当前位置:文档之家› 量子力学矩阵形表象变换

量子力学矩阵形表象变换

量子力学矩阵形表象变换
量子力学矩阵形表象变换

量子力学矩阵形表象变换

————————————————————————————————作者:————————————————————————————————日期:

§4.5 量子力学的矩阵形式和表象变换

态和力学量算符的不同表示形式称为表象。

态有时称为态矢量。力学量算符对态的作用实际上是对矢量量进行变换,因此可与代数中线性变换进行类比。

1、量子态的不同表象 幺正变换 (1)直角坐标系中的类比

取平面直角坐标系21X OX 其基矢(我们过去称之为单位矢)可表示为21,e e

,见图

其标积可写成下面的形式

)2,1,(),( j i e e ij

j i

我们将其称之为基矢的正交归一关系。

平面上的任一矢量A

可以写为

2211e A e A A

其中),(11A e A ,),(22A e A

称为投影分量。

而),(21A A A 称为A

在坐标系21X OX 中的表示。 现在将坐标系21X OX 沿垂直于自身面的轴顺时针转 角度,则单位基矢变为','21e e

,且同样有

)2,1,()','( j i e e ij

j i

而平面上的任一矢量A

此时可以写为 ''''2211e A e A A

其中投影分量是),'('11A e A ,),'('22A e A

。 而)','(21A A A 称为A

在坐标系'X 'OX 21中的表示。

现在的问题是:这两个表示有何关系?

显然,22112211''''e A e A e A e A A

用'1e 、'2e

分别与上式中的后一等式点积(即作标积),有

),'(),'('2121111e e A e e A A

),'(),'('2221212e e A e e A A

表成矩阵的形式为

212212211121),'(),'(),'(),'(''A A e e e e e e e e A A

由于'1e 、1e 及'2e 、2e

的夹角为 ,显然有

21212212211121cos sin sin cos ),'(),'(),'(),'(''A A A A e e e e e e e e A A

或记为

2121)(''A A R A A 其中

cos sin sin cos )(R 是把A

在两坐标中的表示 ''21A A 和

21A A 联系起来的变换矩阵。

变换矩阵的矩阵元正是两坐标系基矢间的标积,它表示基矢之间的关系。故R 给定,任何矢量在两坐标系间的关系也确定。

很容易证明,R 具有下述性质:

I R R R R ~

~

由于1)(det )~

det(2

R R R ,

其中 321321)1()det(p p p t

R R R R , 故称这种矩阵为正交矩阵。

但1det R (对应于真转动(proper rotation ))且R R *

(实矩阵)

1*~

R R R R

I R R RR

我们把满足上述条件的矩阵叫幺正矩阵。 到现在为止,我们介绍了三种矩阵: 厄米矩阵:*

~R R R

正交矩阵:I R R R R ~

~ 幺正矩阵:I R R RR

这三种矩阵在以后的学习中经常涉及到,请注意掌握。 (2)量子力学中的表象

形式上与上述类似,在量子力学中,按照态的叠加原理,任何一个态 可以看成Hilbert 空间的一个“矢量”。

体系的力学量 F 完全集的共同本征函数系k (k 代表一组完备量子数)构成一组正交归一完备基矢。这组基矢构成的“坐标系”称为F 表象。

同样

kj j k ),(

对于任意态矢量 ,有

k

k k a

其中

),( k k a

这一组系数)( ,,21a a 就是态(矢)在F 表象中的表示,它们分别是与各基矢的内积。

与代数不同的是:

①这里的“矢量”(量子态)是复数; ②空间维数可以是无穷的,甚至不可数的。

现在考虑同一个态 在另一组力学量完全集'F (表象'F )中的表示。 设本征态为' ,满足正交归一,即

)','(

态 用这组态矢展开,即

''

a

其展开系数为),'(' a ,则这一组系数)( ,','21a a 就是态 在'F 表象中的表

示。

那么)()( ,',',,2121a a a a ?

方法同前述。 因为显然k

k

k a a

'',对后一等式用'*

作内积,有

k

k k k

k k a S a a ),(''

其中),(k k S ' 是'F 表象基矢与F 表象基矢的内积。

上式也可以写成矩阵的形式:

k a a a S S S S a a a 212221121121''' 简记为Sa a '

通过S 矩阵相联系,且I S S SS

即S 矩阵是幺正矩阵(下面将予以证明)。它实际上是联系两个基矢的变换矩阵。 例 试证明: S 矩阵是幺正矩阵 [分析]只要证明S S

的矩阵元是kj 即可。

在F 表象中,有

j k j k kj S S S S S S *

)(

根据S 矩阵元的定义,上式为

)

'()()(')'(''d d )

