这种工艺过于原始,对于那些品种变化较多而又少量生产的大型制品,手糊是最为合适的方法,在加上设备价格低,投入少,经过训练能生产相当高难度的制品。手糊成型可以使用比较便宜而又简单的成型模具,是一种最基本的成型方法。在所有FRP成型工艺中,都会面临以下几个基本问题:1、纤维含量的控制。2、制品厚度控制。3、充分脱泡。4、避免制品不完全固化。

喷射法,属于半机械手糊法,与手糊成型工艺基本相同,只是改成了机械喷枪作业,生产率高,节省原材料,制品整体性高,无尺寸限制。但树脂含量高,制品强度低,生产环境差。主要用于船体、车身、容器等大型部件。

层压成形工艺,层叠胶布→模板之间→加热、加压固化→冷却、脱模、修整→层压板。制品表面光,质量好且稳定,设备简单,生产率高。但只能生产板材,且尺寸受限,制品精度低,劳动轻度大。

模压成形,生产率高,制品尺寸精确,质量好且稳定,表面光洁,价低,自动化程度高,无需辅助加工;模具复杂,投资高,一般适用于中小型玻璃钢制品。

缠绕成形,树脂配制→纤维烘干→浸胶→胶纱烘干→缠绕→固化→检验、加工→制品。适用于制造回转体复合材料,干法:制品质量稳定,生产率高;但投资大,层间剪切强度低;湿法:劳动条件差,强度大,质量不易控制,不易自动化。

3.2新型加工工艺

片状模塑料(简称SMC),是由不饱和聚酯树脂、低收缩添加剂、填料、固化剂、增稠剂、脱模剂和玻璃纤维等组成的一种干片状的预浸料,它具有收缩率低、强度高、成型方便等特点,特别适合工业化大规模生产。SMC片材表面不粘手,易于操作;SMC成型时,玻璃纤维能够流向成型品的所有部分,保证成型品各部分物理、化学性能的稳定;使成型品具有好的外观。

BMC(团状模塑料)作为一种玻璃纤维增强不饮和聚酯树脂的先进热固性复

合材料,自上世纪50年代末开发用以来,倍受们们关注,得到了迅速发展。它具有自动化程度高,成型周期短,制件表面质量好,及复杂制件成型工艺性良好等优点,从而降低了生产成本。但是,由于它存在着因注射过程中玻纤大量损伤而使制件强度大大降低的缺点因而限制了BMC注射成型技术的推广应用。

4不饱和聚酯进展

不饱和聚酯是复合增强塑料中使用量最多的一种树脂与其它热固性树脂相比具有粘度低,加工方便,既可在常温常压下固化,也可在加温加压下反应;固化不放出小分子,可制造出比较均匀的产品;价格适中等优点。因此已广泛用于结构材料,防腐材料,绝缘材料等。但普通UP的韧性,耐热性,耐老化性等还不甚理想。因此提高UP的力学性能,耐热性等改性研究工作具有重要意义。

4.1利用聚酯聚氨酯(PU)改性不饱和聚酯(UP)

聚酯聚氨酯(PU)改性UP目的是增加天然纤维和UP间的界面作用力,提高UP 复合材料的韧性,以及降低固化收缩率。所用的聚酯聚氨酯是聚己二酸丁二醇酯和甲苯二异氰酸酯的产物。首先制备端基为异氰酸酯基的PU然后将其与不饱和聚酯分子的端羟基或端羧基反应,形成链段共聚物。氨酯键之间可形成氢键型交联由于所用不饱和聚酯原料中含有苯乙烯单体,在本体系中,它既是交联固化前不饱和聚酯的溶剂,也是反应性溶剂,又可在过氧化物存在下进行聚合。聚合后,一部分聚苯乙烯分子与不饱和聚酯分子中的双键反应形成交联结构,另一部分形成均聚物。这种高Tg聚苯乙烯链段由于微相分离,而集聚形成聚苯乙烯微区,既起到物理交联作用,也起到内增强作用。因此,在本体系中有可能存在多个交联网:不饱和聚酯间的化学交联、聚苯乙烯的物理交联和化学交联、聚氨酯键间的氢键型交联,形成一种自增强互穿网络的微多相结构,提高UP复合材料的韧性。

聚酯聚氨酯分子具有氨基甲酸酯基团,而天然纤维含有大量的亲水基团——羟基,二者可以形成氢键等特殊相互作用,而又与UP的端基键合,因此UP起到“相溶剂”的作用,增加了天然纤维与UP的界面相互作用。

4.2纳米TiO2同时增强增韧不饱和聚酯树脂

用“反应法”制备纳米TiO2 /UPR,在反应过程中纳米TiO2粉发生轻微水解反应,产生的羟基与不饱和聚酯中的羧基反应,成功地将纳米TiO2粒子接入不饱和聚酯长链,这种新的结构实现了对不饱和聚酯同时增强增韧改性。用“反应法”制备的纳米TiO2 /UPR中,产生了新的化学键,在纳米TiO2粒子与不饱和聚酯之间存在化学键,加强了界面的结合力,刚性纳米TiO2粒子对UPR有着显著的增强增韧作用。

