当前位置:文档之家› FANUC机器人仿真软件操作手册

FANUC机器人仿真软件操作手册

FANUC机器人仿真软件操作手册
FANUC机器人仿真软件操作手册

目录

目录 (1)

第一章概述 (2)

1.1. 软件安装 (2)

1.2. 软件注册 (3)

1.3. 新建Workcell的步骤 (4)

1.3.1. 新建 (4)

1.3.2. 添加附加轴的设置 (9)

1.4. 添加焊枪,TCP设置。 (15)

1.5. Workcell的存储目录 (18)

1.6.鼠标操作 (19)

第二章创建变位机 (21)

3.1.利用自建数模创建 (21)

3.1.1.快速简易方法 (21)

3.1.2.导入外部模型方法 (31)

3.2.利用模型库创建 (41)

3.2.1.导入默认配置的模型库变位机 (41)

3.2.2.手动装配模型库变位机 (44)

第三章创建机器人行走轴 (49)

3.1. 行走轴-利用模型库 (49)

3.2. 行走轴-自建数模 (56)

第四章变位机协调功能 (62)

4.1. 单轴变位机协调功能设置 (62)

4.2. 单轴变位机协调功能示例 (71)

第五章添加其他外围设备 (72)

第六章仿真录像的制作 (75)

第一章概述

1.1. 软件安装

本教程中所用软件版本号为V6.407269

正确安装ROBOGUIDE,先安装安装盘里的SimPRO,选择需要的虚拟机器人的软件版本。安装完SimPRO后再安装WeldPro。安装完,会要求注册;若未注册,有30天时间试用。

如果需要用到变位机协调功能,还需要安装MultiRobot Arc Package。

1.2. 软件注册

注册方法:打开WeldPRO程序,点击Help / Register WeldPRO

弹出如下窗口,

1.3. 新建Workcell的步骤1.3.1. 新建

在Name 一栏输入文件名,文件名要以字母开头。

单选项第一项“根据缺省配置新建”;第二项“根据上次使用的配置新建”;第三项“根据机器人备份文件来创建”;第四项“根据已有机器人的拷贝来新建”;一般都选用第一项。

选择机器人的软件版本:V6.** 是针对R-J3iB控制器,V7.**是应用在R-30iA控制器的。现在销售的机器人都是R-30iA控制器。

选择机器人的应用软件:选用ArcTool ( H541 )

选择合适的机型,如果选型错误,造成焊接位置达不到,可以在创建之后再更改。

然后选择Group2 ~7的设备:该实例中选了两个Positioners (变位机),

如果没有类似设备,就无需在此页上做任何选择。

选好变位机型号

点击箭头

根据所需,选择相应的选项功能软件。

以下列出一些弧焊中常用的选项功能:

1A05B-2500-H871 ARC Positioner FANUC二轴变位机

1A05B-2500-J511 TAST Arc Sensor

1A05B-2500-J518 Extended Axis Control 行走轴

1A05B-2500-J526 AVC 弧压控制

1A05B-2500-J536 Touch Sensing 接触传感

1A05B-2500-J605 Multi Robot Control 多机器人控制,Dual Arm中用1A05B-2500-J601 Multi-Group Motion 多组控制,有变位机,必须选1A05B-2500-J617 Multi Equipment 多设备,Tamdem Mig中用

1A05B-2500-J613 Continuous Turn 连续转,

1A05B-2500-J678 ArcTool Ramping 焊接参数谐波变化

1A05B-2500-J686 Coord Motion Package 变位机协调功能单组控制不选J601

浏览刚才设置的参数,点击Finish 完成。

1.3.

2. 添加附加轴的设置

在新建过程中,如果添加了附加轴(Positioner ,Rail ),在workcell 的新建完成之前,会依次弹出以下窗口,需要您逐个回答。

如果没有添加附加轴,则不会弹出这些窗口。

提示输入FSSB 光缆的编号,

总轴数少于16的情况下,一般是1 附加轴开始的轴数:一般是7,8,9 依次下去

选运动类型:一般都是选2,未知的类型。

选第二项:Add Axis

选第一项:Standard Method 标准的方法

(如果不知道fanuc 电机的型号,也可以选择2Enhanced Method 实现快速创建)

选择相应的伺服马达

选马达转速;

选伺服电机的最大电流,如果以上三项选错,则无法继续下步操作,会要求重新选。

选伺服放大器编号:2,3,4依次下去

选伺服放大器类型。

选轴的运动类型:直线还是旋转

运动方向

减速比

最大速度设定,一般选

2,默认值

一般选默认值1

运动范围上限

运动范围下限

零度标定时的位置

加速时间1,选2

加速时间2

,选

2

最小加速时间负载率马达抱匝号设置

伺服自动关闭是否有限

选4退出设置,如需要再添加一轴,可以选择2继续添加。

1.4. 添加焊枪,TCP设置。

如图所示,右键点击UT:1 (Eoat1)

然后点击“Eoat1 Properties”

(Eoat: End of Arm Tooling机械手末端工具)

点击该图标,选择需要的焊枪模型。

该软件中已有一些常用的模型库,如

果没有找到所需的,可以自己用3D

软件做模型,文件保存为IGS格式。

常用模型所在位置:C:\Program

Files\FANUC\PRO\SimPRO\Image

Library\EOATs\weld_torches

提示:1.拖动绿色小球时,为了尽快将小球拖到焊丝尖端,先将小球三个坐标轴中的一个轴大概垂直与屏幕,拖动另外两个轴到焊丝尖端,然后换一个轴垂直于屏幕,再拖动小球更进一步与焊丝尖端重合。

