当前位置:文档之家› 2019-2020年高中数学 第三讲 柯西不等式与排序不等式讲末检测 新人教A版选修4-5

2019-2020年高中数学 第三讲 柯西不等式与排序不等式讲末检测 新人教A版选修4-5

2019-2020年高中数学 第三讲 柯西不等式与排序不等式讲末检测 新人教A版选修4-5
2019-2020年高中数学 第三讲 柯西不等式与排序不等式讲末检测 新人教A版选修4-5

2019-2020年高中数学 第三讲 柯西不等式与排序不等式讲末检测

新人教A 版选修4-5

一、选择题(每小题5分,共60分)

1.若a 2+b 2

=5,则a +2b 的最大值为( ) A .5 B .6 C .7 D .8 答案: A

2.设xy >0,则?

????x 2+4y 2?

??

??y 2+1x

2的最小值为( )

A .10

B .9

C .8

D .7

答案: B

3.设a ,b ,c 为正数,a +b +4c =1,则a +b +2c 的最大值是( ) A. 5 B. 3 C .2 3 D.

32

解析:1=a +b +4c =(a )2+(b )2+(2c )2=13[(a )2+(b )2+(2c )2](12+12+12

)

≥13(a +b +2c )2,∴(a +b +2c )2

≤3.∵a ,b ,c 为正数,∴a +b +2c ≤ 3. 答案:B

4.若a <b <c ,x <y <z ,则下列各式中取值最大的一个是( ) A .ax +cy +bz B .bx +ay +cz C .bx +cy +az D .ax +by +cz 答案:D

5.已知a 21+a 22+a 23+…+a 2n =1,x 21+x 22+…+x 2

n =1,则a 1x 1+a 2x 2+…+a n x n 的最大值是( )

A .1

B .2 C.1

2

D .4

解析:|a 1x 1+a 2x 2+…+a n x n |≤a 2

1+a 2

2+…+a 2

n ×x 2

1+x 2

2+…+x 2

n =1,当且仅当a 1x 1=a 2x 2

=…=a n x n

时,等号成立.

答案:A

6.已知x ,y ,z ∈R +,且x +y +z =3,则x 2+y 2+z 2

的最小值是( ) A .1 B.13 C.1

2

D .3

解析:x 2+y 2+z 2=(12+12+12)(x 2+y 2+z 2)×13≥(1×x +1×y +1×z )2

×13=93=3.

答案:D

7.设a ,b ,c 为正数,且a +b +c =1,则1a +1b +1

c

的值( )

A .大于9

B .不大于9

C .小于9

D .不小于9

解析:构造两组数a ,b ,c ;

1

a

1

b

1

c

.于是由柯西不等式有[(a )2+(b )

2

+(c )2

]??????? ????1a 2+? ????1b 2+? ????1c 2≥?

?

???a ·1a +b ·1b +c ·1c 2,即(a +b +

c )·? ??

??1a +1b +1c ≥32.∵a +b +c =1,∴1a +1b +1c ≥9,当且仅当a =b =c =1

3时,等号成立.

答案:D

8.已知x +2y +3z =1,则x 2+y 2+z 2

的最小值是( ) A.

114 B.17 C.314 D.27

解析:根据柯西不等式有(x 2

+y 2

+z 2

)(12

+22

+32

)≥(x +2y +3z )2

=1,∴x 2

+y 2

+z 2

≥114,当且仅当x 1=y 2=z 3,即x =114,y =17,z =314时,x 2+y 2+z 2

取最小值,最小值为114

. 答案:A

9.设x 1,x 2,…,x n 是互不相同的正整数,则m =x 112+x 222+…+x n

n 2的最小值是( )

A .1

B .2

C .1+12+13+…+1n

D .1+122+132+…+1

n

2

解析:设a 1,a 2,…,a n 是x 1,x 2,…,x n 的一个排列,且满足a 1<a 2<…<a n .因为a 1,

a 2,…,a n 是互不相同的正整数,所以a 1≥1,a 2≥2,…,a n ≥n .又因为1>1

22>1

32>…>1

n 2,

所以由排序不等式,得x 11+x 222+x 332+…+x n n 2≥a 1+a 222+a 332+…+a n n 2≥1×1+2×122+3×1

32+…+

n ×1

n 2=1+1

2+1

3+…+1

n

.