4.3与热固性酚醛树脂复合改性

UP与酚醛树脂共混可形成互穿网络。复合材料的耐热性随酚醛含量增加而增大,并且在燃烧过程中发烟量、放热量、有毒气体的量等都得到抑制。经弹性体改性的环氧树脂与UP可形成均相结构的互穿网络,复合材料的冲击强度和弯曲强度得到提高,但玻璃化温度降低,热稳定性下降。

5 结语

除了以上介绍的不饱和聚酯增韧及提高耐热性的改性研究外,还有不少研究是为了降低收缩性,提高阻燃性,减少苯乙烯挥发等。近年来,由于苯乙烯等主要原材料价格的大幅上涨,对低端产品的冲击很大,不饱和聚酯树脂行业的效益下滑。面对严峻的形势,各国纷纷加大研究开发的力度,研究出多种低成本、环境友好的复合材料,并将其应用领域不断拓宽。

参考文献

[1] 周艳.不饱和聚酯改性研究进展.绝缘材料,2003,4

[2] 鲁博,张林文,潘则林,王才.聚氨酯改性不饱和聚酯的微观结构与性能. 化

工学报[J],2006,57(12)

[3] 徐颖,李明利,卢凤纪.纳米TiO2同时增强增韧不饱和聚酯树脂(TiO2 /UPR)

的研究. 稀有金属材料与工程,2002,31(5)

[4] 陈红. 2005—2006年国外不饱和聚酯树脂工业进展. 热固性树

脂,2007,22(2)

[5] 肖秀芝. 浅述BMC注射成型技术. 塑料加工, 2003,38(5)

[6] SMC片状模塑料的研究

[7] 王德生,李海燕,胡爱军,范琳,杨士勇. 新型不饱和聚酯亚胺树脂的制备与性能研

究.绝缘材料,2006,39(2)

[8] 不饱和聚酯树脂的定义与发展历史. PE不饱和树脂新闻

[9] Bai孝达. 我国的不饱和聚酯树脂工业. 热固性树脂,2001,16( 6)

高分子材料环氧树脂综述

高分子材料环氧树脂综述 摘要:环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。本文将简单介绍环氧树脂的结构、性能、应用及研究现状,重点介绍环氧树脂的应用前景和研究现状。 关键词:高分子材料;环氧树脂;结构;研究现状 一、前言 在世界范围内, 高分子材料的制品属于最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱. 面向21 世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21 世纪的材料将是一个光辉灿烂的高分子王国. 环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。双酚A 型环氧树脂不仅产量最大,品种最全,而且新的改性品种仍在不断增加,质量正在不断提高。我国自1958年开始对环氧树脂进行了研究,并以很快的速度投入了工业生产,至今已在全国各地蓬勃发展,除生产普通的双酚A-环氧氯丙烷型环氧树脂外,也生产各种类型的新型环氧树脂,以满足国防建设及国家经济各部门的急需。 二、基本分类 1.分类标准 环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐高温胶、耐低温胶、水中及潮湿面用胶、导电胶、光学胶、点焊胶、环氧树脂胶膜、发泡胶、应变胶、软质材料粘接胶、密封胶、特种胶、潜伏性固化胶、土木建筑胶16种。 2.几种分类 对环氧树脂胶黏剂的分类在行业中还有以下几种分法: (1)按其主要组成分为纯环氧树脂胶黏剂和改性环氧树脂胶黏剂; (2)按其专业用途分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等; (3)按其施工条件分为常温固化型胶、低温固化型胶和其他固化型胶; (4)按其包装形态可分为单组分型胶、双组分胶和多组分型胶等; 还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。 三、几种常见环氧树脂结构

有机高分子磁性材料研究综述

有机磁性材料研究综述 摘要:有机磁性材料是最近二十多年发展起来的新型的功能材料,因为其结构的多样性,可用化学方法合成,相比传统磁性材料具有比重低、可塑性强等等优点,因此在新型功能材料方面有着广阔的应用前景。本文综述了高分子有机磁性化合物的发展和研究近况,及其有机高分子磁性材料的分类及其应用前景。 关键词:有机磁性材料结构型复合型 Review on the research of organic magnetic material Abstract: organic magnetic material is a new functional material in recent twenty years, because of the diversity of its structure, synthetized by chemical method , compared with the traditional magnetic materials with a low specific gravity, high plasticity, and so on, so it has a broad application prospect in the new functional materials.This paper reviews the development and research status of high polymer organic magnetic materials’compounds, classification and its application prospect. Key word: organic magnetic material intrinsic complex

