当前位置:文档之家› 液体火箭发动机试验台贮箱增压系统数值仿真

液体火箭发动机试验台贮箱增压系统数值仿真

液体火箭发动机试验台贮箱增压系统数值仿真
液体火箭发动机试验台贮箱增压系统数值仿真

第22卷第1期2007年1月

航空动力学报

Journal of Aerospace Power

Vol.22No.1

Jan.2007

文章编号:1000-8055(2007)01-0096-06

液体火箭发动机试验台贮箱

增压系统数值仿真

陈 阳1

,张振鹏1

,瞿 骞2

,朱子环

2

(1.北京航空航天大学宇航学院,北京100083; 2.北京航天试验技术研究所,北京100074)

摘 要:在不考虑传热传质的情况下建立了一种简化的贮箱模型,并采用液体火箭发动机试验台气路系统通用模块化建模与仿真软件对容腔放气过程和某试验台贮箱增压系统在发动机点火工作段的增压过程进行了仿真,计算结果与分析解和试验结果获得了较好的一致,验证了软件的有效性和通用性.对两个系统的建模过程表明软件所采用的模块化建模与仿真方法适用于对复杂管网的建模,在液体火箭发动机系统仿真上具有较好的应用前景.对贮箱增压系统的仿真表明,合理设计P ID 控制参数并根据经验预置与额定流量相近的调节阀初始开度,对于提高增压系统起动过程的平稳性有利.

关 键 词:航空、航天推进系统;液体火箭发动机;试验台贮箱增压系统;数值仿真;P ID 控制中图分类号:V 434 文献标识码:A

收稿日期:2005-12-12;修订日期:2006-05-09

作者简介:陈阳(1979-),男,河南漯河人,北京航空航天大学宇航学院博士生,主要从事液体火箭发动机系统动力学与仿真研究.

Numerical simulation for tank pressurization system of LRE test -bed

CHEN Yang 1,ZH ANG Zhen -peng 1,QU Qian 2,ZHU Z-i huan 2

( 1.School of Astr onautics,

Beijing U niversity of A ero nautics and Astro nautics,Beijing 100083,China;2.Beijing Institute of Aerospace Testing Technolog y,Beijing 100074,China )Abstract:A simple mo del of propellant tank w as established by neg lecting m ass and heat transfer betw een the pr opellant and pressurant.T hen by employing the modular ization modeling and sim ulation softw are for liquid r ocket engine(LRE)test -bed g as sy stem(LRET-BMM SS -GS),blow dow n of a tank and pressurization of a LO 2tank pr essurizatio n sy stem during engine firing w ere simulated.T he sim ulation r esults ar e in g ood ag reem ent with the analytical solution and test data.Accordingly ,the softw are is validated to be effective and versatile.T he prog ress of m odeling tw o sy stems show s that the m ethod of M M S is suitable for modeling complicated LRE system and can be used to sim ulate all kinds of w orking pro cesses of LRE sy stem.T he simulatio n o f LO 2tank pressurization system indicates that PID control parameters should be set reasonably and the initial opening of pneumatic dia -phragm co ntrol valve should be adjusted to nom inal pressurant mass rate,w hich is effective to improv e stability of pr essurizatio n starting transient.

Key words:aerospace propulsion system ;liquid rocket eng ine(LRE);tank pressur ization

system of LRE test -bed;num erical sim ulation;PID co ntro l

液体火箭发动机试验台作为液体火箭发动机热试车与热检验的试验检测平台,为满足液体火

箭发动机的各种试验要求,需要在试验台设计阶段、安装调试阶段、热试车阶段开展全面的研究.

第1期陈 阳等:液体火箭发动机试验台贮箱增压系统数值仿真数值仿真技术作为试验与理论之外的第三种研究手段,可以缩短研制周期,降低试验费用,并为试验提供指导性建议.当数学模型经过几次修正和检验,证明已能相当精确地描述实际工作过程时,就可用数学方法解决部分试验问题.在仿真模型的建立上,传统的建模方式往往是系统结构与计算程序相关,如果系统结构有所改变,必须深入到计算程序中作出相应修改,模块化的方法[1]

很好的解决了这一问题.液体火箭发动机试验台气路系统通用模块化建模与仿真软件LRETBMMSS -GS 就是根据这种思想开发的,然而数值仿真能否用于指导实践取决于软件的有效性与通用性,即软件能否较好地在计算机上重现实际试验台系统的动态工作过程,需要通过与试验数据的对比进行评估.

文献[2]采用GFSSP 软件对某推进试验装置的氦气增压系统作了全试车过程仿真,验证了GF -SSP 软件的有效性和通用性.文献[2~4]为了准确计算增压气体的流量以及贮箱内温度、压强的动态过程,考虑了贮箱内低温液体与气体以及流体与管壁之间复杂的传热传质关系,获得了与试验数据符合较好的结果.在推进剂流量已知的情况下,文献[5,6]提出了一种计算增压气体流量的经验公式.本文在不考虑传热传质的情况下建立了一种简化的贮箱模型,借鉴文献[2~4]的计算结果,采用LRETBMMSS -GS 软件对容腔放气过程和某试验台贮箱增压系统在发动机点火工作段的增压过程进行了仿真,并对计算结果进行了评估.

1 仿真软件简介

LRETBMM SS -GS 采用模块化方法开发,包括数值计算程序和可视化输入输出界面,前者采用Fo rtr an90语言和基于模块子程序调用的程序设计方法编写,后者采用M icro soft Visual C++

语言开发.如图1所示为数值计算程序的总体框架,模块子程序库中贮箱为新加模块,其它六个模块数值模型的算法部分在文献[7~9]中已经建立起来,本文对其中的变体积气体容积的能量方程[8]作了修正,考虑了流体的膨胀功.采用该软件可处理由这七个模块所组成的试验台气路系统的通用模块化建模与仿真问题.

2 容腔放气算例

文献[10]对某容腔放气过程进行了仿真,并通过与等熵过程分析解的比较验证了GFSSP 软

件的有效性.采用LRETBMM SS -GS 软件建立的

图1 仿真软件数值计算部分的总体框架Fig.1 F ramew ork o f simulatio n soft war e

numerical par t

数值仿真模型如图2所示,把此系统化为1个气体容积(GVol1)、1段气体管道(GP1)、1个流体源(FS1),图中标出了系统的尺寸和初始状态.

图2 容腔放气系统的数值仿真模型F ig.2 N umerical simulatio n mo del of

tank blow do wn system

GP1流场网格数划分为8个,如图3所示为仿真结果与分析解的对比,140s 时刻仿真值与分析解相差1%,符合很好.

图3 容腔放气系统仿真结果与分析解的对比Fig.3 Comparison o f results by simulation and

analytica l solution

97

航 空 动 力 学 报第22卷

3 试验台贮箱增压系统算例

3.1 贮箱简化模型

对于低温推进剂贮箱,液面上方气枕压强的变化主要取决于增压气体流入速度、推进剂流出速度以及贮箱内的传热传质作用.本文建模时采用简化的贮箱模型,认为贮箱内气枕的状态是瞬时一致和均匀的,不考虑推进剂和管壁对气枕的传热传质,根据考虑膨胀功的变体积气体容积模型,气枕的模型方程为:

图4 液氧贮箱增压系统的数值仿真模型

Fig.4 N umer ical simulation model o f LO 2tank pr essurization sy stem

连续方程:d Q d t =1V

E

n _in i=1

Q in

i (u n A n )i -

Q V d V

d t

能量方程:

d p d t =C V E n _in i=1p in i (u n A n )i -C p V d V d t

Var in i =Var a if (u n )i E 0

Var if (u n )i <0

,Var I {Q ,p }

d V d t =Q L d V Q L d t =

Q m L Q L

式中,n _in 为贮箱入口管道个数,u n 、A n 分别为第i 条管道下游边界网格的速度和截面积,V 为贮

箱气枕体积,Q m L 为推进剂流出贮箱的质量流量,Q L 为推进剂密度.