答案:C

10.已知a ,b ,c ∈R +,则a 2(a 2-bc )+b 2(b 2-ac )+c 2(c 2

-ab )( ) A .大于零 B .大于等于零 C .小于零 D .小于等于零

解析:设a ≥b ≥c >0,所以a 3≥b 3≥c 3,根据排序原理,得a 3·a +b 3·b +c 3·c ≥a 3

b +b 3

c +c 3a .又ab ≥ac ≥bc ,a 2≥b 2≥c 2,所以a 3b +b 3c +c 3a ≥a 2bc +b 2ca +c 2ab .所以a 4+b 4+c 4≥a 2bc +b 2ca +c 2ab ,即a 2(a 2-bc )+b 2(b 2-ac )+c 2(c 2

-ab )≥0.

答案:B

11.若a ,b ,c 为正数,则?

??

??a b +b c +c

a

·(b a +c b +a c

)的最小值为( ) A .1 B .-1 C .3 D .9 解

西

? ????a b +b c +c a ·? ??

??b a +c b +a c ≥?

?

?

??a b ·b a +b c ·c b +c a

·a c 2=32

=9.

答案:D

12.已知a ,b ,c ∈R +,设P =2(a 3+b 3+c 3

),Q =a 2(b +c )+b 2(c +a )+c 2(a +b ),则( ) A .P ≤Q B .P <Q C .P ≥Q D .P >Q

解析:根据排序原理,取两组数a ,b ,c ;a 2,b 2,c 2.不妨设a ≥b ≥c >0,所以a 2≥b 2

≥c 2>0,所以由排序原理,得a 2a +b 2b +c 2c ≥a 2b +b 2c +c 2a ,a 2a +b 2b +c 2c ≥ a 2c +b 2a +c 2b ,

将上面两式相加,得2(a 3+b 3+c 3)≥a 2(b +c )+b 2(a +c )+c 2

(a +b ).∴P ≥Q .

答案:C

二、填空题(每小题5分,共20分)

13.下列命题中正确的序号为________.

①log a b +log b c +log c a ≥3成立,当且仅当a ,b ,c ∈(1,+∞);

②?

???

??a +1a ≥2成立,当且仅当a ≠0; ③a 2+b 2

+c 2

≤ab +bc +ca .

解析:①中因为a ,b ,c ∈(1,+∞)或(0,1).③由排序不等式知对任意顺序的a ,b ,c ,其顺序和a 2+b 2+c 2为最大值,∴a 2+b 2+c 2≥ab +bc +ca .

答案:②

14.在锐角△ABC 中,a <b <c ,设M =a cos C +b cos B +c cos A ,N =a cos B +b cos C +c cos A ,则M 与N 的大小关系是________.

解析:∵在锐角△ABC 中,a <b <c ,∴A <B <C <90°,∴cos A >cos B >cos C .由排序原理:顺序和≥乱序和,∴M >N .

答案:M >N

15.已知x ,y ,a ,b ∈R +

,且a x +b

y

=1,则x +y 的最小值为________(用a ,b 表示). 解析:构造两组实数x ,y 与

a x ,

b y .∵x ,y ,a ,b ∈R +,a x +b y

=1,∴x +y =[(x )2+(y )2

]·???

?

???

????a x 2+?

????b y 2≥(a +b )2,当且仅当x y =a

b

时,等号成立. 答案:(a +b )2

16.y =22-x +2x -3的最大值是________.

解析:y =2×4-2x +1×2x -3≤[(2)2

+12

](4-2x +2x -3)= 3. 答案:3

三、解答题(本大题共6小题,共70分)

17.(本小题满分11分)设a ,b ,c ,d 为实数,求证: (a 3+b 3+c 3+d 3)2≤4(a 6+b 6+c 6+d 6

).

证明:由柯西不等式(a 3+b 3+c 3+d 3)2≤[(a 3)2+(b 3)2+(c 3)2+(d 3)2](12+12+12+12

)=4(a 6+b 6+c 6+d 6

).

18.(本小题满分11分)设a ,b ,c 为正数,求证:

a 2+

b 2+b 2+

c 2+c 2+a 2≥2(a +b +c ).

证明:由柯西不等式a 2+b 2·12+12≥a +b ,即a 2+b 2·2≥a +b ,同理b 2+c 2

·2

≥b +c ,c 2+a 2·2≥c +a ,由以上三个同向不等式相加,得2(a 2+b 2+b 2+c 2

+c 2+a 2)≥2(a +b +c ).∴a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ).

19.(本小题满分12分)已知w 2+x 2+y 2+z 2+F 2

=16,求F =8-w -x -y -z 的最大值. 解析:由柯西不等式得|F -8|=|w +x +y +z |≤4·w 2

+x 2

+y 2

+z 2

=216-F 2

.两边

平方后可得0≤F ≤165,因此F max =165,当且仅当w =x =y =z =65时,F =16

5

.

20.(本小题满分12分)已知a 2

+b 2

+c 2

=1,若a +b +2c =|x +1|对任意的实数a ,b ,

c 恒成立,求实数x 的取值范围.