智能高分子材料 刘心悦20420092201280

智能高分子凝胶简介 班级:09化学2班姓名:刘心悦学号:20420092201280 摘要:智能高分子凝胶可以通过控制高分子凝胶网络的微观结构与形态,来影响其溶胀或伸缩性能,从而使凝胶对外界刺激作出灵敏的响应,表现出智能。 关键词:智能高分子材料高分子凝胶 智能高分子材料 智能高分子材料属于智能材料(intelligentmaterial)的范畴。智能材料是指对环境可感知、响应,并且具有发现能力的新材料[1]。智能材料的研究与开发正孕育着新一代的技术革新。 智能材料包括金属智能材料、无机非金属智能材料和高分子智能材料,其中高分子智能材料包括智能高分子凝胶、智能高分子复合材料和智能高分子膜材料等,目前研究最广的是智能高分子凝胶。 智能高分子凝胶 高分子凝胶是由具有三维交联网络结构的聚合物与低分子介质共同组成的多元体系,其大分子主链或侧链上含有离子解离性、极性或疏水性基团,对溶剂组分、温度、pH值、光、电场、磁场等的变化能产生可逆的、不连续(或连续)的体积变化,所以可以控制高分子凝胶网络的微观结构与形态,来影响其溶胀或伸缩性能,从而使凝胶对外界刺激作出灵敏的响应,表现出智能。 智能凝胶的体积相变原理 根据高分子凝胶溶胀及退溶胀的渗透压公式,渗透压由高分子链与溶剂的相互作用、高分子链的橡胶弹性和高分子凝胶内外离子浓度差构成。当这三者之间达到平衡时,高分子凝胶呈平衡状态。温度、pH值、无机盐的浓度、溶剂的性质对溶胀平衡都有影响,在一定的外界刺激下,凝胶会因为溶液性质的微小变化而引起极大的体积变化,即所谓的凝胶体积相变,这就是智能高分子凝胶对外界

刺激作出响应的依据。 智能高分子凝胶对各种外界刺激的响应性 1 溶剂组成 体积变化。也就是说,当pH值发生变化时,水凝胶体积随之变化。考虑到国外智能高分子材料均集中在合成聚合物(由均聚物、接枝或嵌段共聚物到共混物、互穿聚合物网络及高分子微球等),他将智能材料的研究开拓到具有凝胶相转变的天然高分子材料,特别是生物相容性良好而且可以生物降解的壳聚糖(chitosan,CS ) 3 温敏性凝胶 利用高分子与溶剂之何的相互作用力的变化、溶胀高分子凝胶的大分子链的线团一球的转变,使凝胶由溶胀状态急剧地转化为退溶胀状态,从而高分子凝胶表现出对溶剂组分变化的响应,这类材料可由聚乙烯醇、聚丙烯酞胺等制成川。如:聚丙烯酞胺(PAAM)纤维经环化处理后除去未环化的部分以及未参加反应的物质,干燥后即得到P八AM凝胶纤维。这种纤维在水中伸长,在丙酮中收缩,而且其体积随溶剂体系中丙酮含量的增加发生连续的收缩。如果在凝胶网络中引人电解质离子成部分离子化凝胶,则在某一溶剂组成时产生不连续的体积变化。 2 pH值响应凝胶 具有pH值响应性的凝胶,一般均是通过交联形成大分子网络。凝胶中含有弱酸和碱基团,这些基团在不同的pH值及离子强度的溶液中,响应的离子化,使凝胶带电荷,并使网络中氢键断裂,导致凝胶发生不连续的 温敏性凝胶,当温度升高时,疏水相相互作用增强,使凝胶收缩,而降低温度,疏水相间作用减弱使凝胶溶胀,既所谓的热缩凝胶。例如,轻微交联的N一异丙基丙烯酞胺(NIPA )与丙烯酸钠的共聚体。其中丙烯酸钠是阴离子单体,其加量对凝胶的溶胀比和热收缩敏感温度有明显影响。阴离子单体含量增加,溶胀比增加,热收缩温度提高。所以可以从阴离子单体的加量来调节溶胀比和热收缩温度。NIPA与甲基丙烯酸钠共聚交联体亦是一种性能优良的阴离子型热缩温敏性水凝胶。最近报道的以NIPA,丙烯酞胺一2一甲基丙磺酸钠、N-(3- 甲基胺)丙基丙烯酞胺制得的两性水凝胶,其敏感温度随组成的变化在等物质的量比时最低,约为3590,而只要正离子或负离子的量增加,均会使敏感温度上升。

(发展战略)光功能高分子材料的研究发展及应用

论光功能高分子材料的研究发展及应用综述 吴俊杰 化工081班 前言:光功能高分子材料研究是光化学和光物理科学的重要组成部分,近年来随着现代科学技术的发展,光功能高分子材料研究在功能材料领域占有越来越重要的地位,光功能高分子材料日益受到重视。光功能高分子材料的应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,正在快速发展之中,光功能高分子材料研究与应用也将越来越广。 1光功能高分子材料及分类 光功能高分子材料是指能够对光进行传输、吸收、储存、转换的一类高分子材料。 表1 光功能高分子材料的分类 剂等构成。 光致抗蚀剂:主要包括正性光致抗蚀剂和负性光致抗蚀剂等。 高分子光稳定剂:主要包括光屏蔽剂、激发态狙灭剂抗氧剂和聚合型光稳定剂等。 光致变色高分子材料:主要包括含硫卡巴腙络合物的光致变色聚合物、含偶氮苯的光致变色高分子和含螺苯并吡喃结构的光致变色高分子等。 光导电高分子材料:由光导电聚合物材料构成。