对于液氧贮箱,文献[2]试验测得发动机点火时刻气枕初始温度约为140K,随着发动机进入稳态工况,气枕温度近似呈线性上升,100s 时刻约为170K.

文献[5,6]给出的计算增压气体流量的经验公式为:

Q m =

p Ullage ZRT U llage Q m L Q L

式中,Z 为贮箱气枕部分气体在压强为p U llage 、温度为T U llage 情况下的压缩系数,R 为气体常数.对于T Ullage 的取值,文献[5]根据以往试验数据建议,液氧贮箱取为180K,液氢贮箱取为

140K.

3.2 系统数值仿真模型

图4为某液体火箭发动机试验台液氧贮箱增压系统的数值仿真模型,模块化建模时把此系统化为24段气体管道(GP1~GP24)、5个气体容积(GVol1~GV ol5,即高压气瓶和4个集气管)、1个贮箱(T ank1)、11个气体阀门(GV1~GV11)、1

个气体减压器(GPRR1)、1个气动薄膜调节阀(PDCV1),气体管道流场网格划分为100mm/grid,图中标出了各管道的长度(单位:m)、外径和厚度(单位:mm ),阀门和集气管沿管路走向的长度为2个网格单元.阀门6、8在发动机起动前已经关闭,其对应的流路只用于管路预冷时的增压,气动球阀GV5在火药启动器点火时刻打开(由发出信号到完全打开有一个响应时间),其它阀门常开.氮气瓶体积、贮箱气枕初始体积分别为20.0m 3、1.2m 3.

火药启动器点火时刻系统初始状态为:高压氮气瓶-减压器高压腔之间管路为p 1,减压器低压腔-气动球阀GV5上游腔之间管路为p 2,GV5下游腔之后管路为p 3,贮箱之前管路温度为278K,贮箱为140K,减压器操纵腔中输入操纵气压强p 6,调节阀薄膜气室中输入初始控制气压强p (0).贮箱压强给定值0.49MPa,GV5响应时间设为0.21s.参考试验数据,两个算例的参数设置见表1,其中K p 、K i 、K d 、T 为PID 控制参数(比例系数、积分系数、微分系数和采样周期),h(0)为p (0)对应的调节阀初始开度.贮箱出口边界采用试

98

第1期陈 阳等:液体火箭发动机试验台贮箱增压系统数值仿真表1 液氧贮箱增压系统初始和PID 控制参数设置

Table 1 Initialization and PID control parameters of LO 2tank pressurization system

算例p 1/M P a p 2/M Pa p 3/M Pa p 6/M Pa K p K

i

K d T /s p (0)/M Pa h (0)/mm 114 1.7050.467 2.049 1.20.01200.10.0200.002

14

2.032

0.464

2.421

2

0.05

0.1

0.035

3.00

验测得的时间-流量曲线,即液氧质量流量Q mL 的试验数据.

发动机起动程序

[11]

开始后,在零秒时刻火药

启动器点火,此时涡轮泵处于起动阶段,液氧流量

较小,约1s 之后,推力室点火,液氧流量突增到额定工况,增压系统工作情况因此可分为两个过程:减压器阀芯开启阶段和贮箱压强在PID 调节作用下向给定值恢复阶段.认为气体管流为一维理想气体绝热流动,管壁摩擦采用准稳态的平均摩擦损失模型,采用经典四级四阶龙格-库塔法对上述动态过程进行数值仿真.3.3 仿真结果及分析

图5为贮箱增压系统仿真结果与试验结果的对比.从系统设置情况和图中曲线可知,0s 时刻火药起动器点火,同时PID 调节仪开始工作,气动球阀GV5经过0.21s 后打开,由于在仿真的30s 内贮箱气枕压强始终小于箱压给定值,因此PID 控制积分环节的作用效果始终趋向于使调节

阀阀芯开度增大.

从图5(a)、(b)、(c)可以看出,算例1由于没有预置调节阀初始开度,在调节仪控制下增大到额定值需要一定的时间,因此减压器低压腔压强

有一段约2s 的起动过程,同时贮箱入口增压气体流量也有一个增大过程.由于此时液氧流量较小,贮箱气枕压强在开始的1.4s 内基本维持不变,随着涡轮泵起动至额定工况,液氧流量突增到额定值,气枕体积扩大速度变快,此时增压气体流量尚小,气枕压强开始降低,在调节仪控制下调节阀开度增大速度变快(此时比例环节与积分环节作用效果相同),相应的贮箱入口增压气体流量增大速度也变快,约3.1s 时刻气枕压强开始向给定值恢复.通过与试验曲线的比较,仿真结果很好地预示了这一过程.

从图5(d)、(e)、(f)可以看出,算例2由于按照经验预置了调节阀初始开度,减压器开启过程较快,贮箱入口增压气体流量在GV5

打开后很快

图5 液氧贮箱增压系统数值仿真结果与试验结果的对比

Fig.5 Compariso n between simulation and test data o f LO 2tank pr essurization sy stem

99

航 空 动 力 学 报第22卷

地接近额定值,因此贮箱内气枕压强在0.21s 之后的一段时间逐渐增大,在PID 控制比例环节的作用下(此时比例环节与积分环节作用效果相反)调节阀阀芯开度逐渐降低,相应的贮箱入口增压气体流量也逐渐降低,在液氧流量突增到额定值后,约1.57s 时刻气枕压强开始降低,在比例和积分环节共同作用下(此时比例环节与积分环节作用效果相同)调节阀阀芯开度迅速增大,约1.97s 时刻气枕压强又开始增大,此后向给定值0.49MPa 逐渐逼近.试验曲线与仿真曲线都很好地预示了这一过程.

两个算例在起动段气枕压强仿真曲线的变化幅度没有试验测量的那样明显,原因有三方面,一是没有考虑传热传质的影响,二是试验数据动态测量方面的因素,三是PID 控制参数的设置与试验时的实际情况有差别.

图6为贮箱入口增压气体流量仿真结果与按照文献[5,6]经验公式计算出的增压气体流量之

间的对比,对于经验公式中T U llage 的取值,分别采用仿真值和按照文献[5]建议取为180K,相应的计算出两条流量经验曲线.从图6(a)、(b)可以看出,经验公式的计算结果明显高于仿真结果,原因是经验公式采用了气枕体积流量等于推进剂体积流量的假设而未考虑增压气体进入气枕后的温升效应.与此相反,仿真未考虑传热对增压气体能量的消耗而导致气枕温度上升速度过快,从而高估了增压气体在贮箱入口和气液交界面处质量流量的不平衡.实际的流量应该是介于两者之间.图7为减压器GPRR1和调节阀PDCV1阀芯开度的动态仿真曲线.从图7(a)、(b )可以看出,减压器阀芯开度存在振荡.仿真研究发现这与减压器结构尺寸的设置以及各集气管体积的大小有关.增大减压器高、低压腔或增大各集气管体积可以减小振荡幅度,但是最根本的原因是由于试验台选用的减压器流量级别较大(千克级),而试验时工作在小流量工况下.

图6 贮箱入口增压气体流量仿真结果与经验公式计算结果的对比Fig.6 Compar ison betw een simulation result o f tank inlet pressur ant mass rate

and pr edictio n by experiential fo

rmula

图7 气体减压器、气动薄膜调节阀阀芯开度仿真结果

F ig.7 Simulation r esults o f valve core o pening fo r

G PRR1and PDCV 1

100

第1期陈阳等:液体火箭发动机试验台贮箱增压系统数值仿真

4结论

通过采用LRET BM M SS-GS软件对容腔放气过程和某试验台贮箱增压系统在发动机点火工作段增压过程进行的仿真,得出如下结论:

(1)计算结果与分析解或试验结果获得了较好的一致,验证了软件的有效性和通用性.