2.可以放大模型,放得越大,TCP

设置得越准。

1.5. Workcell的存储目录

默认情况下,Workcell存储在C:\Documents and Settings\计算机用户名\My Workcells 中。此目录是可以更改的。点击菜单栏Tools / options,在弹出的窗口选择General选项卡,点击Default Workcell Path右边的文件夹图标:

选择存储的目录文件夹。

Workcell 文件夹中包含如下文件:

1.6.鼠标操作

1. 对模型窗口的鼠标操作

鼠标可以对仿真模型窗口进行移动、旋转、放大缩小等操作。 移动:按住中键,并拖动 旋转:按住右键,并拖动

放大缩小:同时按住左右键,并前后移动;另一种方法,直接滚动滚轮

2. 改变模型位置的鼠标操作

改变模型的位置,一种方法是直接修改其坐标参数,另一种方法是用鼠标直接拖曳。下面是鼠标直接拖曳的方法(首先要左键单击选中模型,并显示出绿色坐标轴):

移动:1.将鼠标箭头放在某个绿色坐标轴上,箭头显示为手形并有坐标轴标号X 、Y 或

Z ,按住左键并拖动,模型将沿此轴方向移动;

2.将鼠标放在坐标上,按住键盘上Ctrl 键,按住鼠标左键并拖动,模型将沿任意

方向移动。

旋转:按住键盘上Shift 键,鼠标放在某根坐标轴上,按住左键并拖动,模型将沿此轴

旋转。

3. 机器人运动的鼠标操作

用鼠标可以实现机器人TCP 点快速运动到目标面、边、点或者圆中心,方法如下: 运动到面:Ctrl+Shift+左键

运动到边:Ctrl+Alt+

左键

FANUC机器人仿真软件操作手册

FANUC机器人仿真软件操作手册

2008年10月第1版ROBOGUIDE 使用手册(弧焊部分基础篇)

目录 目录 (1) 第一章概述 (2) 1.1. 软件安装 (2) 1.2. 软件注册 (3) 1.3. 新建Workcell的步骤 (4) 1.3.1. 新建 (4) 1.3.2. 添加附加轴的设置 (11) 1.4. 添加焊枪,TCP设置。 (16) 1.5. Workcell的存储目录 (20) 1.6.鼠标操作 (22) 第二章创建变位机 (25) 3.1.利用自建数模创建 (25) 3.1.1.快速简易方法 (25) 3.1.2.导入外部模型方法 (42) 3.2.利用模型库创建 (54) 3.2.1.导入默认配置的模型库变位机 (54) 3.2.2.手动装配模型库变位机 (58) 第三章创建机器人行走轴 (66) 3.1. 行走轴-利用模型库 (66) 3.2. 行走轴-自建数模 (75) 第四章变位机协调功能 (82) 4.1. 单轴变位机协调功能设置 (82) 4.2. 单轴变位机协调功能示例 (96) 第五章添加其他外围设备 (98) 第六章仿真录像的制作 (102)

第一章概述 1.1. 软件安装 本教程中所用软件版本号为V6.407269 正确安装ROBOGUIDE ,先安装安装盘里的SimPRO,选择需要的虚拟机器人的软件版本。安装完SimPRO后再安装WeldPro。安装完,会要求注册;若未注册,有30天时间试用。

如果需要用到变位机协调功能,还需要安装MultiRobot Arc Package。 1.2. 软件注册 注册方法:打开WeldPRO程序,点击Help / Register WeldPRO 弹出如下窗口,

虚拟机器人仿真软件使用使用说明

热博机器人3D仿真系统 用 户 手 册

杭州热博科技有限公司 1.软件介绍 RB-3DRSS是热博科技有限公司新近推出的一款以.NET平台为基础,在Microsoft Windows平台上使用3D技术开发的3D机器人仿真软件。用户通过构建虚拟机器人、虚拟环境,编写虚拟机器人的驱动程序,模拟现实情况下机器人在特定环境中的运行情况。 RB-3DRSS与市面上的同类产品相比,它具有如下的特点: 1.全3D场景。用户可自由控制视角的位置,角度。 2.先进的物理引擎技术,引入真实世界的重力、作用力、反作用力、速度、加速度、摩擦力等概念,是一款真正意义上的仿真软件。 3.逼真的仿真效果。采用虚拟现实技术,高度接近实际环境下的机器人运动状态,大大简化实际机器人调试过程。

4.实时运行调试。运行时,依据实际运行情况,调整机器人参数,帮助用户快速实现理想中的效果。 5.自由灵活的机器人搭建与场地搭建。用户可自由选择机器人及其配件,进行机器人搭建,可自行编辑3D训练比赛场地,所想即所得。 6.单人或多人的对抗过程。用户可添加多个机器人,自由组队进行队伍间对抗。7.与机器人图形化开发平台无缝连接。其生成的控制程序代码可在虚拟仿真系统中直接调用,大大节省编程时间。

系统配置要求 操作系统:win98,win2000全系列,winXp,win2003 server 运行环境:.Net Framework v2.0,DirectX 9.0c 最低硬件配置: 2.0GHz以上主频的CPU,512M内存,64M显存以上的3D显卡.支持1024×768分辨率,16bit颜色的监视器,声卡 推荐配置: 3.0G以上主频的CPU,1G内存,128M显存的3D显卡,支持1024×768分辨率,16bit 颜色监视器,声卡

工业机器人软件仿真码垛工作站

工业机器人软件仿真码垛工作站

————————————————————————————————作者:————————————————————————————————日期: ?