'()'(''d )()('d )(**

3

3

*

3*3r r r r r r r r r r r r S S j k j k kj

利用前面的介绍, 函数可以用任何一组正交归一完备函数组来构成,即

n

n n x x x x )()'()'(*

则上式

kj

j k kj r r r r r r S S )

'()()'('d d )(*33

可见,S S

矩阵为单位矩阵,即I S S

。 2、力学量算符的矩阵表示 仍以线性空间的矢量作类比

B A

(正向转动θ角)

已经知道:

),(212211A A A e A e A A

),(212211B B B e B e B B

令A R B

)( ,写成分量的形式,有

22112211e R A e R A e B e B

用21e e

、对上式点乘,得

)()(2121111e R e A e R e A B

,, )()(2221212e R e A e R e A B

,,

212212

211121)()()()(A A e R e e R e e R e e R e B B

,,,, 按照右下图,有

2121212212211121)(cos sin sin cos )()()()(A A R A A A A e R e e R e e R e e R e B B

,,,,

其中

cos sin sin cos )(R 。 与此类比,设 经算符L

?作用后变成 ,即 L

? 以F 表象(力学量F 完全集的本征态k )为基矢,即

k

k k b , k

k k a

则有

k

k

k k

k

k L a b

? 下面我们看如何通过上式由k a 求k b 。 对

k

k

k k

k

k L a b

?,以),( j 作标积,得 k k

jk k

k

k j j a L a L b )?,( 其中)?,(k

j jk L L 。 由上式可见,力学量算符对态的作用可以写成

212221121121a a L L L L b b

因此,)(jk L 矩阵一旦确定,则所有基矢(因而任何矢量)在L

?作用下的变化也就完全确定了。

例 求一维谐振子坐标 x 、动量 p 以及Hamiltonian H 在能量表象中的表示。 [分析]:不同体系的Hamiltonian 不一样,能量表象的基矢也不一样。这里能量表象的基矢为一维谐振子Hamiltonian 的本征函数)(x n 。

解:利用一维谐振子波函数的递推关系

1121

21n n n n n x

11212d d n n n n n x

所以

1,1,2211),(n m n m n m mn n

n x x

1,1,221)d d ,(n m n m n m mn

n

n i x i p

注意:这里的m 、n 都是由0开始取值。这样

02/300

2/301

00102/10

02/101)( mn x

02/3002/301

0102

/10

02/10)( i p mn

mn

mn n n m mn n E H H )2

1()?,( 所以

2/7000

2/50000

2/30000

2/1)( mn H 是一个对角矩阵。

任何力学量在自身表象中的表示都是对角矩阵。 3、量子力学的矩阵表示

设力学量完全集F 的本征态是分立的(基矢可数),在F 表象中,力学量L 用矩阵表示为)(kj L ,且

)?,(j

k kj L L

而量子态ψ则表示成列矢的形式,即

21a a ,

其中),( k k a

这样,量子力学的理论表述均可表成矩阵的形式。

下面我们分别讨论Schr?dinger 方程、平均值公式以及本征值方程的矩阵形式。 (1) Schr?dinger 方程

H t

i

在F 表象中,

k

k

k t a t

)()(,系数为时间t 的函数。代入上述方程得

k

k

k k

k k H t a t a i ?)()( 对 k

k

k k

k

k H t a t a

i ?)()(

左乘),( j 作内积,得 k

k

j k k

k j k H t a t a i )?,)((),)(( 而jk

k j H H )?,( ,这样利用基矢的性质,有 k

k jk j a H t a i )(

写成矩阵的形式是

212221121121a a H H H H

a a i

(2) 平均值公式

对于力学量算符L

?

212221

1211

*

2*1**),,()?,()?,(a a L L L L a a a L a a L a L L kj

j

kj k kj

j j k k

若F L

?? ,即在自身表象中,则 kj

j j k kj L L L )?,( 将此式代入上页平均值公式,有

量子力学中几种表象及其之间的关系

量子力学中几种表象及其之间的关系 摘要 体系的态可以用以坐标为变量的波函数ψ(x,t)来描写,力学量则以作用在这种波函数上的算符(量子力学中的算符代表对波函数的一种运算)来表示,这是量子力学中态和力学量的一种具体表述方式。态还可以用其他变量的函数作为波函数来描写体系的状态。 微观粒子体系的状态(量子态)和力学量的具体表示形式称为表象。 常用的表象有坐标表象、动量表象和能量表象。 而研究量子力学规律的各种表示形式以及这些不同形式之间的变换的理论,则称为表象理论。 关键词 态的表象 坐标表象 动量表象 Q 表象 算符表象 角动量表象 正文 体系的态既可用以x (表示全部坐标变量)为变量的波函数ψ(x,t)来描写,也可用以动量p 为变量的波函数c(p,t)来描写。ψ(x,t)和c(p,t)之间的变换关系是 式中 是动量的本征函数, dx x t x t p c dp x t p c t x p p )(),(),()(),(),(*ψ?=?=ψψψ /2 /1)2(1)(ipx p e x -=πψ