2光功能高分子材料的类别和应用 表2 光功能高分子材料的类别和应用 3光功能高分子材料的发展概况 1954年,美国柯达公司的Minsk等人开发出光功能高分子聚乙烯醇肉桂酸酯,并成功应用于印刷制版。而现在光功能高分子材料应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,发展之势方兴未艾。 光功能高分子材料能够对光能进行传输、吸收、储存、转换.塑料光导纤维是利用高分子的光曲线传播性而制成的非线性光学元件。塑料光纤一般以有机玻璃为芯材,以含氟透明树脂为皮层,用柔软的有机硅树脂进行一次包覆,然后用硬质高分子材料进行二次包覆。有机玻璃、含氟透明树脂、有机硅树脂都是高分子材料,芯材有高折光率,皮层为低折光率材料。光纤的直径范围为几十到约1000微米,光纤在光纤芯内通过反复反射而向前传输,由于塑料光纤在目前传输损耗仍较高,主要应用于飞机、舰船和汽车内部的短距离光通信系统。此外,还应用于光纤显示器、图像的缩小和放大、火焰及高温监视器、光开关、巨点折象器、阅读穿孔卡片、道路标志和装饰照明等。近来,对有机玻璃采用重氢化技术,已使塑料光纤的传输损耗有所降低,为较长距离应用创造了条件。 以高性能有机玻璃或聚碳酸酯透明塑料的高分子材料为基材制成的光盘,是80年代新开发成功的先进信息、记录、储存元件,适应了激光技术的发展和对大容量、高信息密

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

功能高分子材料讲义

第三章功能高分子材料 3.1 概述 功能高分子是高分子化学的一个重要领域,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。 3.1.1 功能高分子材料的概念和分类 高分子材料按其使用性能可以分为结构高分子材料和功能高分子材料,结构高分子材料具有较高的比刚度和比强度,可以代替金属作为结构材料,如我们熟知的工程塑料和聚合物基复合材料。 对功能高分子材料,目前尚未有明确的定义,一般认为是指

除了具有一定的力学功能之外还具有特定功能(如导电性、光敏性、化学性和生物活性等)的高分子材料,所谓材料的功能,从根本上说,是指向材料输入某种能量,经过材料的传输转换等过程,再向外界输出的一种作用。材料的这种作用与材料分子中具有的特殊功能的基团和分子结构分不开的。 请注意,不可将功能高分子和功能高分子材料混为一谈,这两者是有明显区别的。功能高分子材料从组成和结构上可以分为结构型和复合型两大类。结构型功能高分子材料是指在高分子链中具有特定功能基团的高分子材料,这种材料所表现的特定功能是由高分子本身的因素决定的。构成结构型功能高分子材料中的高分子叫功能高分子,而复合型功能高分子材料,是指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、导磁)的其它材料进行复合而制得的功能高分子材料,这种材料的特殊功能不是由高分子本身提供的。 功能高分子材料涉及范围广、品种繁多,还未有统一的分类方法,一般按其使用功能来分类,大致可以分为以下几类:(1)化学功能高分子材料 主要包括离子交换树脂,高分子催化剂、高分子试剂、螯合树脂、高分子絮凝剂和高吸水性树脂等。

浅谈智能高分子材料现状与前景

浅谈智能高分子材料现状与前景 班级:料085 姓名:季承玺 学号:089024463 选课时间:周三7-8节,周五5-6节

浅谈智能高分子材料现状与前景 料085 季承玺 089024463 选课时间:周三7-8节,周五5-6节 摘要:功能与智能高分子材料是近代发展较快的交叉学科。它不仅在轻工、化工、纺织、石油化工、国防科技、医疗保健中应用相当广泛,而且在生物科学、信息科学、材料科学以及新能源等高新技术领域也有广泛的应用前景。 关键字:智能高分子,应用,材料,前景 引言:材料的智能性是指材料的作用和功能可随外界条件的变化而有意识地调节、修饰和修复。智能高分子材料的品种多,范围广,智能凝胶、智能膜、智能纤维和智能粘合剂等均属于智能高分子材料的范畴。由于高分子材料与具有传感、处理和执行功能的生物体有着极其相似的化学结构,较适合制造智能材料并组成系统, 向生物体功能逼近, 因此其研究和开发尤其受到关注。 前景:高分子材料由于在结构上的复杂性和多样性,可以在分子结构(包括支链结构)、聚集态结构、共混、复合、界面和表面甚至外观结构等方面进行或单一或多种结构的利用,以达到材料的某种智能化。智能材料的发展是建立在人类需要的基础上的,因此它必将朝着对人们活动起分担作用的社会活动对应型方向发展。材料特殊的结构决定了它的智能价值。目前对结构的设计和控制还局限于一次结构。所以,聚合物的高次结构以及与之相关的分子间的相互作用必将成为今后智能高分子研究的重要课题。 一、智能高分子材料概念 “智能材料”这一概念是由日本的高木俊宜教授于1989年提出来的。所谓智能材料,就是具有自我感知能力,集累积传感、驱动和控制功能于一体的材料,也是具有感知功能即识别功能、信息处理功能以及执行功能的材料,具备感知、反馈、响应三大基本要素。它不但可以判断环境,而且可以顺应环境,通过感知周围环境的变化,适时做出相应措施,达到自适应的目的。智能材料可用图1作出描述。迄今为止,人们已开发出许多种智能高分子材料[2]。 由于高分子材料与具有传感、处理和执行功能的生物体有着极其相似的化学结构,较适合制造智能材料并组成系统,向生物体功能逼近,因此其研究和开发尤其受到关注[10]。 智能高分子材料又称智能聚合物、机敏性聚合物、刺激响应型聚合物、环境敏感型聚合物,是一种能感觉周围环境变化,而且针对环境的变化能采取响应对策的高分子材料。