工业自动化技术强化训练Ⅱ实践报告 工业机器人码垛应用 作者姓名: 指导老师: 所在学院: 提交日期:

绪论 一、摘要 本次强化训练的时间为期4周,通过对ABB机器人的学习与操作,以完成本次强化训练的要求。这着4周的学习过程中,学习包括机器人的发展历程和机械结构等理论方面,还包含了编程、机器人I/O的接线。同时练习实操机器人,这是一个必不可少的环节,只有理论与实践相结合,才能出真知。在前一周的实操中完成了机器人循迹。 而本次强化训练的重点为,利用ABB RobotStudio对双输送线单机械臂工作站完成工作站搭建并模拟仿真。 ABB RobotStudio是优秀的计算机仿真软件。为帮助您提高生产率,降低购买与实施机器人解决方案的总成本,ABB开发了一个适用于机器人寿命周期各个阶段的软件产品家族。 规划与可行性:规划与定义阶段RobotStudio可让您在实际构建机器人系统之前先进行设计和试运行。您还可以利用该软件确认机器人是否能到达所有编程位置,并计算解决方案的工作周期。 编程:设计阶段,ProgramMaker将帮助您在PC机上创建、编辑和修改机器人程序及各种数据文件。ScreenMaker能帮您定制生产用的ABB示教悬臂程序画面。 关键词:强化训练;ABBRobotStudio;双输送线;模拟仿真

工业机器人码垛软件仿真 一、双输送线码垛工作站搭建 在ABB RobotStudio中导入机器人模型后,点击显示机器人工作范围,以机器人为中心,周围放置两个输送线与两个托盘垛。也可以将两个托盘垛换成一个较大的传送带,但此种方法需要增加新的I/O设置,不宜采用。值得注意的是托盘垛应放置于较合适,既较高的位置,以免机械臂达到极限位置。 布局如下,其中双输送线的以及托盘垛的位置并未精确定位,只需要放置在合理的机器人工作范围内即可。 二、工作站搭建流程 第一节:搭建输送带系统 1、新建一个物料并手动拖动到输送带上 2、在建模选项中点击Smart组件,并添加一个Source 3、设置Source的属性如下,其中Position选项为要复制的物料的原点位置,值得注意的是Transient应当勾选,以防内存溢出。

FANUC机器人基本操作指导

FANUC 机器人基本操作指导
1.概论----------------------------------------------------------------------------------------------------------- 1
1)机器人的构成------------------------------------------------------------------------------------------- 1 2)机器人的用途------------------------------------------------------------------------------------------- 1 3)FANUC 机器人的型号-------------------------------------------------------------------------------- 1 2.FANUC 机器人的构成--------------------------------------------------------------------------------- 1
1)FANUC 机器人软件系统------------------------------------------------------------------------------- 1 2)FANUC 机器人硬件系统------------------------------------------------------------------------------- 2
(1). 机器人系统构成------------------------------------------------------------------------------ 2 (2). 机器人控制器硬件--------------------------------------------------------------------------- 2 3.示教盒 TP------------------------------------------------------------------------------------------------- 2 1)TP 的作用------------------------------------------------------------------------------------------------- 2 2)认识 TP 上的键------------------------------------------------------------------------------------------- 3 3)TP 上的开关---------------------------------------------------------------------------------------------- 4 4)TP 上的显示屏------------------------------------------------------------------------------------------- 5
安全操作规程
5
编程
6
1.通电和关电------------------------------------------------------------------------------------------------ 7
1)通电-------------------------------------------------------------------------------------------------------- 7
2)关电-------------------------------------------------------------------------------------------------------- 7
2.手动示教机器人----------------------------------------------------------------------------------------- 7
1)示教模式-------------------------------------------------------------------------------------------------- 7
2)设置示教速度-------------------------------------------------------------------------------------------- 8 3)示教-------------------------------------------------------------------------------------------------------- 8
3.手动执行程序--------------------------------------------------------------------------------------------- 8
4.自动运行---------------------------------------------------------------------------------------------------- 9

Fanuc_ROBOT_IRVISION_中文使用手册

iRVision 小结

1.1 Offset 补偿和检测方式 根据iRVision 的补偿和测量方式的不同,iRVision 可作以下分类: 对具体的应用,理解不同iRVision 的特性并选择一个适合的应用是非常重要的。 ● offset 补偿分类 - 用户坐标系补偿 (User Frame Offset) 机器人在用户坐标系下通过Vision 检测目标当前位置相对初始位置的偏移并自动补偿抓取位置。 - 工具坐标系补偿 (Tool Frame Offset) 机器人在工具坐标系下通过Vision 检测在机器人手爪上的目标 当前位置相对初始位置的偏移并自动补偿放置位置。 ● 测量方式分类 - 2D 单视野检测 (2D Single-View) 2D 多视野检测 (2D Multi-View) iRVision 2D 只用于检测平面移动的目标 (XY 轴位移、Z 轴旋转角度R)。其中,用户坐标系必须平行于目标移动的平面,目标在Z 轴方向上的高度必须保持不变。目标在XY 轴方向上的旋转角度不会被计算在内。 - 2.5D 单视野检测 (2.5D Single-View / Depalletization) IRVision 2.5D 比较 iRVision 2D ,除检测目标平面位移与旋转外,还可以检测Z 轴方向上的目标高度变化。目标在XY 轴方向上的旋转角度不会被计算在内。 - 3D 单视野检测 (3D Single-View) 3D 多视野检测 (3D Multi-View) iRVision 3D 用于检测目标3维内的位移与旋转角度变化。 检测目标位置 修正机器人姿态 放置目标 检测目标位置 修正机器人姿态 抓取目标 用户坐标系 工具坐标系 2D 检测 2.5D 检测 3D 检测