称ψ(x,t)是在坐标表象中的波函数,而c(p,t)是同一态在动量表象中的波函数。 由ψ(x,t)可知,粒子坐标在x 到x+dx 之间的概率 c 由(p,t )可知,粒子动量在p 到p+dp 之间的概率 如果ψ(x,t)所描写的状态是具有动量p ’的自由粒子的状态,即ψ(x,t)=ψp ’(x,t),则 在动量表象中,粒子具有确定动量p ’的波函数是以动量p 为变量的δ函数。 那么,态在任意力学量Q 的表象中的描写方式又是什么样呢? 设力学量Q 具有分立的本征值Q1,Q2,…Qn …,对应的本征函数为u1(x),u2(x),…,un(x),…,并组成正交归一的完全系。将态在坐标表象中的波函数ψ(x,t)按{un(x)}展开成 dx t x dx t x w 2 ),(),(ψ=dp t p c dp t p w 2 ),(),(=dx e x x dx x t x t p c t iEp p p p p /''')()()(),(),(-**?=ψ?=ψψψ /')'(t iEp e p p --=δ) ()(),(x u t a t x n n n ∑=ψ

量子力学期末考试题解答题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

高考数学1几种特殊的矩阵变换专题1

高考数学1几种特殊的矩阵变换专题1 2020.03 1,圆22 1x y +=在矩阵10102?????? ? ?对应的变换作用下的结果为 . 2,当兔子和狐狸处于同一栖息地时,忽略其他因素,只考虑兔子数量和狐狸数量的相互影响,为了简便起见,不妨做如下假设: (1)由于自然繁殖,兔子数每年增长10%,狐狸数每年减少15%; (2)由于狐狸吃兔子,兔子数每年减少狐狸数的0.15倍,狐狸数每年增加兔子数的0.1倍; (3)第n 年时,兔子数量n R 用表示,狐狸数量用n F 表示; (4)初始时刻(即第0年),兔子数量有1000=R 只,狐狸数量有300=F 只。 请用所学知识解决如下问题: (1)列出兔子与狐狸的生态模型; (2)求出n R 、n F 关于n 的关系式; (3)讨论当n 越来越大时,兔子与狐狸的数量是否能达到一个稳定的平衡状态,说明你的理由。 3,在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐.已知只有5发子弹备用,且首次命中只能使汽油流出,再次命 中才能引爆成功,每次射击命中率都是3 2 .,每次命中与否互相独立. (1) 求油罐被引爆的概率. (2) 如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望 4,在空间四边形ABCD 中, AC 和BD 为对角线,G 为ABC ?的重心,E 是BD

上一点,3BE ED =,以{ },,AB AC AD u u u r u u u r u u u r 为基底,则GE =u u u r ___ 5,设M 是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的 伸压变换. 求逆矩阵1M -以及椭圆22 149x y +=在1M -的作用下的新曲线的 方程. 6,已知变换A :平面上的点P (2,-1)、Q (-1,2)分别变换成点P 1(3,-4)、 Q 1(0,5) (1)求变换矩阵A ; (2)判断变换A 是否可逆,如果可逆,求矩阵A 的逆矩阵A -1;如不可逆,说明理由. 7,两个人射击,甲射击一次中靶概率是21,乙射击一次中靶概率是31 , (Ⅰ)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少? (Ⅱ)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少? (Ⅲ)两人各射击5次,是否有99%的把握断定他们至少中靶一次? 8,如图,正方体ABCD -A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点. (Ⅰ)试确定点F 的位置,使得D 1E ⊥平面AB 1F ; (Ⅱ)当D 1E ⊥平面AB 1F 时,求二面角C 1―EF ―A 的余弦值以及BA 1与面C 1EF 所成的角的大小.