解析:由柯西不等式得(a +b +2c )2

≤(1+1+2)(a 2

+b 2

+c 2

)=4,即|a +b +2c |≤2.∵a +b +2c ≤|x +1|对任意的实数a ,b ,c 恒成立,∴|x +1|≥(a +b +2c ),即|x +1|≥2,解得x ≥1或x ≤-3.故x 的取值范围为(-∞,-3]∪[1,+∞).

21.(本小题满分12分)设a 1,a 2,…,a n 为正数,求证:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n

a 1

≥a 1+a 2

+…+a n .

证明:由所证不等式的对称性,不妨设0<a 1≤a 2≤…≤a n ,∴a 21≤a 22≤…≤a 2

n ,1a 1≥1a 2

≥…

≥1a n .1a 2,1a 3,…,1a n ,1a 1为1a 1,1a 2,…,1a n 的一个排序,由乱序和≥反序和,得a 21·1a 2+a 2

2·1a 3

+…+a 2

n -1·1

a n +a 2

n ·1

a 1≥a 2

1

·1

a 1+a 22

·1

a 2+…+a 2

n ·1

a n ,即a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1

≥a 1+a 2+…+

a n .

22.(本小题满分12分)设a 1,a 2,…,a n 为1,2,…,n 的一个排列,求证:12+2

3+…

n -1n ≤a 1a 2+a 2a 3+…+a n -1

a n

. 证明:设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1.c 1,c 2,…,

c n -1为a 1,a 2,a 3,…,a n -1的一个排列,且c 1<c 2<…<c n -1.于是1

c 1>1

c 2>…>1

c n -1

.由乱序

和≥反序和,得a 1a 2+a 2

a 3+…+

a n -1a n ≥

b 1

c 1+b 2c 2+…+b n -1

c n -1

.∵b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n ,∴b 1c 1+b 2c 2+…+b n -1c n -1≥12+23+…+n -1n ,即12+23+…+n -1n ≤b 1c 1+b 2

c 2

+…

b n -1

c n -1≤a 1a 2+a 2a 3+…+a n -1

a n

.

2019-2020年高中数学 第三讲《柯西不等式与排序不等式》教案(1) 新

人教版选修4-5

教学要求:认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式.

教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义.

教学过程:

一、复习准备:

1. 提问: 二元均值不等式有哪几种形式?

答案:及几种变式.

2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=….=

二、讲授新课:

1. 教学柯西不等式:

① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++

222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量,,则,.

∵ ,且,则. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则

≥0恒成立.

∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③ 讨论:二维形式的柯西不等式的一些变式? 2

22||c d ac bd +≥+ 或222||||c d ac bd +≥+

222c d ac bd +≥+. ④ 提出定理2:设是两个向量,则.

即柯西不等式的向量形式(由向量法提出 )

→ 讨论:上面时候等号成立?(是零向量,或者共线)

⑤ 练习:已知a 、b 、c 、d . 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式:

① 出示定理3≥分析其几何意义 → 如何利用柯西不等式证明

→ 变式:若,则结合以上几何意义,可得到怎样的三角不等式?

3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点)

三、巩固练习:

1. 练习:试写出三维形式的柯西不等式和三角不等式

2. 作业:教材P 37 4、5题.

第二课时 3.1 二维形式的柯西不等式(二)

教学要求:会利用二维柯西不等式及三角不等式解决问题,体会运用经典不等式的一般方法——发现具体问题与经典不等式之间的关系,经过适当变形,依据经典不等式得到不等关系. 教学重点:利用二维柯西不等式解决问题. 教学难点:如何变形,套用已知不等式的形式.

教学过程:

一、复习准备:

1. 提问:二维形式的柯西不等式、三角不等式? 几何意义?

答案:22222()()()a b c d ac bd ++≥+2. 讨论:如何将二维形式的柯西不等式、三角不等式,拓广到三维、四维? 3. 如何利用二维柯西不等式求函数的最大值?

要点:利用变式222||ac bd c d +≤+.

二、讲授新课:

1. 教学最大(小)值:

① 出示例1:求函数的最大值?

分析:如何变形? → 构造柯西不等式的形式 → 板演

→ 变式: → 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知,求的最小值.

解答要点:(凑配法)2222222111()(32)(32)131313

x y x y x y +=

++≥+=. 讨论:其它方法 (数形结合法) 2. 教学不等式的证明: ① 出示例2:若,,求证:.

分析:如何变形后利用柯西不等式? (注意对比 → 构造)

要点:2222

111111()()]

22x y x y x y +=++=++≥… 讨论:其它证法(利用基本不等式) ② 练习:已知、,求证:. 3. 练习:

① 已知,且,则的最小值.