(2)对两个系统的建模过程表明软件所采用的模块化建模与仿真方法适用于对复杂管网的建模,在液体火箭发动机系统仿真上具有较好的应用前景.

(3)对贮箱增压系统的仿真表明,合理设计PID控制参数并根据经验预置与额定流量相近的调节阀初始开度,对于提高增压系统起动过程的平稳性有利.

(4)贮箱增压系统的箱压试验曲线在起动段波动幅度比仿真值大,数值仿真未能揭示出其原因,需要建立更为准确的低温推进剂贮箱模型以考虑传热传质作用对气枕压强的影响,同时需要考虑试验测量方面的因素.

(5)贮箱增压系统所用减压器、气动薄膜调节阀阀芯处的流量是进出口压强比、阀芯开度和流量系数的函数.在进出口压强、额定流量一定的情况下,阀芯开度取决于流量系数的取值.由于缺乏这两个组件的节流特性试验数据,仿真时节流处的流量系数按工程经验取值.然而实际的流量系数与阀芯开度、节流状态以及气体物性有关,如果要进一步提高仿真的准确性,需要开展系统相关组件的特性试验.

参考文献:

[1]张育林,刘昆,程谋森.液体火箭发动机动力学理论与应用

[M].北京:科学出版社,2005.

[2]H olt K,M ajumdar A.Numerical modeling and test data

comparison of propulsion test article helium pr ess urization S ystem[R].AIAA2000-3719.

[3]M aju mdar A,Steadman T.Numerical modeling of pressur-i

zation of a propellant tank.AIAA99-0879.

[4]Zilliac G,Karabeyoglu M A.M odeling of propellant tank

press urization.AIAA2005-3549.

[5]瞿骞.高压、小气枕低温贮箱智能增压技术[J].低温工程,

2005,(5):22-25.

QU Qian.An intelligence pressuriz ation technology of high press ure an d small u llage at low tem perature tank[J].C ryo-genics,2005,(5):22-25.

[6]郭霄峰主编.液体火箭发动机试验[M].北京:宇航出版社,

1990:284-286.

[7]陈阳,高芳,张振鹏,等.液体火箭发动机试验台贮箱增压系

统模块化仿真[J].航空动力学报,2005,20(2):339-344.

CH EN Yang,GAO Fang,ZH ANG Zh enpeng,et al.M odu-lar simulation for tank p ress urization sys tem of LRE test-

b ed[J].J ou rnal of A erospace Pow er,2005,20(2):339-344.

[8]陈阳,高芳,张黎辉,等.减压器动态仿真的有限体积模型

[J].推进技术,2006,27(1):9-14.

CH EN Yan g,GAO Fang,ZHANG Lih ui,et al.Finite vol-um e model for numerical simu lation on dynamic process of press ure reducing regulator[J].J ou rnal of Propulsion T ech-nology,2006,27(1):9-14.

[9]陈阳,高芳,张振鹏,等.气动薄膜调节阀控制系统工作过程

的动态仿真[A].第五届液体火箭推进专业委员会第一次会议论文集[C],三亚:中国宇航学会,2005:316-324. [10]M aju mdar A,Bailey J W,Sch allhorn P,et al.A gen eralized

fluid sys tem simu lation program to model flow distrib ution in fluid netw ork s[R].AIAA98-3682.

[11]陈新华主编.运载火箭推进系统[M].北京:国防工业出版

社,2002.

101

【CN210103278U】一种常规大型液体火箭发动机试验专用吊具【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920468768.X (22)申请日 2019.04.09 (73)专利权人 西安航天动力试验技术研究所 地址 710100 陕西省西安市航天基地航天 西路289号 (72)发明人 赵明 丁佳伟 赵涛 翟文化  郭浩 彭飞 寇兴华 王乃世  张俊锋 王晓华 王颖  (74)专利代理机构 西安智邦专利商标代理有限 公司 61211 代理人 张举 (51)Int.Cl. B66C 1/12(2006.01) (54)实用新型名称 一种常规大型液体火箭发动机试验专用吊 具 (57)摘要 本实用新型涉及一种火箭发动机工装,具体 涉及一种常规大型液体火箭发动机试验专用吊 具,用于解决国家标准系列U型环与发动机的吊 点不匹配,且国家标准系列U型环操作繁琐、销轴 易跌落误伤发动机等问题。该吊具包括第一卡 扣、钢丝绳、第二卡扣、U型环、销轴;所述钢丝绳 在设定位置对折后由第一卡扣将两段钢丝绳固 定;两段钢丝绳端头各穿过一个U型环吊耳并由 第二卡扣固定;由第一卡扣和第二卡扣形成的钢 丝绳闭环处设有耐磨环;销轴一端设有可移动限 位挡片,另一端设有通孔,可移动限位挡片一顶 角为圆角;U型环吊耳侧面焊接有圆环。本实用新 型的常规大型液体火箭发动机试验专用吊具可 广泛应用于液体火箭发动机技术领域行业。权利要求书1页 说明书4页 附图3页CN 210103278 U 2020.02.21 C N 210103278 U

权 利 要 求 书1/1页CN 210103278 U 1.一种常规大型液体火箭发动机试验专用吊具,其特征在于:包括第一卡扣(1)、钢丝绳(2)、第二卡扣(3)、U型环(4); 所述钢丝绳(2)在设定位置对折后由第一卡扣(1)将两段钢丝绳(2)固定,形成的闭环为该吊具的吊环(8); 两段钢丝绳(2)端头各穿过一个U型环(4)的吊耳,所述第二卡扣(3)将两段钢丝绳(2)端头与该段钢丝绳(2)固定,形成的闭环分别为该吊具的第一挂环(9)和第二挂环(10); 所述吊环(8)、第一挂环(9)和第二挂环(10)的钢丝绳内环面上分别设有吊环耐磨环(81)、第一挂环耐磨环(91)和第二挂环耐磨环(101); 所述U型环(4)包括销轴(5)、可移动限位挡片(6)、销钉和圆环(7); 所述可移动限位挡片(6)通过销钉与销轴(5)连接; 所述销轴(5)穿过U型环(4)的环体并由可移动限位挡片(6)固定; 所述可移动限位挡片(6)上长条孔一端且靠近U型环(4)的顶角为圆角; 所述销轴(5)的不可拆卸的一端设置有通孔;所述U型环(4)吊耳侧面焊接有圆环(7)。 2.根据权利要求1所述的常规大型液体火箭发动机试验专用吊具,其特征在于:所述钢丝绳(2)由设定位置对折后的两段钢丝绳的长度分别为2150~2200mm与2200~2250mm。 3.根据权利要求2所述的常规大型液体火箭发动机试验专用吊具,其特征在于:所述钢丝绳(2)由设定位置对折后的两段钢丝绳的长度分别为2175mm与2220mm。 4.根据权利要求1所述的常规大型液体火箭发动机试验专用吊具,其特征在于:所述吊环耐磨环(81),第一挂环耐磨环(91)和第二挂环耐磨环(101)均采用钢丝绳索具套环,该钢丝绳索具套环由沿轴向被切割的钢管弯曲而成,其外侧具有钢丝绳槽,弯曲的部分采用加厚管壁。 5.根据权利要求1所述的常规大型液体火箭发动机试验专用吊具,其特征在于:所述销轴(5)上的通孔和圆环(7)设置在U型环(4)的同侧。 6.根据权利要求5所述的常规大型液体火箭发动机试验专用吊具,其特征在于:所述U 型环(4)的拐角处设置有倒圆和倒角。 7.根据权利要求6所述的常规大型液体火箭发动机试验专用吊具,其特征在于:所述U 型环(4)采用40Cr材料。 8.根据权利要求7所述的常规大型液体火箭发动机试验专用吊具,其特征在于:所述U 型环(4)表面镀铬。 2