《1.2.3 几类特殊的矩阵变换》教案新部编本1

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《1.2.3 几类特殊的矩阵变换》教案1 教学目标 1. 理解可以用矩阵来表示平面中常见的几何变换,掌握恒等、伸压、反射、旋转、投影、 切变变换的矩阵表示及其几何意义 2.理解二阶矩阵对应的几何变换是线性变换,了解单位矩阵 3.了解恒等、伸压、反射、旋转、投影、切变变换这六个变换之间的关系 教学重难点 了解并掌握几种特殊的矩阵变换,可以简单的运用。 教学过程 1.理解可以用矩阵来表示平面中常见的几何变换,掌握恒等、伸压、反射、旋转、投影、切变变换的矩阵表示及其几何意义 (1)一般地,对于平面向量变换T ,如果变换规则为T :?? ? ???y x →??????''y x =??????++dy cx by ax ,那么根据二阶矩阵与平面列向量在乘法规则可以改写为T :??? ???y x →??????''y x =??? ? ??d c b a ?? ????y x 的矩阵形式,反之亦然(a 、b 、c 、d ∈R) 由矩阵M确定的变换,通常记为T M ,根据变换的定义,它是平面内点集到自身的一个映射,平面内的一个图形它在T M ,的作用下得到一个新的图形. 在本节中研究的变换包括恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等六个变换. (2)由矩阵M=?? ? ???1001确定的变换T M 称为恒等变换,这时称矩阵M 为恒等变换矩 阵或单位矩阵,二阶单位矩阵一般记为E.平面是任何一点(向量)或图形,在恒等变换之下都把自己变为自己. (3)由矩阵M=??????100k 或M=?? ? ???k 001)0k (>确定的变换T M 称为(垂直)伸压变 换,这时称矩阵M=???? ??100k 或M=?? ????k 001伸压变换矩阵.

量子力学的矩阵形式和表象变换.

§4.5 量子力学的矩阵形式和表象变换 态和力学量算符的不同表示形式称为表象。 态有时称为态矢量。力学量算符对态的作用实际上是对矢量量进行变换,因此可与代数中线性变换进行类比。 1、量子态的不同表象 幺正变换 (1)直角坐标系中的类比 取平面直角坐标系21X OX 其基矢(我们过去称之为单位矢)可表示为21,e e ,见图 其标积可写成下面的形式 )2,1,(),(==j i e e ij j i δ 我们将其称之为基矢的正交归一关系。 平面上的任一矢量A 可以写为 2211e A e A A += 其中),(11A e A =,),(22A e A =称为投影分量。 而),(21A A A = 称为A 在坐标系21X OX 中的表示。 现在将坐标系21X OX 沿垂直于自身面的轴顺时针转θ角度,则单位基矢变为','21e e ,且同样有 )2,1,()','(==j i e e ij j i δ 而平面上的任一矢量A 此时可以写为 ''''2211e A e A A += 其中投影分量是),'('11A e A =,),'('22A e A =。 而)','(21A A A = 称为A 在坐标系'X 'OX 21中的表示。 现在的问题是:这两个表示有何关系? 显然,22112211''''e A e A e A e A A +=+=。

用'1e 、'2e 分别与上式中的后一等式点积(即作标积),有 ),'(),'('2121111e e A e e A A += ),'(),'('2221212e e A e e A A += 表成矩阵的形式为 ??? ? ?????? ??=???? ??212212211121),'(),'(),'(),'(''A A e e e e e e e e A A 由于'1e 、1e 及'2e 、2e 的夹角为θ,显然有 ??? ? ?????? ??-=??? ? ?????? ??=???? ??21212212211121cos sin sin cos ),'(),'(),'(),'(''A A A A e e e e e e e e A A θθθθ 或记为 ??? ? ??=???? ??2121)(''A A R A A θ 其中 ??? ? ? ?-=θθ θθθcos sin sin cos )(R 是把A 在两坐标中的表示???? ??''21A A 和??? ? ??21A A 联系起来的变换矩阵。 变换矩阵的矩阵元正是两坐标系基矢间的标积,它表示基矢之间的关系。故R 给定,任何矢量在两坐标系间的关系也确定。 很容易证明,R 具有下述性质: I R R R R ==~ ~ 由于1)(det )~ det(2==R R R , 其中 321321)1()det(p p p t R R R R -∑=, 故称这种矩阵为正交矩阵。 但1det =R (对应于真转动(proper rotation ))且R R =* (实矩阵)