要点:…. → 其它证法

② 若,且,求的最小值. (要点:利用三维柯西不等式) 变式:若,且,求的最大值.

3. 小结:比较柯西不等式的形式,将目标式进行变形,注意凑配、构造等技巧.

三、巩固练习:

1. 练习:教材P 37 8、9题

2. 作业:教材P 37 1、6、7题

第三课时 3.2 一般形式的柯西不等式

教学要求:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并应用其解决一些不等式的问题.

教学重点:会证明一般形式的柯西不等式,并能应用.

教学难点:理解证明中的函数思想.

教学过程:

一、复习准备: 1. 练习:

2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维?

答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++

二、讲授新课:

1. 教学一般形式的柯西不等式:

① 提问:由平面向量的柯西不等式,如果得到空间向量的柯西不等式及代数形式? ② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈,则

222222212121122()()()n n n n a a a b b b a b a b a b +++++≥+++ 讨论:什么时候取等号?(当且仅当时取等号,假设) 联想:设,,,则有,可联想到一些什么?

③ 讨论:如何构造二次函数证明n 维形式的柯西不等式? (注意分类)

要点:令222

2121122)2()n n n f x a a a x a b a b a b x =++???++++???+(

)( ,则 2221122()()())0n n f x a x b a x b a x b =++++???+≥+(.

又,从而结合二次函数的图像可知,

[]2

2221122122()4()n n n a b a b a b a a a ?=+++-++

≤0

即有要证明的结论成立. (注意:分析什么时候等号成立.)

④ 变式:222212121

()n n a a a a a a n

++

≥++???+. (讨论如何证明)

2. 教学柯西不等式的应用:

① 出示例1:已知,求的最小值.

分析:如何变形后构造柯西不等式? → 板演 → 变式: ② 练习:若,且,求的最小值. ③ 出示例2:若>>,求证:.

要点:21111

()()[()()]()(11)4a c a b b c a b b c a b b c

-+=-+-+≥+=----

3. 小结:柯西不等式的一般形式及应用;等号成立的条件;根据结构特点构造证明.

三、巩固练习:

1. 练习:教材P 41 4题

2. 作业:教材P 41 5、6题

第四课时 3.3 排序不等式

教学要求:了解排序不等式的基本形式,会运用排序不等式分析解决一些简单问题,体会运用经典不等式的一般方法.

教学重点:应用排序不等式证明不等式. 教学难点:排序不等式的证明思路.

教学过程:

一、复习准备:

1. 提问: 前面所学习的一些经典不等式?

(柯西不等式、三角不等式)

2. 举例:说说两类经典不等式的应用实例. 二、讲授新课:

1. 教学排序不等式: ① 看书:P 42~P 44.

② 提出排序不等式(即排序原理): 设有两个有序实数组:···;···.···是,···的任一排列,则有 ···+ (同序和)

+···+ (乱序和) +···+ (反序和)

当且仅当···=或···=时,反序和等于同序和. (要点:理解其思想,记住其形式) 2. 教学排序不等式的应用:

① 出示例1:设是n 个互不相同的正整数,求证:

321222

111

12323n a a a a n n +

++???+≤+++???+

. 分析:如何构造有序排列? 如何运用套用排序不等式? 证明过程:

设是的一个排列,且,则. 又,由排序不等式,得

33

2211

222222

2323n n a a b b a b a b n n +++???+≥+++???+≥… 小结:分析目标,构造有序排列. ② 练习:

已知为正数,求证:3332222()()()()a b c a b c b a c c a b ++≥+++++. 解答要点:由对称性,假设,则,

于是 222222a a b b c c a c b a c b ++≥++,222222a a b b c c a b b c c a ++≥++, 两式相加即得.

3. 小结:排序不等式的基本形式.

三、巩固练习:

1. 练习:教材P 45 1题

2. 作业:教材P 45 3、4题

3.均值不等式(全国卷1)

第三节:均值不等式 1.★★若正数a b c ,,满足24288c bc ac ab +++=,则2a b c ++的最小值为 A. 3 B.23C.2 D.2 2 答案:D 2. ★★(2014 河北唐山二模文)若实数a b c ,,满足2228a b c ++=,则a b c + +的最大值为 A.9 B.23 C.3 2 D.2 答案:D 3. ★★(2014 河北衡水四调理)已知,,,ABC A B C ?∠∠∠中的对边分别为,,a b c ,若 1, 2 2a cosC c b =+=,则ABC ?的周长的取值范围是__________. 答案:](32, 4. ★ (2014 河北衡水三调理)已知,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ) A .a b c >> B .b c a >> C .b a c >> D .a c b >> 答案:C 5.★★( 2014 河北衡水三调理)已知各项均为正数的等比数列满足, 若存在两项 的最小值为 ( ) A . B . C . D .9 答案:A 6. ★★(2014 河北衡水三调文)已知0,0,lg 2lg8lg 2x y x y >>+=,则113x y +的最小值是. 答案:4 7. ★★(2014 河北衡水四调文)函数2()2l n f x x x b x a =+-+(0,)b a R >∈在点{}n a 7652a a a =+,m n a a 114 4,a m n =+则3 2 539 4