电致发光高分子材料综述

电致发光高分子材料综述 作者:张祺夏沣任彤尧汤伟 摘要:高分子发光二极管(PLED)是由英国剑桥大学的杰里米伯勒德及其同事首先发现的。聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管,因其巨大的科学和商业价值而得到了广泛的关注,是近来国际上的研究热点。对于各种新材料的不断开发和深入研究,PLED器件日益实用化。本文主要综述了近几年国内外关于高分子聚合物在电致发光材料领域的研究进展,介绍了有机高分子发光材料的发展现状,概述了其市场前景及相关的应用,并展望了高分子电致发光材料的发展趋势。 关键词:高分子;电致发光;研究现状 Abstract:Polymer light-emitting diode (PLED) first discovered by Jerry Mibo Lede of the University of Cambridge and his colleagues. Most organic polymer molecules from the small ones to chain together by a spin-coating to form polymer organic light-emitting diodes, because of its great scientific and commercial value ,it has been widespread concerned, and becomes the recent international researchs’ focus. For the continuous development of new materials and in-depth researchs, PLED devices become increasingly practical. This paper mainly overviews the recent years’domestic and foreign polymer progress of research in electroluminescent materials, describes the recent status of the development of organic polymer light-emitting materials, overviews the market prospects and related applications, and prospects of polymer electroluminescent material trends. Keywords:Polymer; EL; Research status

关于导电高分子材料的研究进展

湖北汽车工业学院 本科生课程论文 《新材料导论》 论文题目关于导电高分子材料的研究进展学生专业班级 学生姓名(学号) 指导教师(职称) 完成时间

关于导电高分子材料的研究进展 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的概念、分类、导电机理及其应用领域,综述了近些年来国内外科研工作者对导电高聚物的研究进展状况并对其发展前景进行了展望。 关键词:导电高分子;功能材料;导电机理;应用;述评。 自从1976年美国宾夕法尼亚大学的化学家MacDiarmid领导的研究小组首次发现掺杂后的聚乙炔(Polyacetylene,简称PA)具有类似金属的导电性以后,人们对共轭聚合物的结构和认识不断深入和提高,新型交叉学科)))导电高分子领域诞生了。在随后的研究中科研工作者又逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯撑、聚苯胺等导电高分子。导电高分子特殊的结构和优异的物理化学性能使它成为材料科学的研究热点,作为不可替代的新兴基础有机功能材料之一,导电高分子材料在能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。到目前为止,导电高分子在分子设计和材料合成、掺杂方法和掺杂机理、可溶性和加工性、导电机理、光、电、磁等物理性能及相关机理以及技术上的应用探索都已取得重要的研究进展。本文介绍了导电高分子的结构特征、导电机理及其应用领域,综述了近些年来导电高分子材料研究领域的进展状况。 1 导电高分子材料的分类 高分子导电材料通常分为复合型和结构型两大类: ①复合型高分子导电材料。 由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。 ②结构型高分子导电材料。 是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。按照导电机理可分为电子导电高分子材料和离子导电高分子材料。电子导电高分子材料的结构特点是具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导