几类特殊线性变换及其二阶矩阵优秀教学设计

几类特殊线性变换及其二阶矩阵 【教学目标】 1.了解二阶矩阵的概念,线性变换与二阶矩阵之间的关系。 2.熟练运用旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示解决具体问题。 3.亲历几类特殊线性变换的探索过程,体验分析归纳得出其二阶矩阵,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握几类特殊线性变换及其二阶矩阵。 难点:旋转变换、反射变换、伸缩变换、投影变换、切变变换的实际应用。 【教学过程】 一、直接引入 师:今天这节课我们主要学习几类特殊线性变换及其二阶矩阵,这节课的主要内容有旋转变换、反射变换、伸缩变换、投影变换、切变变换,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解线性变换与二阶矩阵内容,形成初步感知。 (2)首先,我们先来学习线性变换及其相关概念,它的具体内容是: 在平面直角坐标系xoy 内,很多几何变换都具有下列形式:x ax by y cx dy '=+??'=+? ③; 其中系数a ,b ,c ,d 均为常数,我们把形如③的几何变换叫做线性变换。 ③式叫做这个线性变换的坐标变换公式。 (,)P x y '''是(,)P x y 在这个线性变换作用下的像。 像这样,由4个数a ,b ,c ,d 排成的正方形表a b c d ?? ???称为二阶矩阵。数a ,b ,c ,d 称为矩阵的元素 元素全为0的二阶矩阵0000?? ???称为零矩阵,简记为0。

矩阵1001?? ??? 称为二阶单位矩阵,记为E 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换。求点(1,0)A 在这个旋转变换作用下的像A '。 解析:教师板书。 (3)接着,我们再来看下旋转变换的概念,它的具体内容是: 在直角坐标系xOy 内的每个点绕原点O 按逆时针方向旋转α角的旋转变换(通常记为n R )的坐标变换公式:cos sin sin cos x x y y x y αααα'=-??'=+?,对应的二阶矩阵为:cos sin sin cos αααα-?? ??? 。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换,写出这个旋转变化的表达式。 解析:教师板书。 (4)接着,我们再来看下反射变换内容,它的具体内容是: 一般地,我们把平面上的任意一点P 变成它关于直线l 的对称点P '的线性变换叫做关于l 的反射。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:在直角坐标系xoy 内,直线l 过原点,倾斜角为α。求关于直线l 的反射变换的坐标变换公式。 学生板书,教师纠正解答。 (5)接着,我们再来看下伸缩变换内容,它的具体内容是: 在直角坐标系xOy 内,将每个点的横坐标变为原来1k 倍,纵坐标变为原来的2k 倍,其中1k ,2k 均为非零常数,我们称这样的几何变换为伸缩变换。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:直角坐标系xOy 内,将每一点的纵坐标变为原来的2倍,横坐标保持不变。 (1)试确定该伸缩变换的坐标变换公式及其对应的二阶矩阵。 (2)求点A (1,1)-在该伸缩变换作用下的像A ' 教师请同学上讲台解答,并纠正总结。

量子力学基础简答题(经典)【精选】

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在 ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1 ?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

最新量子力学期末考试题解答题

最新量子力学期末考试题解答题 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件.首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质. 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子.爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的.(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比.(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子. 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态.这就是量子力学中的态叠加原理.态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ.它反映了微观粒子的波粒二象性矛盾的统一.量子力学中这种态的叠加导致在叠加态下观测结果的不确定性. 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值.这种状态称为定态.定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化. 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号.量子力学中采用算符来表示微观粒子的力学量.如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

量子力学的表象与表示

第五章 量子力学的表象与表示 §5.1 幺正变换和反幺正变换 1, 幺正算符定义 对任意两个波函数)(r ?、)(r ψ,定义内积 r d r r )()(),(ψ?ψ?*?= (5.1) 按第一章中所说,(5.1)式的含义是:当微观粒子处在状态()r ψ时,找 到粒子处在状态()r ?的概率幅。 依据内积概念,可以定义幺正算符如下: “对任意两个波函数?、ψ,如果算符 U 恒使下式成立 ),()?,?(ψ?ψ?=U U (5.2) 而且有逆算符1?-U 存在,使得I U U U U ==--11????1,称这个算符U ?为幺正算符。” 任一算符A ?的厄米算符+A ?定义为:+A ?在任意?、ψ中的矩阵元恒由下式右方决定 ??(,)(,)A A ?ψ?ψ+= (5.3) 由此,幺正算符U ?有另一个等价的定义: “算符U ?为幺正算符的充要条件是 I U U U U ==++???? (5.4a) 或者说 1??-+=U U 。” (5.4b) 证明:若),()?,?(ψ?ψ?=U U 成立,则按+U ?定义, ),??()?,?(),(ψ?ψ?ψ?U U U U +== 由于?、ψ任意,所以 I U U =+?? 又因为U ?有唯一的逆算符1?-U 存在,对上式右乘以1?U -,即得 1??U U +-= 这就从第一种定义导出了第二种定义。类似,也能从第二种定义导出第一种定义。从而,幺正算符的这两种定义是等价的。 2, 幺正算符的性质 幺正算符有如下几条性质: i, 幺正算符的逆算符是幺正算符 证明:设 1-+=U U , 则()()(),1 11--+++-===U U U U 所以1-U 也是幺正 1 这里强调了 U -1 既是对 U 右乘的逆又是对 U 左乘的逆。和有限维空间情况不同,无限维空间情况下,任一算符 U 有逆算符的三种情况:1)有一个左逆算符和无穷多个右逆算符;2)有一个右逆算符和无穷多个左逆算符;3)有一个左逆算符和一个右逆算符,并且它俩相等,唯有此时可简单地写为 U -1 。