(),()b f b 处的切线斜率的最小值 是( ) A.2 1 答案:A 8. ★★(2014 河北冀州中学月考文)若正实数满足 恒成立,则 的最大值为. 答案:1 9. ★★★(2012 山西襄汾中学高考练兵理)设x 、y 满足约束条件,若目 标函数(00)z ax by a b =+>>其中,的最大值为3,则+的最小值为 A .3 B .1 C .2 D .4 答案:A 10. ★★★(2014 河南郑州2014第一次质量预测理)已知,a b 是两个互相垂直的单位向量,且1c a c b ?=?= ,则对任意的正实数t ,1||c ta b t ++ 的最小值是( ) A .2 B ..4 D .答案:B 11. ★★(2014 河南中原名校期中联考理)已知00x y >,>,若222y x m m x y 8+>+恒成立,则实数m 的取值范围是 A .42m m ≥≤或- B .24m m ≥≤或- C .24m -<< D .42m -<< 答案:D 12. ★(2013 河南许昌市期中理)若实数x y ,满足221x y xy ++=,则x y +的最大值是 . 答案: ,x y 2x y +=M ≥M 23023400x y x y y -+≥?? -+≤??≥? 1a 2 b

高中数学教学论文 柯西不等式的证明与应用

柯西不等式的证明及其应用 摘要:柯西不等式是一个非常重要的不等式,本文用六种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 Summar y: Cauchy's inequality is a very important inequality, this article use six different methods to prove the Cauchy inequality, and gives some Cauchy inequality in inequality, solving the most value, solving equations, trigonometry and geometry problems in the areas of application, the last used it proved that point to the straight line distance formula, better explains the Cauchy inequality. Keywords :Cauchy inequality, proof application 不等式是数学的重要组成部分,它遍及数学的每一个分支。本文主要介绍著名不等式——柯西不等式的证明方法及其在初等数学解体中 的应用。柯西不等式是一个非常重要的不等式,本文用几种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用。

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

高中数学:柯西不等式的几种用法

高中数学:柯西不等式的几种用法 1、熟记模型,直接应用 ()+21212 11,2111i n n a R i n a a a n a a a ∈=?? ++++++≥ ???例 ,求证 2、灵活变通,巧妙应用 22x y R x y x y ∈≤+≤例2、已知 ,,且3+26, 求证: 12 22223,3,,,2365,2. a b c d a b c d R a b c d a + ++=?∈ ?+++=?≤≤例、,且满足:求证:1 35,2 x ≤≤<例4、设求证: 3、以n 为目标,在“1”上下功夫 22212 12 n n i a a a a a a a R n ++++++∈≤例5、 +441,,18 a b R a b a b ∈+=≥例6、若 求证:+ ()12122 22221212,1111.n n n n a a a a a a n a a a a a a n ++++??????++++++≥ ? ? ???????例7、已知 ,,都是正数,且=1, 求证: 4、以分式的各项分母为目标,配对约分为桥梁。 ()22212a b c a b c R a b c a b c b a c + ∈++≥+++++例8、若、、,证明: ()()()333 111132 a b c abc a b c b a c c a b =≥+++例9设、、为正实数,且满足, 证明:++(IMO32届赛题) 5、 去伪存真,再寻对策

11111223421231 n n n n n n ∈≥->-+例10、 设N 且 2 求证:1-+-++ 6、综合中寻机应用,技高一筹 ,,,0,1, 131313131 a b c d abcd a b c d b c d a >≥+++≥++++例11、已知求证: (){}()() 1212222111,, ,2,,,1,1,1.2015n n n n n i i i i i i i a a a n a a n a εεεε===≥∈-??????+≤+ ? ? ??????? ∑∑∑例12、已知是实数,证明:可以选取使得:年全国联赛二试