固体火箭发动机壳体用材料综述

固体火箭发动机壳体用材料综述 摘要:概述了国内外固体火箭发动机壳体用先进复合材料研究应用现状,同时对固体火箭发动机壳体的纤维缠绕成型工艺进行了阐述。 关键词:固体火箭发动机复合材料树脂基体纤维缠绕成型 1 固体火箭发动机简介 固体火箭发动机是当今各种导弹武器的主要动力装置,在航空航天领域也有相当广泛的应用。它的特点是结构简单,因而具有机动、可靠、易于维护等一系列优点,非常适合现代化战争和航天事业的需要。但固体火箭发动机部件在工作中要承受高温、高压和化学气氛下的各种复杂载荷作用,因此其材料通常具有极优异的性能,往往代表着当代材料科学的最先进水平。标志当代高性能固体发动机的主要特征是:“高能、轻质、可控”,这三者都是以先进材料为基础和支柱的,选用具有优良比强度和卓越耐热性能的先进复合材料已成为提高发动机性能的一项决定性因素。 2 固体火箭发动机壳体用材料 固体火箭发动机壳体既是推进剂贮箱又是燃烧室,同时还是火箭或导弹的弹体,因此,在进行发动机壳体材料设计时,应考虑如下几个基本原则[1]: a. 固体火箭发动机壳体就其工作方式来讲,是一个内压容器,所以壳体承受内压的能力是衡量其技术水平的首要指标; b. 发动机壳体是导弹整体结构的一部分,所以又要求壳体具有适当结构刚度; c. 作为航天产品,不仅要求结构强度高,而且要求材料密度小; d. 发动机点火工作时,壳体将受到来自内部燃气的加热,而壳体结构材料,尤其是壳体结构复合材料的强度对温度的敏感性较强,所以,在设计壳体结构材料时,不能仅限于其常温力学性能,而应充分考虑其在发动机工作过程中,可能遇到的温度范围内的全面性能。评价和鉴定壳体材料的性能水平,固然要以最终产品是否满足使用要求为原则,但从设计选材的角度来说,也应有衡量的指标和

液体火箭发动机工作原理

液体火箭发动机工作原理: 液体火箭发动机是指液体推进剂的化学火箭发动机。 常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。氧化剂和燃烧剂必须储存在不同的储箱中。 液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。 推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成,见图。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过成生成燃烧产物,以高速(2500一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达200大气压(约200MPa)、温度300℃~4000℃,故需要冷却。 推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。 发动机控制系统的功用是对发动机的工作程序和工作参数进行调节和控制。工作程序包括发动机起动、工作、关机三个阶段,这一过程是按预定程序自动进行的。工作参数主要指推力大小、推进剂的混合比。 液体火箭发动机的优点是比冲高(250~500秒),推力范围大(单台推力在1克力~700吨力)、能反复起动、能控制推力大小、工作时间较长等。液体火箭发动机主要用作航天器发射、姿态修正与控制、轨道转移等。 液体火箭发动机是航天发射的主流,构造上比固体发动机复杂得多,主要由点火装置,燃烧室,喷管,燃料输送装置组成。点火装置一般是火药点火器,对于需要多次启动的上面级发动机,则需要多个火药点火器,如美国战神火箭的J-2X发动机,就具备2个火药点火器实现2次启动功能,我国的YF-73和YF-75也都安装了2个火药点火器,具备了2次启动能力;燃烧室是液体燃料和氧化剂燃烧膨胀的地方,为了获得更高的比冲,一般具有很高的压力,即使是普通的发动机,通常也有数十个大气压之高的压力,苏联的RD-180等发动机,燃烧室压力更是高达250多个大气压。高压下的燃烧比之常压下更为复杂,同时随着燃烧室体积的增加,燃烧不稳定情况越来越严重,解决起来也更加麻烦。目前根本没有可靠的数学模型分析燃烧稳定性问题,主要靠大量的发动机燃烧试验来解决。美国的土星5号火箭的F-1发动机,进行了高达20万秒的地面试车台燃烧测试,苏联能源号火箭的RD-170发动机,也进行了10多万秒的地面试车台燃烧测试,在反复的燃烧测试中不断优化发动机各项参数,

“固体火箭发动机气体动力学”课程 学习指南

1.课程属性 火箭武器专业(即武器系统与工程专业的火箭弹方向)的专业课程体系包括固体火箭发动机气体动力学、固体火箭发动机原理、火箭弹构造与作用、火箭弹设计理论和火箭实验技术。“固体火箭发动机气体动力学”属于专业基础课,是该专业的先修课程。 2.为什么要学习固体火箭发动机气体动力学课程 固体火箭发动机的工作过程是由推进剂燃烧和燃气流动构成的,燃气流动既是燃烧的直接结果,也是固体火箭发动机产生推进动力所需要的。因此,燃气流动是“固体火箭发动机原理”的重要组成部分。 “固体火箭发动机原理”课程将固体火箭发动机内的流动处理成燃烧室内的零维流和喷管中的一维流,如果不学习本课程,一方面不易理解固体火箭发动机内的流动过程,对学好“固体火箭发动机原理”课程是不利的;另一方面,对毕业后继续深造的学生而言,缺乏必要的气体动力学知识,难以深入开展本学科领域的基础理论研究,而本科毕业后直接从事固体火箭研制工作的学生将难以利用先进的计算工具进行工程设计与性能分析,不能适应时代发展和技术进步的要求。通过“固体火箭发动机气体动力学”课程的学习,学生既可以结合固体火箭发动机中的燃气流动问题,系统了解和掌握气体动力学的基本理论和计算方法,构建起完备的专业知识结构,同时也为学好后修课程奠定了坚实的理论基础,提高解决固体火箭发动机设计、内弹道计算、性能分析等实际工程技术问题的能力。 3.“固体火箭发动机气体动力学”的知识结构 把握课程的知识结构是学好“固体火箭发动机气体动力学”的前提。本课程由三个知识模块组成,即气体动力学基础知识、固体火箭发动机中一维定常流动和激波、膨胀波与燃烧波。 (1)气体动力学模块(14学时) 该模块由教材的第一至第三章组成,是相对独立、自成系统的知识模块,目的是建立起基本的气体动力学系统知识,为学习第二个知识模块奠定必要的气体动力学理论基础。该模块的主要知识点为 ?课程背景 ?流体与气体,气体的输运性质,连续介质假设,热力学基本概念与基础知识:系统,环境,边界,状态,过程,功,热量,焓,比热 比,热力学第二定律,理想气体,等熵过程方程,气体动力学基本 概念:控制体,拉格朗日方法,欧拉方法,迹线,流线,作用在流 体上的外力,扰动 ?拉格朗日方法与欧拉方法的关系,连续方程,动量方程,能量方程,熵方程 ?流动定常假设,一维流动假设,一维定常流的控制方程组,伯努利方程,气流推力,声速,对数微分,马赫数,马赫锥,理想气体一 维定常流的控制方程组,滞止状态,滞止过程,滞止参数,动压, 气体可压缩性,临界状态,最大等熵膨胀状态,速度系数,气体动 力学函数 (2)固体火箭发动机中的一维定常流动模块(8学时) 该模块为教材的第四章,是气体动力学知识在固体火箭发动机中的具体应用,分别针对喷管、长尾管、燃烧室装药通道展开讲述,最后简要介绍多驱动势广义一维流动。本知识模块的目的是为学生学习固体火箭发动机原理奠定理论基