量子力学习题

河 北 大 学 课 程 考 核 试 卷 — 学年第 学期 级 专业(类) 考核科目 量子力学 课程类别 必修课 考核类型 考试 考核方式 闭卷 卷别 A (注:考生务必将答案写在答题纸上,写在本试卷上的无效) 一、概念题:(共20分,每小题4分) 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释 各项的几率意义。 二(20分)设一粒子在一维势场c bx ax x U ++=2)(中运动(0>a )。求其定态能级和波函数。 三(20分)设某时刻,粒子处在状态)cos (sin )(212kx kx B x +=ψ,求此时粒子的平均动量和平均动能。 四(20分)某体系存在一个三度简并能级,即E E E E ===)0(3)0(2 )0(1。在不含时微扰H '?作用下,总哈密顿算符H ?在)0(?H 表象下为????? ? ?=**2110 0E E E H βαβα。求 受微扰后的能量至一级。 五(20分)对电子,求在x S ?表象下的x S ?、y S ?、z S ?的矩阵表示。 A —1—1 河 北 大 学 课 程 考 核 试 卷 — 学年第 学期 级 专业(类) 考核科目 量子力学 课程类别 必修课 考核类型 考试 考核方式 闭卷 卷别 B (注:考生务必将答案写在答题纸上,写在本试卷上的无效) 一、概念题:(共20分,每小题4分)

量子力学的矩阵形式及表象理论

第三章一维定态问题

第三章 目 录 §3.1一般性质 (2) (1)定理1:一维运动的分立能级(束缚态),一般是不简 并的 ...................................... 2 (2)不同的分立能级的波函数是正交的。 .......... 4 (3)振荡定理 .................................. 4 (4)在无穷大位势处的边条件 .................... 5 §3.2阶梯位势 ....................................... 6 §3.3位垒穿透 (8) (1) E ................................... 10 (3)结果讨论 ................................. 11 §3.4方位阱穿透 .................................... 11 §3.5一维无限深方位阱 (12) (1)能量本征值和本征函数 ..................... 12 (2)结果讨论 ................................. 13 §3.6宇称,一维有限深方势阱,双 δ位势 .. (14) (1)宇称 ..................................... 14 (2)有限对称方位阱 ........................... 15 (3) 求粒子在双δ位阱中运动 ................... 18 §3.7束缚能级与反射振幅极点的关系 ... 错误!未定义书签。 (1) 半壁δ位阱的散射 ......... 错误!未定义书签。 (2)有限深方位阱 .............. 错误!未定义书签。 §3.8 一维谐振子的代数解法 .......... 错误!未定义书签。 (1)能量本征值 ................ 错误!未定义书签。 (2) 能量本征函数 ............. 错误!未定义书签。 (3)讨论和结论 ................ 错误!未定义书签。 §3.9 相干态 ........................ 错误!未定义书签。

量子力学的矩阵形式及表象理论

量子力学习题(三年级用) 北京大学物理学院 二O O三年

第一章 绪论 1、计算下列情况的Broglie d e -波长,指出那种情况要用量子力学处理: (1)能量为eV .0250的慢中子 () 克2410671-?=μ .n ;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-?=μ.a ; (3)飞行速度为100米/秒,质量为40克的子弹。 2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少? 3、利用Broglie d e -关系,及园形轨道为各波长的整数倍,给出氢原子能量 可能值。

第二章 波函数与波动力学 1、设()() 为常数a Ae x x a 222 1 -= ? (1)求归一化常数 (2).?p ?,x x == 2、求ikr ikr e r e r -=?=?1121和的几率流密度。 3、若() ,Be e A kx kx -+=? 求其几率流密度,你从结果中能得到什么样的结 论?(其中k 为实数) 4、一维运动的粒子处于 ()? ? ?<>=?λ-0 00x x Axe x x 的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。 5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证 0=?? 其中ρ= υ/j 6、一维自由运动粒子,在0=t 时,波函数为 ()()x ,x δ=?0 求: ?)t ,x (=?2

第三章 一维定态问题 1、粒子处于位场 ()00 0000 ??? ?≥?=V x V x V 中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动) 2、一粒子在一维势场 ?? ???>∞≤≤<∞=0 000x a x x V ) x ( 中运动。 (1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ?态,证明:,/a x 2= ().n a x x ?? ? ??π-=-2222 6112 3、若在x 轴的有限区域,有一位势,在区域外的波函数为 如 D S A S B D S A S C 22211211+=+= 这即“出射”波和“入射”波之间的关系,