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

2019-2020年高中数学第三讲柯西不等式与排序不等式3.3排序不等式达标训练新人教A版选修

2019-2020年高中数学第三讲柯西不等式与排序不等式3.3排序不等式达 标训练新人教A 版选修 基础·巩固 1.如下图所示,矩形OPAQ 中,a 1≤a 2,b 1≤b 2,则阴影部分的矩形的面积之和_________空白部分的矩形的面积之和. 思路分析:这可沿图中线段MN 向上翻折比较即知.当然由图我们可知,阴影面积=a 1b 1+a 2b 2,而空白面积=a 1b 2+a 2b 1.根据顺序和≥反序和可知答案. 答案:≥ 2.设a 、b 、c 为某一三角形三边长,求证: a 2(b+c-a)+ b 2(c+a-b)+ c 2(a+b-c)≤3abc. 思路分析:运用排序原理,关键是弄出有序数组,通常从函数的单调性质去寻找,如f(x)=x 2在R +单调递增,f(x)=在R +单调递减. 证明:不妨设a≥b≥c,易证a(b+c-a)≤b(c+a -b)≤c(a+b -c). 由排序原理得a 2(b+c-a)+b 2(c+a-b)+c 2(a+b-c) ≤a·b(c+a -b)+b·c(a+b -c)+c·a(b+c -a)=3abc. 3.对a,b,c∈R +,比较a 3+b 3+c 3与a 2b+b 2c+c 2a 的大小. 思路分析:将式子理解为积的形式a 2·a+b 2·b+c 2·c,a 2b+b 2c+c 2a,再依大小关系可求解. 解:取两组数a,b,c ;a 2,b 2,c 2. 不论a,b,c 的大小顺序如何,a 3+b 3+c 3都是顺序和,a 2b+b 2c+c 2a 都是乱序和; 故由排序原理可得a 3+b 3+c 3≥a 2b+b 2c+c 2a. 4.求证:正实数a 1,a 2,…,a n 的任一排列为a 1′,a 2′,…,a n ′,则有≥n. 思路分析:本题考查如何将和的形式构造为积的形式,本题关键是将n 理解为n 个1相加,而把1理解为x·的形式.这种方法有普遍的应用,应该加以重视. 证明:取两组数a 1,a 2,…,a n ;,,…,. 其反序和为=n ,原不等式的左边为乱序和,有≥n. 5.已知a,b,c∈R +,求证:≥a 10+b 10+c 10. 思路分析:可以发现左右两边的次数相等,因此,应该进行适当的拼凑,使其成为积的形式. 证明:不妨设a≥b≥c>0,则>0且a 12≥b 12≥c 12>0, 则ab c bc b ab a ab c ca b bc a 12 1212121212++≥++ c c b b a a a c c b b a 11 1111111111++≥++==a 10+b 10+c 10. 6.设a 1,a 2, …,a n 是1,2, …,n 的一个排列,求证: n n a a a a a a n n 1322113221-++≤-+++ .

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高中数学基本不等式专题复习

第11课:基本不等式与双√函数 一、双√函数 形如.0,0,>>+=q p x q px y 图像如右图所示: (1)0>x 时,当p q x =时取到pq y 2min =; (2)值域: (3)当0,0<-+=x x x y 正确解法: 两者联系: (1)基本不等式去等号时的值即为双勾函数的拐点,

(2)凡是利用“积定和最小”求最值的函数均可换元为双勾函数! 三、利用基本不等式求最值 类型一:形如()()0,1≠++ +=c a d cx b ax y 采取配积为定! 1、求??? ??>-+ =455434x x x y 的最小值 2、求??? ??<-+=455433x x x y 的最大值 3、求()π,0,sin 2sin ∈+ =x x x y 的最小值的值域 4、求()的最小值01 1>-+=x e e y x x 的最小值 类型二:形如()0,2≠+++=c a d cx c bx ax y 采取配凑——分离术! 1、求0,92>++=x x x x y 的最小值 2、求0,192>+++=x x x x y 的最小值 3、求?? ????-∈+++=1,31,12122x x x x y 的值域 4、求4,1822-<+++=x x x x y 的最值

高中数学《不等式》选修题型归纳

6.不等式选讲 6.1均值不等式在证明中的应用 1. (1)已知,,,a b R x y R + ∈∈,求证:()2 22x y x y a b a b ++≥+; (2)已知实数,x y 满足:2221x y +=,试利用(1)求 2221 x y +的最小值。 (1)证:()()2222222 222x y bx ay a b x y x y xy x y a b a b ??++=+++≥++=+? ??? ()2 22x y x y a b a b ++≥ +(当且仅当x y a b =时,取等号); (2)解:()2 22222222212121922x y x y x y ++=+≥=+,当且仅当221 3x y ==时,2221x y +的最小值 是9。 考点:均值不等式在证明中的应用、综合法证明不等式 6.2绝对值不等式 6.2.1单绝对值不等式 2. 已知函数254,0 ()22,0 x x x f x x x ?++≤?=?->??若函数()y f x a x =-恰有4个零点,则实数a 的 取值范围为_______. 答案:(1,2)