固体火箭发动机工作原理及应用前景浅析

固体火箭发动机工作原理及应用前景浅析 摘要:本文主要介绍了固体火箭发动机的发展简史、基本结构和工作原理以及随着国民经济的日益发展,固体火箭发动机的应用前景。 关键词:火箭发动机工作原理应用 概述 火箭有着悠久的发展历史,早在公元九世纪中期人们便利用火药制成了火箭,并应用于军事。到了14~17世纪,火箭技术相继传入阿拉伯国家和欧洲,并对火箭的结构进行了改进,火箭技术得到进一步发展。19世纪早期,人们将火箭技术的研究从军事目的转向宇宙航行,从固体推进剂转向液体推进剂。到19世纪50年代,中、远程导弹和人造卫星的运载火箭,以及后来发展的各种航天飞船、登月飞行器和航天飞机,其主发动机均为液体火箭发动机,在这一时期,液体火箭推进技术得到了飞速发展。随着浇注成型复合推进剂的研制成功,现代固体火箭推进技术的发展也进入了一个新的时期。使固体火箭推进技术向大尺寸、长工作时间的方向迅速发展,大大提高了固体火箭推进技术的水平,并扩大了它的应用范围。 固体火箭发动机的基本结构 固体火箭发动机主要由固体火箭推进剂装药、燃烧室、喷管和点火装置等部件组成,如图一所示。 图一发动机结构图 1推进剂装药:包含燃烧剂、氧化剂和其他组分是固体火箭发动机的能源部份。装药必须有一定的几何形状和尺寸,其燃烧面的变化必须符合一定的规律,才能实现预期的推力变化要求。 2燃烧室:是贮存装药的容器,也是装药燃烧的工作室。因此不仅要有一定的容积,而且还需具有对高温、高压气体的承载能力。燃烧室材料大多采用高强度的金属材料,也有采用玻璃纤维缠绕加树脂成型的玻璃钢结构,可以大幅减轻燃烧室壳体的重量。 3 点火装置:用于点燃装药的装置。一般采用电点火,由电发火管和点火剂组成。

液体火箭发动机综述

液体火箭发动机发展现状及发展趋势概述 摘要:介绍了液体火箭发动机的优缺点、工作原理,总结了大推力和小推力发动机的国内外发展现状,提出了未来液体火箭发动机的发展方向。 关键词:液体火箭发动机,推进系统,发展现状,发展趋势 1 引言 液体火箭发动机作为目前最为成熟的推进系统之一,具有诸多独特的优势,仍然是各国努力发展的主力推进系统,并且在大推力和小推力方面都取得了诸多成果,本文将美国、俄罗斯、欧洲、日本、中国等国家的发展状况进行了综述,目前美国仍然在大多数推进系统方面领先世界,俄罗斯则继续保持液体推进特别是大推力液体火箭方面的领先地位,欧盟和日本在追赶美国的技术水平,以中国为代表的第三世界国家也开始在液体推进领域同传统强国展开竞争。 2 定义与分类 液体火箭发动机(Liquid Rocket Motor)是指液体推进剂火箭发动机,即使用液态化学物质作为能源和工质的化学火箭推进系统。按照推进剂供应系统,可以分为挤压式和泵压式;按照推进剂组元可分为单组元、双组元、三组元;按照功能分,一类用于航天运载器和弹道导弹,包括主发动机、助推发动机、芯级发动机、上面级发动机、游动发动机等,另一类用于航天器主推进和辅助推进,包括远地点发动机、轨道机动发动机、姿态控制和轨道控制发动机等。 3 工作原理 液体火箭发动机工作时(以双组元泵压式液体火箭发动机为例),推进剂和燃料分别从储箱中被挤出,经由推进剂输送管道进入推力室。推进剂通过推力室头部喷注器混合雾化,形成细小液滴,被燃烧室中的火焰加热气化并剧烈燃烧,在燃烧室中变成高温高压燃气。燃气经过喷管被加速成超声速气流向后喷出,产生作用在发动机上的推力,推动火箭前进。

液体火箭发动机再生冷却 (北航宇航学院火箭发动机热防护作业)

液体火箭发动机再生冷却文献综述报告 (火箭发动机热防护作业)

一、再生冷却简史[1] 再生冷却的概念最先苏联人齐奥尔科夫斯基提出来。 齐奥尔科夫斯基的学生格卢什科为液体火箭发动机作了大量的理论与实验研究,并于1930—1931年研制了苏联第一台液体火箭发动机OPM-1,采用四氧化二氮和甲苯,以及液氧煤油推进。采用再生冷却系统。 二、再生冷却的一般涵义[2] 再生冷却是在液体火箭发动机上通用的一种冷却方法。它利用推进剂中的一种组分或者可能是两种组分,在喷入燃烧室之前先通过推力室上的通道进行冷却。 再生冷却的优点是:没有性能损失(被冷却剂吸收的热能返回到喷注器),壁的型面基本上不随时间变化,其持续工作时间没有限制,而且结构较轻。 其缺点是:对绝大部分冷却剂使节流受到限制,对一些冷却剂(如肼)降低了可靠性,在高热流下需要高的压降,推力量级,混合比或喷管面积比可能受到最大容许冷却剂温度的限制。 三、再生冷却的计算模型 1、总论 再生冷却推力室的传热可以通过隔着多层隔层的二股运动着的流体间的传 热来描述。如图1所示。 由燃气通过包括 金属室壁在内的隔层 到冷却液的一般稳态 传热关系式可以用下 式表示: 图1 冷却系统的温度分布简图

()()gc aw wg wg wc k h T T q T T t ?? -==- ??? (1) ()()h T T h T T aw wg wc co gc c -=- (2) ()()h T T H T T aw wg aw co gc -=- (3) 111 H t h k h gc c = ++ (4) 式中 q ----热流,() 2Btu in s gc h ----燃气侧总热导率,() 2 Btu in s F ,没有沉积物时,gc g h h = c h ------冷却剂侧传热系数,() 2Btu in s F k ------室壁的热导率,() 2Btu in s F t ------室壁厚度 in aw T -----燃气绝热壁温,R wg T -----燃气侧壁温, R wc T ----冷却剂侧壁温, R co T -----冷却剂体积温度,R H -----总传热系数,() 2Btu in s F 冷却剂从冷却通道进入到离开,其体积温度增高,它是所吸收热量和冷却剂流量的函数。为保持室壁温度低于可能发生熔化或应力破坏的温度,使这些参数达到适当的平衡,是设计再生冷却推力室的主要要求之一。通常用于推力室的金属材料,如不锈钢、镍、铜-银-锆合金(NARLOY-Z )和镍基超耐热合金,其燃气侧壁温限制在900—1800 F 的范围内。燃气温度和壁温之间的差值在2500--6000F