中学信息技术《机器人仿真系统》教案

中学信息技术《机器人仿真系统》教案第16课机器人仿真系统 【教学目标】 .知识目标 ◆认识仿真下的虚拟机器人; ◆能用NSTRSS设计场地、构建机器人并利用仿真环境进行组队测试。 2.过程与方法 ◆通过教师演示在虚拟仿真环境下的机器人运行,激发学生兴趣; ◆通过教师讲解虚拟仿真软件,培养学生对新软件的兴趣; ◆通过让学生自己动手调试,体会学习新事物的乐趣。 3.情感态度与价值观 ◆使学生领悟“自由无限,创意无限,只有想不到,没有做不到”的道理; ◆培养学生积极探索、敢于实践、大胆创新的精神和意识。 【教法选择】 示例讲解、任务驱动、辅导答疑。 【教学重点】 .用NSTRSS仿真系统设计仿真场地;

2.搭建仿真机器人; 3.运行仿真。 【教学难点】 .设计场地; 2.搭建仿真机器人。 【教学过程】 一、巩固1日知,引入新知 教师活动 将上节课学生完成的在现实场地中运行的走迷宫机器人进行分组比赛,一是能够检验学生的学习情况,二是能调动起学生的积极性,三是为引入仿真系统做准备。 学生活动 小组合作,调试机器人程序,检查机器人的搭建,准备比赛。 教师活动 通过比赛,提出问题:同学们想不想经常地进行这样的比赛呢?但是在现实中调试,需要很多的时间,而且还需要固定的场地环境等等,非常不方便,我们有没有什么好办法解决这个问颢? 引入纳英特的仿真模拟系统,展示它的特点,与现实情况做比较。 教师给学生演示讲解:

.关于仿真系统 什么是仿真系统?仿真系统是机器人的设计、实现,完全在虚拟的环境中,以虚拟的形式出现,它以优化机器人硬件和软件设计、缩短研发周期、节约成本为特色,解决机器人设计过程的不足。 2.初识NSTRSS软件 NSTRSS是NST科技新近推出的一款以.NET平台为基础,使用microsoftDirectX9.0技术的3D机器人仿真软件。用户通过构建虚拟机器人、虚拟环境,编写虚拟机器人的驱动程序,模拟现实情况下机器人在特定环境中的运行情况。 NSTRSS与市面上的同类产品相比,它具有如下的特点:全3D场景。用户可自由控制视角的位置及角度,甚至以第一人称方式进行场景漫游; 逼真的仿真效果。采用虚拟现实技术,高度接近实际环境下的机器人运动状态,大大简化实际机器人调试过程; 实时运行调试。运行时,依据实际运行情况,调整机器人参数,帮助用户快速实现理想中的效果; 自由灵活的机器人搭建与场地搭建。用户可自由选择机器人及其配件,进行机器人搭建,可自行编辑3D训练比赛场地,所想即所得; 单人或多人的对抗过程。用户可添加多个机器人,自由组队进行队伍间对抗;

机器人系统常用仿真软件介绍

1 主要介绍以下七种仿真平台(侧重移动机器人仿真而非机械臂等工业机器人仿真): 1.1 USARSim-Unified System for Automation and Robot Simulation USARSim是一个基于虚拟竞技场引擎设计高保真多机器人环境仿真平台。主要针对地面机器人,可以被用于研究和教学,除此之外,USARSim是RoboCup救援虚拟机器人竞赛和虚拟制造自动化竞赛的基础平台。使用开放动力学引擎ODE(Open Dynamics Engine),支持三维的渲染和物理模拟,较高可配置性和可扩展性,与Player兼容,采用分层控制系统,开放接口结构模拟功能和工具框架模块。机器人控制可以通过虚拟脚本编程或网络连接使用UDP协议实现。被广泛应用于机器人仿真、训练军队新兵、消防及搜寻和营救任务的研究。机器人和环境可以通过第三方软件进行生成。软件遵循免费GPL条款,多平台支持可以安装并运行在Linux、Windows和MacOS操作系统上。 1.2 Simbad Simbad是基于Java3D的用于科研和教育目的多机器人仿真平台。主要专注于研究人员和编程人员热衷的多机器人系统中人工智能、机器学习和更多通用的人工智能算法一些简单的基本问题。它拥有可编程机器人控制器,可定制环境和自定义配置传感器模块等功能,采用3D虚拟传感技术,支持单或多机器人仿真,提供神经网络和进化算法等工具箱。软件开发容易,开源,基于GNU协议,不支持物理计算,可以运行在任何支持包含Java3D库的Java客户端系统上。 1.3 Webots Webots是一个具备建模、编程和仿真移动机器人开发平台,主要用于地面机器人仿真。用户可以在一个共享的环境中设计多种复杂的异构机器人,可以自定义环境大小,环境中所有物体的属性包括形状、颜色、文字、质量、功能等也都可由用户来进行自由配置,它使用ODE检测物体碰撞和模拟刚性结构的动力学特性,可以精确的模拟物体速度、惯性和摩擦力等物理属性。每个机器人可以装配大量可供选择的仿真传感器和驱动器,机器人的控制器可以通过内部集成化开发环境或者第三方开发环境进行编程,控制器程序可以用C,C++等编写,机器人每个行为都可以在真实世界中测试。支持大量机器人模型如khepera、pioneer2、aibo等,也可以导入自己定义的机器人。全球有超过750个高校和研究中心使用该仿真软件,但需要付费,支持各主流操作系统包括Linux, Windows和MacOS。 1.4 MRDS-Microsoft Robotics Developer Studio MRDS是微软开发的一款基于Windows环境、网络化、基于服务框架结构的机器人控制仿真平台,使用PhysX物理引擎,是目前保真度最高的仿真引擎之一,主要针对学术、爱好者和商业开发,支持大量的机器人软硬件。MRDS是基于实时并发协调同步CCR(Concurrency and Coordination Runtime)和分布式软件服务DSS(Decentralized Software Services),进行异步并行任务管理并允许多种服务协调管理获得复杂的行为,提供可视化编程语言(VPL)和可视化仿真环境(VSE)。支持主流的商业机器人,主要编程语言为C#,非商业应用免费,但只支持在Windows操作系统下进行开发。 1.5 PSG-Player/Stage/Gazebo