解析:分别作出函数()y f x =与||y a x =的图像, 由图知,0a <时,函数()y f x =与||y a x =无交点, 0a =时,函数()y f x =与||y a x =有三个交点, 故0.a > 当0x >,2a ≥时,函数()y f x =与||y a x =有一个交点, 当0x >,02a <<时,函数()y f x =与||y a x =有两个交点, 当0x <时,若y ax =-与254,(41)y x x x =----<<-相切, 则由0?=得:1a =或9a =(舍), 因此当0x <,1a >时,函数()y f x =与||y a x =有两个交点, 当0x <,1a =时,函数()y f x =与||y a x =有三个交点, 当0x <,01a <<时,函数()y f x =与||y a x =有四个交点, 所以当且仅当12a <<时,函数()y f x =与||y a x =恰有4个交点.

(完整word版)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知 a 、 b 、 c 、d 为实数,求证 (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ① 提出定理 1:若 a 、 b 、 c 、 d 为实数,则 (a 2 b 2 )( c 2 d 2 ) (ac bd )2 . 证法一:(比较法) (a 2 b 2 )(c 2 d 2 ) ( ac bd ) 2 = .= ( ad bc) 2 0 证法二:(综合法) (a 2 b 2 )( c 2 d 2 ) a 2c 2 a 2 d 2 b 2c 2 b 2d 2 ( ac bd ) 2 ( ad bc) 2 ( ac bd) 2 . (要点:展开→配方) ur (a,b) , r ur a 2 b 2 r c 2 d 2 . 证法三:(向量法)设向量 m n (c,d ) ,则 | m | , | n | ur r ur r ur r ur r ur r ur r ∴.. ∵ m ? n ac bd ,且 mgn | m |g| n |gcos m,n ,则 | mgn | | m |g| n | . 证法四:(函数法)设 f ( x) ( a 2 b 2 ) x 2 2( ac bd ) x c 2 d 2 ,则 f ( x) ( ax c)2 (bx d )2 ≥ 0 恒成立 . ∴ [ 2(ac bd)] 2 4(a 2 b 2 )( c 2 d 2 ) ≤ 0,即 .. ③二维形式的柯西不等式的一些变式: a 2 b 2 g c 2 d 2 | ac bd | 或 a 2 b 2 g c 2 d 2 | ac | | bd | 或 a 2 b 2 g c 2 d 2 ac bd . 2:设 ur ur ur ur | | ur ur ④ 提出定理 , 是两个向量,则 | g || | . 即柯西不等式的向量形式(由向量法提出 ) ur ur ur , → 讨论:上面时候等号成立?( 是零向量,或者 共线) ⑤ 练习:已知 a 、 b 、 c 、d 为实数,求证 a 2 b 2 c 2 d 2 (a c)2 (b d) 2 . 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理 3:设 x , y , x , y R ,则 2 2 2 2 2 2 . 1 12 2 x 1 y 1 x 2 y 2 ( x 1 x 2 ) ( y 1 y 2 ) 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若 x 1 , y 1 , x 2 , y 2 , x 3 , y 3 R ,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结: 二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程 : (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ; x 12 y 1 2 x 2 2 y 2 2 ( x 1 x 2 ) 2 ( y 1 y 2 )2 3. 如何利用二维柯西不等式求函数 y x 1 2 x 的最大值 ? 要点:利用变式 | ac bd | a 2 b 2 g c 2 d 2 . 二、讲授新课: 1. 教学最大(小)值: ① 出示例 1:求函数 y 3 x 1 10 2x 的最大值? 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式: y 3x 1 10 2x → 推广: y a bx c d e fx,( a,b,c,d ,e, f R ) ② 练习:已知 3x 2 y 1,求 x 2 y 2 的最小值 . 解答要点:(凑配法) x 2 y 2 1 ( x 2 y 2 )(3 2 22 ) 1 (3 x 2 y) 2 1 . 13 13 13 2. 教学不等式的证明: ① 出示例 2:若 x, y R , x y 2 ,求证: 1 1 2 . x y 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点: 1 1 1 ( x y)( 1 1 ) 1 [( x )2 ( y )2 ][( 1 ) 2 (1)2 ] x y 2 x y 2 x y