西工大固体火箭发动机知识点精品总结

一、固体火箭发动机:由燃烧室,主装药,点火器,喷管等部件组成。 工作过程:通过点火器将主装药点燃,主装药燃烧,其化学能转变为热能,形成高温高压燃气,然后通过喷管加速流动,膨胀做功,进而将燃气的热能转化为动能,当超声速气流通过喷管排出时,其反作用力推动火箭飞行器前进。工作原理:1能量的产生过程2热能到射流动能的转化过程 优点:结构简单,使用、维护方便,能长期保持在备战状态,工作可靠性高,质量比高。 缺点:比冲较低,工作时间较短,发动机性能受气温影响较大,可控性能较差,保证装药稳定燃烧的临界压强较高。 二、1.推力是发动机工作时内外表面所受气体压力的合力。F=F 内+F 外 F=mu e +Ae(Pe-Pa) 当发动机在真空中工作时Pa=0.这时的推力为真空推力。 把Pe=Pa 的状态,叫做喷管的设计状态,设计状态下产生的推力叫做特征推力。 2.把火箭发动机动,静推力全部等效为动推力时所对应的喷气速度,称为等效喷气速度u ef 。 3影响喷气速度的因素来自两个方面:a).推进剂本身的性质b) 燃气在喷管中的膨胀程度 3.流量系数的倒数为特征速度C ?,他的值取决于推进剂燃烧产物的热力学特性,即与燃烧温度,燃烧产物的气体常数和比热比K 值有关,而与喷管喉部下游的流动过程无关。 4.推力系数C F 是表征喷管性能的参数,影响推力系数的主要因素是面积比和压强比。当Pe=Pa 时,为特征推力系数,是给定压强比下的最大推力系数,Pa=0时为真空推力系数。 5.发动机的工作时间包括其产生推力的全部时间,即从点火启动,产生推力开始,到发动机排气过程结束,推力下降到零为止。确定工作时间的方法:以发动机点火后推力上升到10%最大推力或其他规定推力的一点为起点,到下降到10%最大推力一点为终点,之间的时间间隔。 6.燃烧时间是指从点火启动,装药开始燃烧到装药燃烧层厚度烧完为止的时间,不包括拖尾段。确定燃烧时间的方法:起点同工作时间,将在推力时间曲线上的工作段后部和下降段前部各做切线,两切线夹角的角等分线与曲线的交点作为计算燃烧时间的终点。 7.总冲是发动机推力和工作时间的乘积。总冲与有效喷气速度和装药量有关,要提高总冲,必须用高能推进剂提高动推力。 8.比冲是燃烧一千克推进剂装药所产生的冲量。提高比冲的主要途径是选择高能推进剂,提高燃烧温度,燃气的平均分子量越小,比冲就越大,比冲随面积比变化的规律和推力系数完全相同。当大气压强减小,比冲增大,真空时达到最大,提高燃烧室压强可增加比冲。 9.在火箭发动机中常用实际值对理论值的比值来表示这个差别。这个比值就叫做设计质量系数,亦发动机冲量系数。 1.推力系数的变化规律:(1)比热比、工作高度一定时,随着喷管面积比的增大,推力系数增先大,当达到某一最大值后,又逐渐减小(2)比热比k 、面积比A e A t 一定时,C F 随着发动机工作高度的增加而增大; 2.最大推力分析:Pc 、At 、Pa 一定时,喷管处于完全膨胀工作状态时所对应的面积比,就是设计的最佳面积比,可获得最大推力; 3.比冲的影响因素:(1)推进剂能量对比冲的影响。能量高,R T f 高,c*高,Is 高; (2)喷管扩张面积比Ae/At 对比冲的影响。在达到特征推力系数前,比冲随喷管扩张面积比的增大而增加。(3) 环境压强Pa 对比冲的影响。Pa 减小,Is 增大;(4) 燃烧室压强Pc 对比冲的影响。当喷管尺寸和工作高度一定时,Pc 越高,u ef 越大。(5) 推进剂初温T 对比冲的影响。比冲随初温的增加而增大。 4.火箭发动机性能参数对飞行器性能的影响: V max =I s lnu (1)发动机的比冲Is 越大,火箭可以达到的最大速度Vmax 也越大,射程就越远。(2)火箭的质量数μ越大,火箭可以达到的最大速度Vmax 也越大.(3) 发动机比冲Is 和火箭的质量数μ可以**理 实c c C =ξ理实s s I I =ξN C F F C c C c ξξξ==理理实实**

液体火箭发动机试验台贮箱增压系统数值仿真

第22卷第1期2007年1月 航空动力学报 Journal of Aerospace Power Vol.22No.1 Jan.2007 文章编号:1000-8055(2007)01-0096-06 液体火箭发动机试验台贮箱 增压系统数值仿真 陈 阳1 ,张振鹏1 ,瞿 骞2 ,朱子环 2 (1.北京航空航天大学宇航学院,北京100083; 2.北京航天试验技术研究所,北京100074) 摘 要:在不考虑传热传质的情况下建立了一种简化的贮箱模型,并采用液体火箭发动机试验台气路系统通用模块化建模与仿真软件对容腔放气过程和某试验台贮箱增压系统在发动机点火工作段的增压过程进行了仿真,计算结果与分析解和试验结果获得了较好的一致,验证了软件的有效性和通用性.对两个系统的建模过程表明软件所采用的模块化建模与仿真方法适用于对复杂管网的建模,在液体火箭发动机系统仿真上具有较好的应用前景.对贮箱增压系统的仿真表明,合理设计P ID 控制参数并根据经验预置与额定流量相近的调节阀初始开度,对于提高增压系统起动过程的平稳性有利. 关 键 词:航空、航天推进系统;液体火箭发动机;试验台贮箱增压系统;数值仿真;P ID 控制中图分类号:V 434 文献标识码:A 收稿日期:2005-12-12;修订日期:2006-05-09 作者简介:陈阳(1979-),男,河南漯河人,北京航空航天大学宇航学院博士生,主要从事液体火箭发动机系统动力学与仿真研究. Numerical simulation for tank pressurization system of LRE test -bed CHEN Yang 1,ZH ANG Zhen -peng 1,QU Qian 2,ZHU Z-i huan 2 ( 1.School of Astr onautics, Beijing U niversity of A ero nautics and Astro nautics,Beijing 100083,China;2.Beijing Institute of Aerospace Testing Technolog y,Beijing 100074,China )Abstract:A simple mo del of propellant tank w as established by neg lecting m ass and heat transfer betw een the pr opellant and pressurant.T hen by employing the modular ization modeling and sim ulation softw are for liquid r ocket engine(LRE)test -bed g as sy stem(LRET-BMM SS -GS),blow dow n of a tank and pressurization of a LO 2tank pr essurizatio n sy stem during engine firing w ere simulated.T he sim ulation r esults ar e in g ood ag reem ent with the analytical solution and test data.Accordingly ,the softw are is validated to be effective and versatile.T he prog ress of m odeling tw o sy stems show s that the m ethod of M M S is suitable for modeling complicated LRE system and can be used to sim ulate all kinds of w orking pro cesses of LRE sy stem.T he simulatio n o f LO 2tank pressurization system indicates that PID control parameters should be set reasonably and the initial opening of pneumatic dia -phragm co ntrol valve should be adjusted to nom inal pressurant mass rate,w hich is effective to improv e stability of pr essurizatio n starting transient. Key words:aerospace propulsion system ;liquid rocket eng ine(LRE);tank pressur ization system of LRE test -bed;num erical sim ulation;PID co ntro l 液体火箭发动机试验台作为液体火箭发动机热试车与热检验的试验检测平台,为满足液体火 箭发动机的各种试验要求,需要在试验台设计阶段、安装调试阶段、热试车阶段开展全面的研究.

火箭发动机专业综合实验课程简介

火箭发动机专业综合实验课程简介 课程目标 从知识与技能的角度来讲,本课程的教学目标如下: (1)巩固和加深对专业理论知识的理解,掌握主要部件的工作特性; (2)学习火箭发动机的实验理论和实验方法,了解实验系统构成和实验设备;(3)通过具体实验过程,提高动手操作能力,掌握基本的实验技能,包括实验方案设计、系统调试、实验操作规程、实验现象观察以及数据处理等; (4)了解火箭发动机实验研究的发展动态,经过动手实践,熟悉先进的实验方法,具备初步的科研实验能力。 从素质与心理角度来讲,本课程的教学目标如下: 在认知上,加深学生对专业理论知识和实验理论知识的记忆与理解(识记、领会层面);正确地使用各项实验技能,设计合理的实验方案(运用层面);分析实验现象,处理实验数据,提炼实验结论(分析层面);根据研究目的,综合自身的理论知识和实验能力,实施一项完整的研究型实验过程(综合层面);评估实验结果的正确性,评价实验本身的科学性与合理性(评价)。 在情感上,引导学生密切关注各种实验现象,加深直观感受(注意层面);充分利用火箭发动机专业教学实验中声学、光学、电磁、气动等现象丰富这一优势,激发学生的实验积极性(反应层面);培养学生科学规范的实验习惯和客观严谨的实验态度(价值评价层面);让学生深刻体会到本课程与其未来职业发展的关联性,激发学生的职业性学习动机,培养创新意识(价值观组织层面);促进学生培养务真求实的工作作风,培养紧密协同的团队意识,培养甘于奉献的职业精神(品格层面)。 在动作技能上,培养学生的动手操作能力,掌握典型设备的基本操作方法,能进行安装、调试与测量,熟练掌握各项应急处理措施。 课程性质与定位 “火箭发动机专业综合实验”是北京航空航天大学飞行器动力工程(航天)专业的三大主干专业课程之一;是专业培养过程中的重要实践教育环节。 本课程是一门要求学生运用专业理论知识来分析、解决具体实践问题的课程。课程以实验为载体,定位于各种联系的“桥梁”——即专业基础理论理解与综合运用的桥梁、专业人才培养与学生职业发展的桥梁。 本课程既是专业知识的形象表现,有助于学生深刻理解专业理论;又是专业知识运用的典型案例,有助于学生学以致用,解决专业问题;还是学生未来职业活动的预演,有助于培养学生的科研素质。 课程设计的思路 鉴于“火箭发动机专业综合实验”是一门实践性强、且需要较好专业理论基础的综合教学实验课程,因此从实验理论知识与实践经验的教学要求出发,以及