FANUC机器人编程培训手册

FANUC PaintPro 编程基础培训手册 第一版 作者:罗少华 2011年2月21日

目录 一. 启动Paint PRO‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3 二. 打开一个现有的work cell‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4 三. 使用鼠标和键盘将3维空间平移,旋转,放大或者缩小‥‥‥‥6 四. 使用teach pendant移动机器人‥‥‥‥‥‥‥‥‥‥‥‥‥‥8 五. 创建一个新的Work cell‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥9 六. 建立part carrier和跟踪参数‥‥‥‥‥‥‥‥‥‥‥‥‥‥25 七. 给机器人安装喷枪‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥30 八. 载入工件数模‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥33 九. 使用Conveyor控制条 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥34 十. 将现实机器人的程序导入仿真软件‥‥‥‥‥‥‥‥‥‥‥‥35 十一. 创建喷涂程序‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥38

1.启动PaintPRO 1)点击开始按钮,如图一所示。 图一 2)左键点击PaintPRO图标,将出现如图二所示对话框。

图二 2.打开一个现有的workcell 1) 点击工具栏上的按钮,出现类似图三的对话框: 图三 2)双击名字是PaintPRO_Workcell_P‐50的文件夹,出现图四:

图四 3)双击名字是PaintPRO_Workcell_P‐50的图标,Workcell将自动运行打开。 4)如果Workcell中缺少3D数模文件,将显示如图5的信息框,点击OK to All以继续。 图五

1.3 简介能力风暴机器人仿真系统

1.3 简介能力风暴机器人仿真系统 学习智能机器人,除了需要具备机器人硬件外,还需要为机器人编写控制程序,并在场地上进行反复调试。但如果手边暂时既无机器人实物,又无真实场地,我们还能学习和研究机器人吗?答案是可以的。能力风暴机器人为我们提供了一套仿真的VJC系统软件,在这个仿真系统中,我们不仅可以为机器人编写各种控制程序,同时还可以将编制的程序下载到仿真的机器人上,并在仿真的场地中进行模拟运行和调试,体验机器人控制的全过程。本节我们就来认识VJC系统仿真版软件,学习构建仿真场地和仿真调试的方法。 1.3.1 认识VJC系统仿真版软件 1.VJC系统仿真版软件的安装 安装VJC系统仿真版的方法很简单,先打开本书配套光盘上的“VJC系统软件\VJC1.5仿真版”文件夹,找到名为“setup.exe”的安装程序,用鼠标双击该文件,系统自动将其安装到C盘中,并在Windows桌面上自动生成一个“VJC1.5仿真版”的快捷方式图标,软件安装的路径默认为:C:\program files\VJC1.5仿真版。如果我们使用的计算机中已经安装了VJC系统仿真版,则安装这一步可以跳过不做。 2.VJC系统仿真版软件的启动及主界面 当需要进入VJC系统仿真版编程时,只要双击桌面上的“VJC1.5仿真版”快捷方式图标,就可进入VJC的编程环境。 VJC编程环境的主界面见图1-3-1。可以看出,主界面包含了以下几个部分: (1)菜单栏及工具栏:位于窗口上方,工具栏上除了新建、打开、保存等常规按钮外,还有仿真、JC代码、缩放等按钮,见图1-3-2所示。 (2)模块库:位于窗口左侧,共有五大类模块库,其中:执行器模块库包含了基本动作模块,这是控制机器人运动的基本模

FANUC机器人仿真软件操作手册

2008年10月第1版ROBOGUIDE 使用手册(弧焊部分基础篇)

目录 目录 (1) 第一章概述 (2) 1.1. 软件安装 (2) 1.2. 软件注册 (3) 1.3. 新建Workcell的步骤 (3) 1.3.1. 新建 (4) 1.3.2. 添加附加轴的设置 (9) 1.4. 添加焊枪,TCP设置。 (15) 1.5. Workcell的存储目录 (18) 1.6.鼠标操作 (19) 第二章创建变位机 (21) 3.1.利用自建数模创建 (21) 3.1.1.快速简易方法 (21) 3.1.2.导入外部模型方法 (31) 3.2.利用模型库创建 (42) 3.2.1.导入默认配置的模型库变位机 (42) 3.2.2.手动装配模型库变位机 (45) 第三章创建机器人行走轴 (50) 3.1. 行走轴-利用模型库 (50) 3.2. 行走轴-自建数模 (57) 第四章变位机协调功能 (63) 4.1. 单轴变位机协调功能设置 (63) 4.2. 单轴变位机协调功能示例 (72) 第五章添加其他外围设备 (73) 第六章仿真录像的制作 (76)

第一章概述 1.1. 软件安装 本教程中所用软件版本号为V6.407269 正确安装ROBOGUIDE ,先安装安装盘里的SimPRO,选择需要的虚拟机器人的软件版本。安装完SimPRO后再安装WeldPro。安装完,会要求注册;若未注册,有30天时间试用。 如果需要用到变位机协调功能,还需要安装MultiRobot Arc Package。