高中数学知识点精讲精析 排序不等式

2 排序不等式 先来看一个问题: 设有10个人各拿一只水桶去接水,若水龙头注满第i 个人的水桶需要i a 分钟,且这些i a 各不相同。那么,只有一个水龙头时,应如何安排10个人接水的顺序,才能使它们等待的总时间最少?这个最少的总时间等于多少? 解决这一问题,就需要用到排序不等式的有关内容。在没有找到合理的解决办法之前,同学们可以猜测一下,怎样安排才是最优的接水顺序? 为了解决这一问题,先来了解排序不等式。 一般地,设有两组正数n a a a ,,,21 与n b b b ,,,21 ,且n a a a ≤≤≤ 21,n b b b ≤≤≤ 21. 若将两组中的数一对一相乘后再相加, 则其和同序时最大,倒序时最小.即 (倒序)(乱序)(同序)1 12121221121b a b a b a b a b a b a b a b a b a n n n i n i i n n n +++≥+++≥+++- 其中n i i i ,,,21 是n ,,2,1 的任一个排列,等号当且仅当n a a a === 21或 n b b b === 21时成立。 下面采用逐步调整法证明排序不等式。 证明:考察任意和式n i n i i b a b a b a s +++= 2121。 若1i b 是1b ,则转而考察2i b ; 若1i b 不是1b ,而某一k i b 是1b 。将1i b 与k i b 调整位置,得 n k i n i k i i b a b a b a b a s +++++=' 1221 则 0))(()()(111111≥--=-+-=-'i k i i k i i b b a a b b a b b a s s k k 这就是说,当把第一项调整为11b a 后,和不会减少。同样,可将第二项调整为22b a ,…,

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

高中数学-公式-柯西不等式

第一课时 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a b =+,2||n c d =+ ∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. } ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 222||c d ac bd +≥+ 或 222||||c d ac bd +≥+ 222c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈ ? 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+ 3. 如何利用二维柯西不等式求函数y = 要点:利用变式222||ac bd c d ++. 二、讲授新课: % 1. 教学最大(小)值: ① 出示例1:求函数y = 分析:如何变形 → 构造柯西不等式的形式 → 板演 → 变式:y = → 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313 x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式 (注意对比 → 构造)

高中数学基本不等式练习题

一.选择题 1.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为() A.B.2C.4 D.4 2.已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2D.若a<b<0,则> 5.若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于() A.2 B.3 C.4 D.5 7.若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.12 8.已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()A.B.8 C.9 D.12 9.若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.已知x+3y=2,则3x+27y的最小值为() A. B.4 C. D.6 11.若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.已知a,b,c,是正实数,且a+b+c=1,则的最小值为() A.3 B.6 C.9 D.12 二.填空题 1.已知正数x,y满足x+y=1,则的最小值为. 2.已知a>0,b>0,且a+b=2,则的最小值为. 3.已知x>1,则函数的最小值为. 4.设2<x<5,则函数的最大值是. 5.函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为. 6.已知x>1,则函数y=2x+的最小值为.

高中数学选修4-5中的著名不等式

选修4-5中的著名不等式 内蒙古赤峰市翁牛特旗乌丹一中熊明军 新课程改革推出了知识模块,把高等数学中一些领域的知识进行了简化,下放到高中。选修4-5中给出了许多著名不等式的特例,下面对课本上的这些不等式及其一般形式做一下介绍。 绝对值的三角不等式(): 定理:若为实数,则,当且仅当时,等号成立。 绝对值的三角不等式一般形式: ,简记为。 柯西不等式() 定理:(向量形式)设为平面上的两个向量,则。 当及为非零向量时,等号成立及共线存在实数,使。 当或为零向量时,规定零向量与任何向量平行,即当时,上式依然成立。 定理:(代数形式)设均为实数,则,当且仅当时,等号成立。 柯西不等式的一般形式() 定理:设为实数,则

,当且仅当时,等号成立(当某时,认为)。 闵可夫斯基不等式() 定理:设均为实数,则,当且仅当存在非负实数(不同时为0),使时,等号成立。 闵可夫斯基不等式的一般形式: 定理:设是两组正数,,则 或,当且仅当时,等号成立。 排序不等式() 定理:设为两组实数为 的任一排列,则有。 当且仅当或时,等号成立。 排序原理可简记作:反序和乱序和顺序和。 切比晓夫不等式():

定理:设为任意两组实数, ①如果或,则有 ②如果或,则有 ①②两式,当且仅当或时,等号成立。 平均值不等式() 定理:设为个正数,则,当且仅当 时,等号成立。 当时,,当且仅当时,等号成立。 加权平均不等式() 定理:设为正数,都是正有理数,并且,那么。 杨格不等式():

定理:设为有理数,满足条件(互称为共轭指标),为正数,则。 当时,,此时的杨格不等式就是熟知的基本不等式。 贝努利不等式(): 定理:设,且,为大于1的自然数,则。 贝努利不等式的一般形式: (1)设,且同号,则; (2)设,则①当时,有;②当或时,有 ,①②当且仅当时等号,成立。

相关主题
文本预览
相关文档 最新文档