固体燃料火箭发动机学习笔记1

固体火箭发动机的基本结构:点火装置、燃烧室、装药、喷嘴构成。 固体火箭发动机的工作与空气无关 常见的推进剂有:1.双基推进剂(双基药) 2.复合推进剂(复合药) 3.复合改进双基推进剂(改进双基药)

直接装填! 形式: 自由装填:药柱直接放在燃料室 贴壁浇筑:把燃料直接和燃烧室粘贴在一起(液体发动机发射前现场加注推进剂)固体火箭一旦制造完成即处于待发状态 经过压身或浇注后形成的一定结构形式的装药我们叫他装药或者药柱 药柱的燃烧面积在燃烧过程中随时间变化必须满足一定的规律 完成特定任务所需要的。

装药面积的燃烧规律决定了发动机压强和推力面积的发展规律。 为了满足上述规律需要对装药的表面用阻燃层进行包裹,来控制燃烧面积变化规律。 药柱可以是:当根、多根,也可事实圆孔药,心孔药 燃烧室是一个高压容器! 装药燃烧的工作室。 燃烧时要求要求: 容积、对高温(2000-3000K)高压气体(十几到几十兆帕)的承载能力 与高温燃气直接接触的壳体表面需要采用适当的隔热措施

高温高压燃气的出口 作用: 1.控制燃气流出量保持燃烧室内足够压强。 2.使燃气加速膨胀,形成超声速气流,产生推动火箭前进的反作用推力。

部件作用:进行能量转化 工艺特点: 形状:先收拢后扩张的拉瓦尔喷灌,由收敛段、头部、扩张段、 中小型火箭,锥形喷管(节省成本和时间) 工作时间长、推力大、质量流速大采用高速推进剂的大型火箭采用特制喷管(收敛段和和直线段的母线可能不是直线可能是抛物线双圆弧)仔细设计型面,提高效率 作用:使燃气的流动能够从亚声速加速到超声速流 喉部环境十分恶略,烧蚀沉积现象影响性能(改变喉部尺寸改变性能)。

液体火箭发动机技术发展的现状及未来

液体火箭发动机技术发展 的现状及未来 李坤鹏 10151157 101513 摘要:本文从燃烧室推力、系统工作循环方式以及最大推力三个方面叙述世界各国液体火箭发动机的技术水平,简单介绍了世界各国液体火箭发动机技术发展趋势和中国的最新进展,分析了中国液体火箭发动机技术发展的可能前景 主题词:火箭发动机,液体推进剂火箭发动机,运载火箭 1.国内外现状 液体火箭发动机子第二次世界大战进入实用阶段以来,可以由燃烧室推力、系统循环方式及使用的推进剂来说明其技术上的飞跃,因为无论是采用新的推进剂,或是大幅度提高燃烧室推力,或是大幅度提高发动机推力,都需要采用一些新的技术,要克服研制中的许多困难,要结局许多的技术关键问题,从而将发动机技术推向一个新的水平。 单台发动机推力及燃烧室压力以美国和俄罗斯为最高,按不同推进剂的单台发动机和燃烧室压力来看,我国可贮存推进剂发动机比法国高,日本则没有;液氧-煤油发动机则不如日本,与法国一样同属空白;而氢-氧发动机则不如法国,也不如日本,更不如美国和俄罗斯,我国发动机系统工作循环只有发生器循环,与法国相当,不如美国和苏联,也不如日本。 2.我国液体火箭发动机技术的新进展 近几年来,我国液体火箭发动机技术的最大进展是YF-25发动机的研制,目前即将有初样研制转入试样研制,并正为明年的飞行试验进行准备,它使我国液氢-液氧火箭发动机技术达到了早期的国际水平。 我国YF-25发动机的推力及燃烧室压力超过60年代美国的RL-10及70年代末法国的HM-7,接近80年代中期日本的LE-5发动机。YF-25发动机系统功率平

衡采用串联双涡轮,与日本的LE-5相同,优于美国RL-10和法国HM-7的单涡轮齿轮传动。YF-75发动机具有整体双向摇摆的功能,燃气发生器采用单壁不冷却身部。这些与HM-7和LE-5发动机是一致的,YF-75发动机的螺旋管大喷管方案类似于法国正在研制的HM-60发动机,达到了国际先进水平。YF-75发动机还将我国可贮存发动机上推进剂利用系统的技术移植到液氢=液氧发动机上,并获得成功。此外,YF-75发动机在研制试验中,采用了某些参数红线关机,如涡轮泵最高转速及最低转速限,涡轮泵振动加速度值,氧泵前推进剂温度等,这是我国液体火箭发动机故障监控系统的雏型。 3.国外液体火箭发动机技术发展趋势 国外液体火箭发动机技术发展分为近期和远期。近视发展除法国和日本继续完成HM-60及LE-7氢氧发动机的研制外,只侧重于现有型号发动机的改进,主要有提高工作可靠性,提高性能或降低成本。,其典型代表是美国的SSME和RL-10发动机。 RL-10发动机改进的衍生方案有:为提高发动机工作可靠性而增加涡轮泵冷备份和为提高性能而增加可延伸大喷管方案。 SSME为提高工作可靠性,对现有涡轮叶片材料和涡轮进口温度都在进行改进研究。 远期发展则侧重羽一次入轨的各种发动机系统循环方案研究,这些发动机机要工作可靠,又要有高的效能,同时还要降低研制成本和生产成本,这些方案包括 (1)三组元(液氢、液氧、煤油或甲烷)发动机。 (2)双喷管-双膨胀发动机。 (3)双喉部发动机。 (4)双燃料组合发动机。 (5)双燃料型塞式发动机。 还有一种发展趋势,实在对现有成功使用的运载器进行改进时研制新的氢-氧发动机。用改进现有运载器取代重新设计的运载器,同样可以达到提高运载能力和减少研制费用的目的。大力神-人马座的改进方案就是这样。方案之一是用研制一种500~1000KN的氢氧发动机构成的新级取代原芯级第二级和人马座级;

火箭发动机试验与测试技术复习题2013

火箭发动机试验与测试技术复习题2013

火箭发动机试验与测量复习题 名词解释 ①单端输入方式, ②双端输入方式, ③单极性信号, ④双极性信号, ⑤差模干扰, ⑥共模干扰, ⑦点火时差, ⑧点火延迟期, ⑨压电效应, ⑩多普勒效应, ⑾振动量, ⑿德拜长度 问答题: ⑴叙述火箭发动机试验的特点。 ⑵如何评估传感器的测试精度。 ⑶叙述火箭发动机地面试验的特点。 ⑷给出典型火箭发动机实验测量示意图。 ⑸测控系统干扰来源,并解释其意义。干扰的抑制技术有那些? ⑹叙述高精度固发试车台架的特点 ⑺简述火箭发动机6分力测量原理 ⑻简述被动引射试车台组成及工作原理 ⑼与被动引射式高模试车台相比,叙述主动引射高模试车台的优点 ⑽叙述扩压器的作用 ⑾掌握发动机推力室试验准备阶段推进剂充填时间的测量方法。 ⑿绘图说明振动测试系统的主要组成部分和振动传感器的主要指标要求。 ⒀简述涡轮、涡街流量计的工作原理及测量方法。 ⒁绘出量热探针的主要结构图,说明其工作原理、测量步骤和计算公式。 ⒂绘出静电探针的伏安特性曲线,并对探针的不同工作区域做出说明。 ⒃叙述热电偶的均质电路定律、中间金属定律、中间温度定律、标准电极定律。 ⒄熟悉应变式位移传感器和差动变压器式位移传感器的工作原理。能够绘图说明两种应变式位移传感器的测量原理。 ⒅涡轮泵试验内容主要包括哪些内容? ⒆热电偶冷端温度补偿主要有哪些方式?并解释 ⒇低温温度高精度测量时需要注意的几个基本原则问题? [21]发动机试验过程中自动器的控制程序包括几种类型? [22]简述常用热电偶的材料和分类。 [23]激光多普勒测速的基本光路有几种,解释说明其特点。绘出参考光束系统简图。