功能高分子材料发展概述

功能高分子材料发展概述 1.速干衣 速干的由来:所谓速干实际上是由英文QUICK-DRY或DRY-EASY等类似单词直译过来的,而速干是指该面料的衣物与毛质或棉质的衣物相比时,在外界条件相同的情况下,更容易将水分挥发出去,干得更快。速干衣顾名思义就是干的比较快的衣服,它并不是把汗水吸收,而是将汗水迅速地转移到衣服的表面,通过空气流通将汗水蒸发,从而达到速干的目的,一般的速干衣的干燥速度比棉织物要快50%。 速干衣物最初的设计理念主要是 基于两个方面的考虑:A、内部因素, 由于从事野外活动的人比较容易出 汗。如果运动量大的时候,全身则会 大汗淋漓。如果此时你穿的是普通的 衣物,那么它们会紧紧贴在你的皮肤 上,特别难受。但速干衣物呢,它们 能使挥发的汗水迅速得以挥发到体 外;B、外部因素,野外行走时,早 晨的露珠或是毛毛细雨都会将你的 衣物打湿,如果裤腿紧贴在腿上,那 会带来不舒服的感觉。如果是速干衣 物,那么它们的速干性能及防泼水性 能就会使你免除这些不必要的麻烦。 速干的面料:市场上的速干衣物 品牌林林总总,所使用的面料也 是数不胜数,更是令人眼花缭 乱。其实常见的户外速干衣物所 采用的面料无非是以下几种常见 面料,COOLMAX这是一种最为常 见,使用范围相对较为广泛的一 种面料,由杜邦公司研制。该面 料的突出特点是具有很强的吸汗 排汗功能,这得归功于COOLMAX 的中空结构,但选购时必须看清 楚COOLMAX在面料中所含的比 例;THEMOLITE这种聚脂纤维的保 暖性能不错,属于中空涤纶纤维 系列,但缺点是排汗性能相对要 差一些;MONI-DRY属于吸湿速干 面料,有COLUMBIA公司研制出品。其主要特点是超强的挥发性和吸水性,比一般的棉布要强2--3倍,从而有效地保持穿着者的舒适干爽;CIBAULTRAPHIL这

智能化高分子的研究进展

智能化高分子的研究进展 摘要:近年来,在新材料领域中正在兴起一门新的分支学科——智能高分子材料。本文对一些智能高分子材料在各个领域的研究及应用做出综述性的阐述,并对该领域的发展做出一些展望。 关键字:智能高分子材料(Intelligent Polymer Materials)特征应用发展智能高分子材料 智能高分子材料(Intelligent Polymer Materials)又称智能聚合物,机敏性聚合物,刺激相应型聚合物,环境敏感型聚合物。智能高分子材料是一种能够通过对周围的环境变化的感觉,针对这个变化采取一定反应的高分子材料。智能高分子材料它在模仿生命系统中同时具有感知和驱动双重功能的材料,即不仅能够感知外界环境或内部状态所发生的变化,而且能够通过材料自身的或外界的某种反馈机制,实时地将材料的一种或多种性质改变,做出所期望的具有某种响应的材料,又称机敏材料。目前智能高分子材料主要研究,记忆功能高分子材料、智能高分子凝胶、智能药物释放系统、聚合物电流变流体、智能高分子膜、智能纺织品、智能橡塑材料、生物材料的仿生化、智能化等等。 表1智能材料的分类 分类方法智能材料种类 按材料的种类 金属类智能材料非金属类智能材料高分子类智能材料智能复合材料 按材料的来源 天然智能材料合成智能材料建筑用智能材料工业用智能材料

按材料的应用领域军用智能材料 医用智能材料 航天用智能材料 按材料的功能半导体;压电体;电致流变体按电子结构和化学键金属;陶瓷;聚合物;复合材料 20世纪80年代,人们提出智能材料的概念,20世纪90年代以来,美国、日本、意大利、英国等国家都在大力加强对智能材料的基础研究和应用研究。智能材料要求材料体系集感知、驱动和信息处理于一体,形成类似生物材料那样的具有智能属性的材料。其概念设计可以从以下观点构思:(1)材料开发的历史——由结构材料、功能材料进而到智能材料;(2)人工智能在材料的水平反映——生物计算机的未来模式;(3)从材料设汁的立场制造智能材料;(4}软件功能引入材料;(5)人们对材料的期望;(6)能量传递;(7)材料具有时间轴,要求材料有寿命预告、自修复、自分解,甚至自学习、自增殖、自净化功能和可对应外部刺激时间轴积极自变的动态功能。智能高分子材料在信息、电子、宇宙、海洋科学、生命科学等领域得到了大力的发展和应用。 记忆功能高分子材料 形状记忆高分子材料(shape memory polymer,SMP)就是运用现代高分子物理学理论和高分子合成及改性技术,对通过高分子材料进行分子组合和改性获得的一类高分子材料。例如:聚乙烯,聚酰胺等高分子材料进行分子设计及分子结构的调整,使他们在一定的条件下,被赋予一定的形状初始态(initial state)当外部的环境发生变化之后,他可以相应地改变形状并将其固定变形态(varrable morphology)。如果环境以特定的方式和规律再次发生变化,它便可逆的恢复到初始态。形状记忆过程可简单表达为:初始形状的制品→2次形变→形变固定→形变恢复。 根据实现记忆功能的条件的不同,可以将SMP分为以下四种。 (1)热致SMP。(2)电致SMP。(3)光致SMP。(4)化学感应型SMP。目前研究最多,并投

完整word版,功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量轻,易加工成各种复杂的形状,化学稳定性好及电阻率可在较大范围内调节等特点。此外在电子工业中的应用日趋广泛,促进了现代科学技术的发展。因此,自然引起了学术界和工业界的广泛兴趣。 导电高分子材料根据材料的组成可以分成复合型导电高分子材料(composite conductive polymers)和本征型导电高分子材料(intrinsic conductive polymers)两大类。复合型导电高分子材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯

电致发光高分子功能材料的应用..

