当前位置:文档之家› 重力有压输水系统水锤及其防护研究

重力有压输水系统水锤及其防护研究

重力有压输水系统水锤及其防护研究
重力有压输水系统水锤及其防护研究

文章编号:100722284(2008)1020079203

重力有压输水系统水锤及其防护研究

刘志勇,刘梅清,蒋 劲,赵文胜

(武汉大学动力与机械学院,武汉430072)

摘 要:对重力有压输水系统的水锤特点进行了分析,指出末端关阀水锤是影响系统安全运行的主要问题。根据水锤基本理论,结合工程实例,对重力有压输水系统的末端关阀水锤进行了计算分析。在介绍减压恒压阀工作原理的基础上,进行了减压恒压阀水锤防护效果的预测,并对其影响因素进行了分析。最后,针对工程特点,提出了相应的水锤防护措施。

关键词:重力有压流;关阀水锤;减压恒压阀 中图分类号:TU991.39 文献标识码:A

Study on W ater H ammer in G ravity Pressured W ater 2delivery System and Its Prevention

L IU Zhi 2yong ,L IU Mei 2qing ,JIANG Jing ,ZHAO Wen 2shen

(School of Power and Mechanical Engineering ,Wuhan University ,Wuhan 430072,China )

Abstract :The characteristic of water 2hammer in the gravity pressured water 2delivery system is analyzed in this paper.It is indicated that the end valve 2closure water hammer is the main problem which influencing the system safety.According to the basic theory of water hammer ,combined with an example ,the end valve 2closure water hammer in the gravity pressured water 2delivery system is cal 2culated.Moreover ,based on the introduction of the work principle of pressure 2reducing and constant pressure valve ,its prevention effect is predicted and the influencing factors are analyzed.In the end ,according to the project characteristic ,the water 2hammer pre 2vention measures are put forward.

K ey w ords :gravity pressured flow ;valve 2closure water hammer ;pressure 2reducing and constant pressure valve

收稿日期:2008207208

基金项目:武汉大学动力与机械学院青年科学基金(QN2007007);

湖北省流体机械与动力工程装备技术重点实验室开放基金(2006A006)资助。

作者简介:刘志勇(19722),男,博士,讲师,研究方向为流体机械及

工程。

1 重力有压输水系统水锤的特点

随着国民经济的发展和需水量的增加,各地兴建了越来越多的长距离输水系统。长距离输水有重力输水和水泵加压两种方式,由于重力输水具有工程投资少、运行费用低、维护管理方便,在条件许可的情况下应优先选用。重力输水系统不需要水泵加压,不存在泵系统停泵过渡过程中可能出现的水柱分离及其再弥合问题,其水力过渡过程需要重点解决管线末端阀的关阀水锤问题,即系统在正常运行过程中,如果因流量调节或下游出水池检修等原因,需要将管线末端阀的开度减小甚至关闭时,若关闭程序不当,可能因关阀水锤造成管道破裂。本文结合工程实例,对重力有压输水系统的关阀水锤进行分析,并

提出相应的防护措施。

2 工程概况

陕西省咸阳市石头河水库供水工程位于关中盆地中部,为重力有压流输水方式,取水口水位为517.94m ,出水池水位为

451.5m ,净水头为66.44m 。设计引水流量4.24m 3/s ,预留

分水口2处,其中第一分水点分水流量为0.19m 3/s ,第二分水点分水流量为0.37m 3/s 。输水管线采用单管输水,全长

59.65km ,其中桩号0+015.500~3+536.235段为DN2000

的PCP 管,桩号3+536.235~45+208.582段为DN1800的

PCCP 管,桩号45+208.582~59+645.098段为DN2000的PCP 管,管线纵剖面如图1所示。

3 关阀水锤分析及防护措施研究

3.1 无防护措施时的关阀水锤

根据水锤基本方程[1,2],采用带插值的特征线法[3],分别假定管线末端阀在60~1200s 内线性关闭,进行水锤计算,结果如表1所示,不同关阀时间条件下的最大水锤压力与管道设计