试验用液体火箭发动机设计说明书

目录 1.原始数据 (1) 2.推力室参数计算结果 (1) 2.1.推力室结构参数计算 (1) 2.1.1. 喉部直径 (1) 2.1.2. 燃烧室容积 (2) 2.1.3. 燃烧室直径 (2) 2.1.4. 推力室收敛段型面 (2) 2.1.5. 推力室圆筒段长度 (2) 2.1.6. 推力室喷管扩张段型面 (3) 2.2.推力室头部设计 (3) 2.2.1. 燃料喷嘴设计 (4) 2.2.2. 氧化剂喷嘴: (5) 2.3.推力室身部设计 (5) 2.3.1. 推力室圆筒段冷却计算 (5) 2.3.1.1. 燃气的气动参数 (5) 2.3.1.2. 计算燃气与内壁面的对流换热密度 (6) 2.3.1.3. 计算燃气与内壁面的辐射热流密度 (6) 2.3.1.4. 计算总热流密度、总热流量及冷却剂流量 (7) 2.3.1.5. 确定冷却通道参数 (8) 2.3.1.6. 计算内壁面和外壁面温度 (8) 2.3.2. 推力室喉部冷却计算 (9) 2.3.2.1. 燃气的气动参数 (9) 2.3.2.2. 计算燃气与内壁面的对流换热密度 (9) 2.3.2.3. 计算燃气与内壁面的辐射热流密度 (10) 2.3.2.4. 计算总热流密度、总热流量及冷却剂流量 (11) 2.3.2.5. 确定冷却通道参数 (11) 2.3.2.6. 计算内壁面和外壁面温度 (11) 3.发动机性能计算 (12) 3.1.1. 根据喷嘴结构计算混合比 (12) 3.1.2. 热力计算结果 (13) 3.1.3. 计算发动机推力和燃烧室压力 (13) 4.推力室强度校核 (14) 4.1.1. 推力室圆筒段强度校核 (14) 4.1.2. 喷管强度校核 (14)

液体火箭发动机再生冷却-(北航宇航学院火箭发动机热防护作业)

液体火箭发动机再生冷却-(北航宇航学院火箭发动机热防护作业)

液体火箭发动机再生冷却文献综述报告 (火箭发动机热防护作业)

一、再生冷却简史[1] 再生冷却的概念最先苏联人齐奥尔科夫斯基提出来。 齐奥尔科夫斯基的学生格卢什科为液体火箭发动机作了大量的理论与实验研究,并于1930—1931年研制了苏联第一台液体火箭发动机OPM-1,采用四氧化二氮和甲苯,以及液氧煤油推进。采用再生冷却系统。 二、再生冷却的一般涵义[2] 再生冷却是在液体火箭发动机上通用的一种冷却方法。它利用推进剂中的一种组分或者可能是两种组分,在喷入燃烧室之前先通过推力室上的通道进行冷却。 再生冷却的优点是:没有性能损失(被冷却剂吸收的热能返回到喷注器),壁的型面基本上不随时间变化,其持续工作时间没有限制,而且结构较轻。 其缺点是:对绝大部分冷却剂使节流受到限制,对一些冷却剂(如肼)降低了可靠性,在高热流下需要高的压降,推力量级,混合比或喷管面积比可能受到最大容许冷却剂温度的限制。 三、再生冷却的计算模型 1、总论 再生冷却推力室 的传热可以通过隔着 多层隔层的二股运动 着的流体间的传热来 描述。如图1所示。 由燃气通过包括 金属室壁在内的隔层 到冷却液的一般稳态 传热关系式可以用下 式表示: 图 1 冷却系统的温

()()gc aw wg wg wc k h T T q T T t ??-==- ??? (1) ()()h T T h T T aw wg wc co gc c -=- (2) () ()h T T H T T aw wg aw co gc -=- (3) 111H t h k h gc c =++ (4) 式中 q ----热流,()2Btu in s g gc h ----燃气侧总热导率,()2Btu in s F o g g ,没有沉积物时,gc g h h = c h ------冷却剂侧传热系数,()2Btu in s F o g g k ------室壁的热导率,()2Btu in s F o g g t ------室壁厚度 in aw T -----燃气绝热壁温, R o wg T -----燃气侧壁温,R o wc T ----冷却剂侧壁温,R o co T -----冷却剂体积温度, R o H -----总传热系数,()2Btu in s F o g g 冷却剂从冷却通道进入到离开,其体积温度增高,它是所吸收热量和冷却剂流量的函数。为保持室壁温度低于可能发生熔化或应力破坏的温度,使这些参数达到适当的平衡,是设计再生冷却推力室的主要要求之一。通常用于推力室的

火箭发动机原理课程教学实验一

固体火箭发动机地面点火及推力、压强测试实验(火箭发动机原理课程教学实验一) 实验指导书 西北工业大学航天学院

一、实验目的 1、学习固体火箭发动机地面点火及推力、压强测试的方法; 2、掌握实验中推力传感器、压强传感器的标定方法; 3、利用实验结果(数据或曲线)、参照火箭发动机原理课程教学中介绍的方 法,处理参试发动机的特征速度(*c)、比冲(s I)和推力系数(F C)。 二、实验内容要求 1、清点参试发动机的零部件、检查零部件的齐套情况; 2、记录实验前发动机的喷管喉径、固体推进剂装药的结构参数; 3、检查实验数据采集系统、点火控制系统,确保各系统正常可靠工作; 4、标定实验中使用的推力、压强传感器; 5、称量点火药并制作点火药盒、装配实验发动机,做好点火实验前的一切 准备工作; 6、发动机点火,并采集P~t和F~t曲线; 7、完成实验数据处理及实验报告。 三、实验原理 固体火箭发动机设计完成之后,要进行地面静止实验,测量P~t和F~t曲线,然后进行数据处理,检查技术指标是否达到设计要求。如果没有达到,还要进一步修改设计,再次进行地面实验,直至达到设计要求。因此,学习固体火箭发动机的实验方法,对一个固体火箭发动机设计人员来说就显得特别重要。 由于发动机工作时将伴随着强大的振动和噪声,有时还有毒性、腐蚀性和爆炸的危险,因此为了保证试验人员的安全和健康、保护贵重的仪器仪表,必须采用远距离操纵和测量的方法,即采用非电量电测法。 为了获得发动机的P~t和F~t曲线,通过安装在发动机上的压强传感器和推力传感器,将被测的压强和推力信号转变为电压信号,电压信号经放大后由计算机数据采集系统保存。由于传感器输出的是电压信号,而实验需要得到的是推力和压强信号(实际物理量),因此实验前应对所采用的传感器进行标定,标定的目的是为了建立传感器电压信号和实际物理量之间的关系,只要将标定结果输入到计算机采集系统中,在信号采集时,采集系统将按照标定结果将测得的电信号

相关主题
文本预览
相关文档 最新文档