电致发光高分子材料及其应用进展 孙东亚*,1,何丽雯2 (1 厦门理工学院材料科学与工程学院福建厦门361024) (2华侨大学材料科学与工程学院福建厦门361021) 摘要:主要介绍了导电高分子的一个重要门类-电致发光(有机EL,也称作OLED)聚合物材料的发光机理、制备工艺及应用现状。结合有机OLED相比于传统显示材料及器件具有发光效率高、波长易调节、寿命长、机械加工性能好等优势,综述了OLED材料及器件在环保照明及平板显示领域取得进展和未来的发展方向。 关键词:电致发光;高分子材料;平板显示; Abstract:An important category of conductive polymer-electroluminescent (organic EL, also known as OLED) luminescence mechanism, preparation process and application status of polymer materials has been introduced. Compared to traditional display materials and devices, the organic combination of OLED has high luminous efficiency, long life, easy to adjust the wavelength, good machining performance and other advantages. At the same time, we summarized the progresses and future development of OLED materials and devices in the green lighting and panel display. 0 前言 有机高分子光电材料由于其诱人的应用前景而得到了人们的广泛关注和研究[1-10]。近年来,导电高分子的研究取得了较大的进展,科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,已使其成为一门相对独立的学科。目前,有机电致发光平面显示器(OLED)在一些领域里已经取代了液晶显示器占有平面显示器的主要市场。与液晶平面显示器相比, 有机电致发光平面显示器以及高效率的节能照明设备具有主动发光、轻薄、色彩绚丽、全角度可视、能耗低等显著特点,吸引很多国内外研究机构和国际知名大电子、化学公司都投入了巨大的人力财力研究这一领域[11-15]。虽然在应用研究领域已经取得了巨大的成功,但是无论从综合发光效率、发光波长的调整、稳定性和寿命等方面还有待更进一步的发展。本文综述了近年来OLED材料与器件在制备工艺及品质质量方面所取得的进展及需要解决的主要问题。 1 有机电致发光器件及原理 由电能直接激发产生的发光现象称为电致发光。如图1所示,电致发光材料是通过电极向材料注入空穴和电子,两者通过在材料内部的相对迁移在材料内部发生复合形成激子(激发态分子),然后激子导带中的电子跃迁到价带的空穴中,多余的能量以光的形式放出,产生发光现象。 福建省中青年教师教育科研项目(JB14077) Education Scientific Project of Young Teacher of Fujian Province(JB14077) 作者简介:孙东亚(1982-),男,硕士,工程师,从事光电功能材料制备与表征,E-Mail:

智能高分子材料的应用与进展 论文

智能高分子材料的应用与进展 (华北科技学院化工B082班卫星红 200801034207) 摘要智能材料已成为当今借界高度关注的热点和焦点 ,它有着广阔的应用前景 ,取得了丰富的研究成果。从合成、加工、新产品开发及其应用诸方面综述了智能高分子材料,如智能高分子凝胶、形状记忆高分子材料、智能织物、智能高分子膜和智能高分子复合材料等的研究进展,并展望了其发展前景。 关键词高分子材料智能高分子材料响应速率进展 0 引言 20世纪80年代中期,人们提出了智能材料的概念,智能材料要求材料体系集感知、驱动和信息处理于一体,形成类似生物材料那样的具有智能属性的材料[ l ]。智能材料在目前文献中的提法大都为机敏材料( Smart Material )、机敏结构( Smarts Structure)、自适应结构 (A daptive Strueture)、智能材料( Intelligent Material )、智能结构( Intelligent Strueture),这些概念国内外至今尚无统一的定论。关于“机敏”(Smart)和“智能”( Intelligent)的讨论,不少文献资料进行了说明[2~5]。 智能材料的基础是功能材料功能材料通常可分为 2 大类一类被称为驱动材料,它可以根据温度、电场或磁场的变化来改变自身的形状、尺寸、位置、刚性、阻尼、内耗或结构等 ,因而对环境具有自适应功能,可用来制成各种执行器;另一类被称为感知材料,它是指材料对于来自外界或内部的刺激强度及变化(如应力、应变、热、光、电、磁、化学和辐射等)具有感知,可以用来做成各种传感器.同时具有敏感材料与驱动材料特征的材料,被称为机敏材料。智能材料通常不是一种单一的材料,而是一个由多种材料系统组元通过有机的紧密或严格的科学组装而构成的一体化系统 ,是敏感材料、驱动材料和控制材料(系统)的有机合成。智能材料是材料科学不断向前发展的必然结果,是信息技术溶入材料科学的自然产物,它的问世,标志和宣告第 5 代新材料的诞生,也预示着在 2 1 世纪将轰生一次划时代的材料革命。近年来,智能材料的研究在世界范围内已成为材料科学与工程领域的热点之一 ,甚至有人把21世纪称之为智能材料世纪。智能材料可用1作出描述。迄今为止, 人们已开发出很多种智能高分子材料。 图1 智能 材料示意图