1.2. 软件注册 注册方法:打开WeldPRO程序,点击Help / Register WeldPRO 弹出如下窗口, 1.3. 新建Workcell的步骤

机器人系统常用仿真软件介绍概要

1 主要介绍以下七种仿真平台 (侧重移动机器人仿真而非机械臂等工业机器人仿真 : 1.1 USARSim-Unified System for Automation and Robot Simulation USARSim 是一个基于虚拟竞技场引擎设计高保真多机器人环境仿真平台。主要针对地面机器人, 可以被用于研究和教学, 除此之外, USARSim 是 RoboCup 救援虚拟机器人竞赛和虚拟制造自动化竞赛的基础平台。使用开放动力学引擎 ODE(Open Dynamics Engine,支持三维的渲染和物理模拟,较高可配置性和可扩展性,与 Player 兼容,采用分层控制系统, 开放接口结构模拟功能和工具框架模块。机器人控制可以通过虚拟脚本编程或网络连接使用 UDP 协议实现。被广泛应用于机器人仿真、训练军队新兵、消防及搜寻和营救任务的研究。机器人和环境可以通过第三方软件进行生成。软件遵循免费 GPL 条款, 多平台支持可以安装并运行在Linux 、 Windows 和 MacOS 操作系统上。 1.2 Simbad Simbad 是基于 Java3D 的用于科研和教育目的多机器人仿真平台。主要专注于研究人员和编程人员热衷的多机器人系统中人工智能、机器学习和更多通用的人工智能算法一些简单的基本问题。它拥有可编程机器人控制器, 可定制环境和自定义配置传感器模块等功能, 采用 3D 虚拟传感技术, 支持单或多机器人仿真,提供神经网络和进化算法等工具箱。软件开发容易,开源,基于 GNU 协议,不支持物理计算,可以运行在任何支持包含 Java3D 库的 Java 客户端系统上。 1.3 Webots Webots 是一个具备建模、编程和仿真移动机器人开发平台, 主要用于地面机器人仿真。用户可以在一个共享的环境中设计多种复杂的异构机器人, 可以自定义环境大小, 环境中所有物体的属性包括形状、颜色、文字、质量、功能等也都可由用户来进行自由配置,它使用 ODE 检测物体碰撞和模拟刚性结构的动力学特性, 可以精确的模拟物体速度、惯性和摩擦力等物理属性。每个机器人可以装配大量可

FANUC机器人视觉系统

FANUC机器人视觉系统 FANUC机器人视觉系统 编者语:轻松降低成本,创造自动化时代。FANUC作 为全球领先的工业机器人制造商,引领着全球工业的自动化进程。当全球企业无一例外面对“成本上涨”的挑战时,FANUC极大地帮助客户提高生产效率和生产质量、降低了 人力消耗,更通过完善的技术成为节能领域的先锋和支持者。2008年,全球企业无一例外面对“成本上涨”的挑战,对于依赖人力和技术的制造型企业尤为严重,如何减少人力的投入,降低废品率,压缩生产成本,成为必需纳入议事日程的重要“课题”。来自日本的FANUC机器人有限公司恰好能为 这些企业提供“答案”。FANUC作为全球领先的工业机器人制造商,引领着全球工业的自动化进程。FANUC极大地帮助 客户提高生产效率和生产质量、降低人力消耗,更通过完善的技术成为节能领域的先锋和支持者。公司不仅拥有计算机图形工作站和三维仿真软件等设备用于三维系统仿真,同时拥有电弧焊、喷涂和2D视觉系统实验设备用于应用实验和系统方案确认。目前,有2000名员工为FANUC机器 人研制提供服务,年销售额达32亿美元,每月销售台数达1800台。在机器人自动化生产工厂,1000多台机器人实现

无人化生产管理,负责FANUC的伺服系统、智能机械及机器人从零部件生产到最后的整机出厂检验这一全套自动化生产。每月产能突破2500台机器人,至2008年6月底,FANUC机器人全球生产总量突破20万台。FANUC在发展过程中,持续向包括汽车、饮料等多种工业领域的用户提供创新的机器人工程解决方案,开展从机器人系统的方案设计、系统仿真、设计、装配到安装调试的全方位服务。致力于为客户的发展提供更好的“成本解决方案”。作为工博会的长期支持者,FANUC带来的仍是引领科技的智能机器人,同时为客户展示“成本解决最佳答案”。视觉系统FANUC iR Vision 2DV视觉系统:该视觉系统由一个安装于手爪上的2D摄像头完成视觉数据采集。该视觉系统作为待加工工件准确抓取的定位方式,省去通常为满足机器人的准确抓取而必须采用的机械预定位夹具,具有很高的柔性,使得在加工中心上可以非常容易地实现多产品混合生产。FANUC iR Vision 3DL视觉系统:该视觉系统由一个安装于地面上的3D Laser Sensor完成视觉数据采集。该视觉系统解决了定位面有偏差的工件上料位置变化问题。由于待加工工件为毛坯件,机器人抓取工件后,上料的定位孔位置会发生变化,甚至工件上料时的平面度也有变化。该技术可以自动补偿位置变化,实现高精度上料。3D视觉定位技术:应用于机器人上料至机床。摄像头安装位置:固定在3DL视

科技前沿,仿真机器人

最 特 别 的 机 器 人 科 技 前 沿 课程: 院系: 专业: 学号: 姓名:

最特别的机器人科技前沿 【摘要】机器人的出现和发展,对全人类的发展具有巨大的影响,机器在很多领域代替了人类自己操作,使人类的生产能力有了巨大的提高。随着智能机器人的研发,机器人将进一步为人类服务,本文主要从不同的角度来探讨仿真机器人的科技原理、应用、影响等。 【关键字】机器人;仿真系统;应用;影响;发展 在人类的发展史中,机器人扮演着一个十分重演的角色,特别是现代机器人。首先让我们来看看机器人的发展简史。追根溯源,早在三千多年前的西周时代,我国就出现了能歌善舞的木偶,称为“倡者”,这可能是世界上最早的“机器人”。在近代,随着第一次、第二次工业革命,各种机械装置的发明与应用,世界各地出现了许多“机器人”玩具和工艺品。这些装置大多由时钟机构驱动,用凸轮和杠杆传递运动。1920年,捷克作家K.凯比克在一科幻剧本中首次提出了ROBOT (汉语前译为“劳伯”)这个名词。现在已被人们作为机器人的专用名词。1950 年美国作家I.阿西莫夫提出了机器人学(Robotics)这一概念,并提出了所谓的“机器人三原则”,即:1.机器人不可伤人;2.机器人必须服从人给与,但不和(1)矛盾的指令; 3.在与(1)、(2)原则不相矛盾的前提下,机器人可维护自身不受伤害。上世纪50,60年代,随着机构理论和伺服理论的发展,机器人进入了使用化阶;70年代,随着计算机技术、现代控制技术、传感技术、人工智能技术的发展,机器人得到了迅速发展;进入80年代,随着传感技术,包括视觉传感器、非视觉传感器(力觉、触觉、接近觉等)以及信息处理技术的发展,出现了第二代机器人—有感觉的机器人。它能够获得作业环境和作业对象的部分有关信息,进行一定的实时处理,引导机器人进行作业。第二代机器人已进随着时代的发展,入了使用化,在工业生产中得到广泛应用。 科学技术日新月异。我们的生活无时无刻不在被新科学新技术影响着、改变着。特别是机器人的到来更是给我们的生活和生产带来了巨大的改变,特别是工业机器人在日本大力发展之后,机器人的发展迎来了一个新的春天。到了上世纪80年代,随着科技的进步,人类也在不断地研发更人性化的机器人,于是科学家们开始了研究一种新的机器人——仿真机器人。 随着计算机技术和人工智能技术的飞速发展,使机器人在功能和技术层次上有了很大的提高,移动机器人和机器人的视觉和触觉等技术就是典型的代表。既然有了技术,人类就想最大化利用他们,让他们具有更大的价值,于是人们将机器人的技术(如传感技术、智能技术、控制技术等)扩散和渗透到各个领域形成了各式各样的新机器——仿真机器人。 看到仿真机器人这几个字,就能想到仿真技术是他的核心技术,那么下面就针对机器人仿真技术和仿真设计简单介绍一下。机器人系统仿真是指通过计算机对实际的机器人系统进行模拟的技术。通过计算机对实际的机器人系统进行 模拟。机器人系统仿真可以通过单机或多台机器人组成的工作站或生产线。仿真可以通过交互式计算机图形技术和机器人学理论等,在计算机中生成机器人的几何图形,并对其进行三维显示,用来确定机器人的本体及工作环境的动态变化过程。通过系统仿真,可以在制造单机与生产线之前模拟出实物,缩短生产工期,可以避免不必要的返工。在使用的软件中,工作

FANUC机器人操作指南

职业教育机电一体化专业教学资源库 技术资料 资料名称:FANUC机器人操作指南 编制人: 邮箱: 电话: 编制时间:2014.11 编制单位:辽宁省交通高等专科学校

目录 机器人程序 (01) 机器人操作 (09) 机器人基本配置 (14)

机器人程序 FANUC机器人程序分为TP、MACRO、CAREL几种类型。 TP为一般程序,用示教器可以创建、编辑、删除。 MARCO为宏程序,在设备调试完成后一般无需添加和编辑,需要时宏程序也可在示教器上创建、编辑、删除。 CAREL为系统自带程序,操作者没有编辑权限。 ◎Fanuc机器人使用Style方式调用程序,主程序名即为Style X ,标准见表1-1。 6: !******************************** ; 7: !ECHO STYLE ; 8: TIMER[1]=RESET ;(定时器1复位) 9: TIMER[1]=START ;(定时器1启动) 10: GO[1:Manual Style Select]=10 ; 11: RESET WS 1 ; 12: CALL POUNCE1 ; 13: CALL S10PROC1 ; 焊接子程序 14: RUN CAP_WEAR ; 15: MOVE TO HOME ; 16: TIMER[1]=STOP ; 17: WAIT (F[1:Capwear Complete]) ;

表1-1 机器人Style程序标准

◎焊接子程序S(X)PROC(X)命名,如S10PROC1,其中S10代表被STYLE10调用,PROC1即为焊接PROCESS。 1: !******************************** ; 2: !STYLE10: PROCESS1 ;(车型10:焊接程序1) 3: !******************************** ; 4: !SAIC Motor ;(上海汽车集团) 5: !Station RBS010 Robot 1 ;(工位RBS010机器人1) 6: !PROGRAM W261 ;(程序W261) 7: !******************************** ; 8: !BEGIN PROCESS - PATH SEGMENT ; 9: SET SEGMENT(50) ; 10: UTOOL_NUM=1 ; 11: UFRAME_NUM=0 ; 12: PAYLOAD[1] ; 13:J P[1] 100% CNT100 ; 14:J P[2] 100% CNT100 ; 15:J P[3] 100% CNT100 ; 16:J P[4] 100% CNT50 ; 17:J P[5] 100% CNT50 ; 18:L P[6:w261bs1115] 2000mm/sec FINE 焊点号,将机器人光标移到P[X]上,点击ENTER键即可编辑。

仿真机器人教案

第一课:教学机器人概述 教学目标: 1.了解机器人的概念。 2.了解机器人的分类和用途。 3.培养对机器人的浓厚兴趣。 教学重点: 培养对机器人的浓厚兴趣。 教学难点: 了解机器人的概念。 教学准备: 机器人仿真环境软件。 教学过程: 一、问题导入 同学们,你们队机器人感兴趣吗?你们队机器人了解多少? 二、了解机器人 1.讲授机器人概念 机器人是一种可编程的多功能智能操作机,或是为了执行不同的任务而具有电脑控制功能、可编程实现动作的专门系统。它是高级整合控制论、机械电子、计算机、材料和仿生学的产物。在工业、医学、农业、建筑业甚至军事等领域中均有重要用途。一般由