量子力学之狄拉克符号系统与表象

Dirac 符号系统与表象 一、Dirac 符号 1. 引言 我们知道任一力学量在不同表象中有不同形式,它们都是取定了某一具体的 力学量空间,即某一具体的力学量表象。量子描述除了使用具体表象外,也可以不取定表象,正如几何学和经典力学中也可用矢量形式 A 来表示一个矢量,而不用具体坐标系中的分量(A x , A y , A z )表示一样。 量子力学可以不涉及具体表象来讨论粒子的状态和运动规律。这种抽象的描 述方法是由 Dirac 首先引用的,本质是一个线性泛函空间,所以该方法所使用的符号称为 Dirac 符号。 2. 态矢量 (1). 右矢空间 力学量本征态构成完备系,所以本征函数所对应的右矢空间中的右矢也组成该空间的完备右矢(或基组),即右矢空间中的完备的基本矢量(简称基矢)。 右矢空间的任一矢量 |ψ> 可按该空间的某一完备基矢展开。例如: =n n a n ψ∑ (2). 左矢空间 右矢空间中的每一个右矢量在左矢空间都有一个相对应的左矢量,记为 < |。右矢空间和左矢空间称为伴空间或对偶空间,<ψ | 和 |ψ> 称为伴矢量。

的关系 |ψ >按 Q 的左基矢 |Q n > 展开: |ψ > = a 1 |Q 1> + a 2 |Q 2> + ... + a 3 |Q 3 > + ... 展开系数即相当于 Q 表象中的表示: 12 n a a a ψ?? ? ? ?= ? ? ?? ? <ψ| 按 Q 的左基矢 和 <φ| 的标积为:*n n n b a ?ψ=∑。显然<φ|ψ>* = <ψ|φ>。对于满足归 一化条件的内积有:*1n n n a a ψψ= =∑。 这样,本征态的归一化条件可以写为:

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且 (E-A)1-= E + A + A2+…+A1-K 证明因为E 与A 可以交换, 所以 (E- A )(E+A + A2+…+ A1-K)= E-A K, 因A K= 0 ,于是得 (E-A)(E+A+A2+…+A1-K)=E, 同理可得(E + A + A2+…+A1-K)(E-A)=E, 因此E-A是可逆矩阵,且 (E-A)1-= E + A + A2+…+A1-K. 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A2+…+(-1)1-K A1-K. 由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.

例2 设 A =? ? ?? ? ???? ???000030000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证 A 2=???? ????? ???0000 000060000200, A 3=? ? ?? ? ? ? ?? ???0000 0000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3 =? ? ?? ? ???? ???1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.

量子力学习题分解

量子力学习题 (三年级用) 山东师范大学物理与电子科学学院 二O O七年

第一部分 量子力学的诞生 1、计算下列情况的Broglie d e -波长,指出那种情况要用量子力学处理: (1)能量为eV .0250的慢中子 () 克2410671-?=μ .n ;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-?=μ.a ; (3)飞行速度为100米/秒,质量为40克的子弹。 2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少? 3、利用Broglie d e -关系,及园形轨道为各波长的整数倍,给出氢原子能 量可能值。

第二部分 波函数与Schr?dinger 方程 1、设()() 为常数a Ae x x a 222 1 -= ? (1)求归一化常数 (2).?p ?,x x == 2、求ikr ikr e r e r -=?=?1121和的几率流密度。 3、若() ,Be e A kx kx -+=? 求其几率流密度,你从结果中能得到什么样的 结论?(其中k 为实数) 4、一维运动的粒子处于 ()? ? ?<>=?λ-0 00x x Axe x x 的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。 5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证 0=υ?? 其中ρ= υ/j 6、一维自由运动粒子,在0=t 时,波函数为 ()()x ,x δ=?0 求: ?)t ,x (=?2

第三部分 一维定态问题 1、粒子处于位场 ()00 0000 ??? ?≥?=V x V x V 中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动) 2、一粒子在一维势场 ?? ???>∞≤≤<∞=0 000x a x x V ) x ( 中运动。 (1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ?态,证明:,/a x 2= () .n a x x ?? ? ??π-=-2222 6112 3、若在x 轴的有限区域,有一位势,在区域外的波函数为 如 D S A S B D S A S C 22211211+=+=

专题23 矩阵与变换(解析版)