最新功能高分子材料综述

功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、

转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量

导电高分子综述

导电高分子材料及其应用 摘要: 导电高分子材料具有密度小、易加工、耐腐蚀、可大面积成膜,以及电导率可 在绝缘体- 半导体- 金属态(10-9 到105 S/cm)的范围里变化。所以自从1977 年来,导电高分子材料的研究受到了普遍的重视和发展。本文介绍了国内外导 电高分子材料的分类、特点、应用及近年来研究发展的概况。同时还展望了导 电高分子有待发展的方向。 关键词:导电高分子;分类;应用 1导电高分子简介 20 世纪70 年代,白川英树、Heeger 和MacDiarmid等人首次合成了聚乙炔薄膜,后来又经掺杂发现了可导电的高聚物,这就是导电高分子材料。经过40 多年的发展,导电高分子材料也从最初的聚乙炔发展到聚苯胺、聚吡咯、聚噻吩等数十种高分子材料,成为 金属材料和无机导电材料的优良替代品。[1]但是导电高分子在变形过程中不仅仅存在弯曲 移动,而且还会产生蠕动现象,在器件的层间会发生快速分层的行为,溶剂易于挥发,使 用寿命有限、低的能量转换效率等等缺点使其在应用中具有难以突破的难点技术。[2] 2 高分子材料的分类及导电机理 导电高分子材料通常是指一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10-6S/cm 以上的聚合物材料。按照材料结构和制备方法的不同可把导电高分子材料分为结构型(或本征型)导电高分子材料和复合型导电高分子材料两大类。 2.1结构型高分子导电材料 结构型高分子导电材料。是指高分子结构本身或经过掺杂之后具有导电功能的高分子 材料。最早发现的结构型高分子聚合物是用碘掺杂后形成的聚乙炔。这种掺杂后的聚乙炔 的电导率高达105 S/cm。后来人们又相继开发出了聚苯硫醚、聚吡咯、聚噻吩、聚苯胺等导电高分子材料。这些材料掺杂后电导率可达到半导体甚至金属导体的导电水平。结构型 高分子导电材料用于试制轻质塑料蓄电池、太阳能电池、传感器件、微波吸收材料以及试 制半导体元器件等[3] 。但目前这类材料由于还存在稳定性差(特别是掺杂后的材料在空气中的氧化稳定性差)以及加工成型性、机械性能方面的问题,尚未进入实用阶段。 2.1.1 聚乙炔( PA) 纯净聚乙炔掺进施主杂质(碱金属(Li、Na、K)等)或受主杂质(卤素、AsF5、PF5 等)后才能导电。与半导体不同的是,掺杂聚乙炔导电载流子是孤子。聚乙炔是目前世界

07370420功能高分子材料盛维琛

功能高分子材料 Fun cti onal Polymer Materials 课程编号:07370420 学分:2 学时:45 (其中:讲课学时:30自学学时:15 实验学时:0上机学时:0)先修课程:有机化学、无机化学、分析化学、物理化学、高分子物理、高分子化学适用专业:高分子材料与工程、金属材料工程、无机非金属材料工程、复合材料与工程、化学工程与工艺、化学等专业本科四年级学生选修课 教材:王国建.功能高分子材料?北京:化学工业出版社,2010年第一版开课学院:材料科学与工程学院 一、课程的性质与任务: 功能高分子课程是一门高分子材料专业的专业选修课。它是建立在高分子物理,高分子化学和高分子结构与性能基础上,并与物理学、医学、甚至生物学密切联系的一门学科。它是研究功能高分子材料化学规律的一门科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域,对于设计和制备高性能高分子材料起着指导作用。 功能高分子课程的基本任务: 通过课堂讲授和研究进展介绍,使学生能了解几种重要的功能高分子材料的制备方法、性能与结构的一般关系等,对功能高分子材料科学有一个概括性认识,能理解功能的产生机理,并可根据所需功能设计出一些简单的具有相应功能基团的高分子材料。 本课程主要介绍功能高分子材料的发展状况,功能高分子的种类与功能,功能高分子材料的结构与性能的关系,功能高分子材料的制备策略,并结合近年来国际,国内在功能高分子材料方面的研究成果详细介绍常用的物理化学功能高分子(高吸水性树脂、离子交换树脂、高分子试剂及催化剂等)、电功能高分子(复合导电型、电子导电型、离子导电型等导电高分子材料、电致发光、电致变色等电活性高分子材料)、光功能高分子(感光性树脂、光致变色高分子、光降解、光转换高分子材料等)、生物医用高分子(生物惰性、生物降解、组织工程、药物高分子材料等)、高分子助剂(高分子絮凝剂、高分子电解质、高分子染料、高分子食品添加剂等)其它一些类型功能高分子材料制备方法,机理,应用。 二、课程的基本内容及要求:第一章功能高分子材料概述 1. 教学内容 1)功能高分子材料的研究对象和研究内容 2)功能高分子材料的发展历程

相关主题
文本预览
相关文档 最新文档