执行机构、驱动装置、检测装置和控制系统和复杂机械等组成。 2.通过图片让同学们了解各种机器人 民用机器人 娱乐用机器人 军事用机器人

科研机器人 三、练习巩固 和同学们一块通过网络了解更多的关于机器人比赛的信息 四、布置作业 设计一个自己想象中的机器人,画图并用文字说明自己的机器人有什么功能和特点。

第二课:教学机器人和仿真机器人教学 教学目标: 了解教学机器人的概况。 了解能力风暴教学机器人的身体结构。 了解和应用能力风暴教学机器人的仿真教学环境。 教学重点: 了解和应用能力风暴教学机器人的仿真教学环境。 教学难点: 了解能力风暴教学机器人的身体结构。 教学准备: 机器人仿真环境软件。 教学过程: 一、问题导入 我们没有购买到机器人怎么办?我们怎么才能够通过其他渠道学习和了解机器人。 二、通过网络展示教学机器人概况 随着人工智能技术、计算机技术等相关技术的发展,对智能机器人的研究越来越多。在教育领域,许多学校已在学生中开设了机器人学方面的有关课程或开设了兴趣实践小组。为了满足这些需要,人们专门研制出来了各种适合于教学用的机器人。

机器人工具箱仿真程序-Matlab

附录 MATLAB 机器人工具箱仿真程序: 1)运动学仿真模型程序(Rob1.m) L1=link([pi/2 150 0 0]) L2=link([0 570 0 0]) L3=link([pi/2 130 0 0]) L4=link([-pi/2 0 0 640]) L5=link([pi/2 0 0 0]) L6=link([0 0 0 95]) r=robot({L1 L2 L3 L4 L5 L6}) https://www.doczj.com/doc/cd10811833.html,=’MOTOMAN-UP6’ % 模型的名称 >>drivebot(r) 2)正运动学仿真程序(Rob2.m) L1=link([pi/2 150 0 0]) L2=link([0 570 0 0]) L3=link([pi/2 130 0 0]) L4=link([-pi/2 0 0 640]) L5=link([pi/2 0 0 0]) L6=link([0 0 0 95]) r=robot({L1 L2 L3 L4 L5 L6}) https://www.doczj.com/doc/cd10811833.html,= ’MOTOMAN-UP6’ t=[0:0.01:10];%产生时间向量 qA=[0 0 0 0 0 0 ]; %机械手初始关节角度 qAB=[-pi/2 -pi/3 0 pi/6 pi/3 pi/2 ];%机械手终止关节角度 figure('Name','up6机器人正运动学仿真演示');%给仿真图像命名q=jtraj(qA,qAB,t);%生成关节运动轨迹 T=fkine(r,q);%正向运动学仿真函数 plot(r,q);%生成机器人的运动

figure('Name','up6机器人末端位移图') subplot(3,1,1); plot(t, squeeze(T(1,4,:))); xlabel('Time (s)'); ylabel('X (m)'); subplot(3,1,2); plot(t, squeeze(T(2,4,:))); xlabel('Time (s)'); ylabel('Y (m)'); subplot(3,1,3); plot(t, squeeze(T(3,4,:))); xlabel('Time (s)'); ylabel('Z (m)'); x=squeeze(T(1,4,:)); y=squeeze(T(2,4,:)); z=squeeze(T(3,4,:)); figure('Name','up6机器人末端轨迹图'); plot3(x,y,z); 3)机器人各关节转动角度仿真程序:(Rob3.m) L1=link([pi/2 150 0 0 ]) L2=link([0 570 0 0]) L3=link([pi/2 130 0 0]) L4=link([-pi/2 0 0 640]) L5=link([pi/2 0 0 0 ]) L6=link([0 0 0 95]) r=robot({L1 L2 L3 L4 L5 L6}) https://www.doczj.com/doc/cd10811833.html,='motoman-up6' t=[0:0.01:10]; qA=[0 0 0 0 0 0 ]; qAB=[ pi/6 pi/6 pi/6 pi/6 pi/6 pi/6]; q=jtraj(qA,qAB,t); Plot(r,q); subplot(6,1,1); plot(t,q(:,1)); title('转动关节1'); xlabel('时间/s'); ylabel('角度/rad'); subplot(6,1,2); plot(t,q(:,2)); title('转动关节2'); xlabel('时间/s'); ylabel('角度/rad'); subplot(6,1,3); plot(t,q(:,3)); title('转动关节3'); xlabel('时间/s'); ylabel('角度/rad'); subplot(6,1,4); plot(t,q(:,4)); title('转动关节4'); xlabel('时间/s'); ylabel('角度/rad' ); subplot(6,1,5); plot(t,q(:,5)); title('转动关节5'); xlabel('时间/s'); ylabel('角度/rad'); subplot(6,1,6); plot(t,q(:,6)); title('转动关节6'); xlabel('时间/s'); ylabel('角度/rad'); 4)机器人各关节转动角速度仿真程序:(Rob4.m) t=[0:0.01:10]; qA=[0 0 0 0 0 0 ];%机械手初始关节量 qAB=[ 1.5709 -0.8902 -0.0481 -0.5178 1.0645 -1.0201]; [q,qd,qdd]=jtraj(qA,qAB,t); Plot(r,q); subplot(6,1,1); plot(t,qd(:,1)); title('转动关节1'); xlabel('时间/s'); ylabel('rad/s');

相关主题
文本预览
相关文档 最新文档