专题23 矩阵与变换 1、(2019年江苏卷)已知矩阵3122?? =???? A (1)求A 2; (2)求矩阵A 的特征值. 【分析】 (1)利用矩阵的乘法运算法则计算2A 的值即可; (2)首先求得矩阵的特征多项式,然后利用特征多项式求解特征值即可. 【解析】(1)因为3122??=???? A , 所以2 31312222???? =???????? A =3312311223222122?+??+??????+??+???=115106?? ???? . (2)矩阵A 的特征多项式为 23 1 ()542 2 f λλλλλ--= =-+--. 令()0f λ=,解得A 的特征值121,4λλ==. 2、(2018年江苏卷) 已知矩阵. (1)求的逆矩阵 ; (2)若点P 在矩阵对应的变换作用下得到点 ,求点P 的坐标. 【解析】分析:(1)根据逆矩阵公式可得结果;(2)根据矩阵变换列方程解得P 点坐标. 详解:(1)因为, ,所以A 可逆, 从而 . (2)设P (x ,y ),则 ,所以 , 因此,点P 的坐标为(3,–1).

点睛:本题考查矩阵的运算、线性变换等基础知识,考查运算求解能力. 3、(2017江苏卷)已知矩阵A =?? ????0110,B =???? ??1002. (1) 求AB ; (2) 若曲线C 1:x 28+y 2 2=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程. 规范解答:(1) 因为A =??????0110,B =???? ??1002, 所以AB =??????0110??????1002=???? ??0210. (2) 设Q (x 0,y 0)为曲线C 1上的任意一点,它在矩阵AB 对应的变换作用下变为P (x ,y ), 则??????0210??????x 0y 0=??????x y ,即??? ?? 2y 0=x ,x 0=y ,所以? ???? x 0=y ,y 0=x 2. 因为点Q (x 0,y 0)在曲线C 1上,所以x 208+y 20 2=1, 从而y 28+x 2 8 =1,即x 2+y 2=8. 因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8. 4、(2016年江苏卷)已知矩阵A =??????1 20-2,矩阵B 的逆矩阵B -1=????????1-120 2,求矩阵AB . 规范解答 设B =???? ??a b c d , 则B -1B =?? ? ?? ???1-120 2 ??????a b c d =???? ??1001, 即????? ???a -12c b -12d 2c 2d =??????1001, 故????? a -1 2 c =1,b -12 d =0,2c =0,2d =1, 解得????? a =1, b =14, c =0, d =12 ,所以B =?? ?? ??1 14 012 .

量子力学 第三章 表象理论

第三章表象理论 本章提要:本章讨论态矢和算符的具体表示形式。首先,重点讨论了本征矢和本征函数、态矢量和波函数之间的关系,指出了函数依赖于表象。之后,引入投影算符,讨论了不同表象下的态矢展开,尤其是位置和动量表象,并顺带解决了观测值问题。接着,用投影算符统一了态矢内积与函数内积。最后,简单介绍了一些矩阵力学的内容。 1.表象:完备基的选择不唯一。因此可以选用不同的完备基把态矢量展开。除了态矢量,算符在不同表象下的具体表示也不同。因此,我们把态矢量和算符的具体表示方式统称为表象 ①使用力学量表象:我们还知道每个力学量对应的(厄米)算符的本征矢都构成一组完备基。若选用算符G 的(已经标准正交化(离散谱)或规格正交化(连续谱))的本征矢作为态空间的基,就称为使用G 表象的描述 ②波函数:把态矢展开式中各项的系数(“坐标”)定义为G 表象下的波函数 ③本征函数与本征矢的关系:设本征方程ψ=ψλQ ?又可写作()()G Q G Q ψψ=? 则两边乘G 有()()ψ===ψ=ψ=ψQ G Q G Q G Q Q G Q G ???ψψ 因此:本征函数()ψ=G G ψ就是Q ?的本征态ψ在表象G ?下的“坐标”(波函数) 如果离散谱:()ψ=i i G ψ就是Q ?的本征态ψ在表象G ?的i G 方向上的“坐标” ④结论:算符和态矢量的抽象符号表示不依赖于表象,具体形式依赖于表象选择 但本征函数和波函数相当于“坐标”,依赖于态矢(向量)和表象(基) *注意:第二章在展开态矢量、写算符和本征函数时使用都是位置表象(也称坐标表象) 2.投影算符:我们将使用这个算符统一函数与矢量的内积符号 (1)投影算符:令()()连续谱离散谱dG G G i i P i ?∑==?,称为投影算符 (2)算符约定:求和或积分遍历算符G 的标准(或规格)完备正交基矢量 (3)本征方程:ψ=ψ=ψI P ??,表明投影算符就是单位算符 (4)单位算符代换公式:()()连续谱离散谱dQ G G i i I i ?∑==?

相关主题
文本预览
相关文档 最新文档