工作压力包络线如图2所示(图中H _design 为管道的设计工作

9

7中国农村水利水电?2008年第10期

图1 输水管线纵断面图

表1 管线末端阀在60~1200s 线性关闭的水锤计算结果序号

线性关阀时间/

s 管线末端阀前点压力/m 最大压力水头

最小压力水头

160192.77-8.00(汽化)

2120181.64-0.753180165.398.114240153.1614.015300137.1814.016360122.6514.017420113.5914.018480

106.8414.019540101.5914.011060097.3814.0111

1200

85.18

14.01

图2 沿线最大水锤压力与设计工作压力包络线

水头)。

从表1和图2可以看出,随着关阀时间的延长,管线末端阀前点的最大水锤压力逐渐减小,最小水锤压力逐渐增大。在关阀时间为60s 时,管线末端阀前点发生汽化;在关阀时间大于240s 后,管线末端阀前点的最小压力即为稳态运行时的压力。

但是,不论关阀时间延长到什么程度,只要阀门最终完全关闭,管线各点的最大水锤压力总是大于其静水压力。由于部分管段的设计工作压力低于静水压力,因此,其相应的最大水锤压力将高于其设计工作压力。为确保工程安全,必须采取措施,将管道沿线的最大水锤压力控制在其设计工作压力范围内。

3.2 防护措施研究

3.2.1 设置减压恒压阀

减压恒压阀的工作原理

[4~6]

是当阀后压力超过预先整定

的值时,在外力或水压力的作用下,使阀门的过流面积减小,局部损失增大,阀后压力慢慢降低到设定值;当阀后压力低于整定值时,阀门的过流面积增大,局部损失减小,阀后压力逐渐升高到设定值。

为减少工程投资,降低管道的设计压力等级,考虑在桩号

15+860.000和44+220.600处设置减压恒压阀(以下分别称

为1号、2号减压阀),并将其动作压力整定为管线通过设计流量时的压力,在不减小管道输水能力的条件下,减掉多余的静水压力水头。

在管线末端阀门关闭的水力过渡过程中,随着末端阀门的逐步关闭,末端阀前点产生增压波并向上游传播,当增压波到

达减压恒压阀后点时,该点压力升高,超过整定值,减压恒压阀自动关小。由于减压恒压阀安装点的静水压力超过其整定值,若管线末端阀最终关闭,则减压恒压阀最终也将关闭。

减压恒压阀在开度自动调节的过程中,对于减压恒压阀下游来说,减压恒压阀关闭产生的是减压波,一方面有利于削减由于管线末端阀关闭而引起的压力升高,另一方面,关闭过快也可能在减压恒压阀后点产生负压;对于减压恒压阀上游来说,减压恒压阀关闭产生的是升压波,也可能在减压恒压阀上游产生较大的压力升高。

以下分两种情况对超压泄压阀的防护效果进行分析。

(1)末端阀先于2号减压阀关闭。

此种情况的假定条件是:末端阀关闭完成后,2号减压恒压阀的关闭尚未完成,且假定两个分水点保持分水阀开度不变。假定减压恒压阀从全开到全闭的匀速关闭时间为1200s 。

图3(a )、

(b )、(c )分别为上述条件下末端阀在1200s 内匀速关闭时的沿线最大水锤压力与设计工作压力包络线、末端阀前点和减压恒压阀前阀后点压力的变化过程、减压阀开度的变化过程(图中e TA1、e TA2分别为1、2号减压阀的开度,下同)。

由于当末端阀关闭产生的增压波传递到减压恒压阀点后,该点压力大于减压恒压阀的整定压力时,减压恒压阀开始关闭,因此,若末端阀和减压恒压阀的匀速关闭速率相同,则当末端阀关闭完成时,2号减压恒压阀尚未完全关闭。

从图3(a )可以看到,若管线末端阀先于2号减压阀关闭,仍然有部分管段的最大水锤压力高于其设计工作压力。

从图3(b )可以看到,随着管线末端阀的关闭,其阀前点压力逐渐升高,最后在封闭的管道内小幅振荡;2号减压阀阀后点的压力首先升高,最后因减压阀完全关闭在封闭的管道内小幅振荡,其阀前点的压力首先升高,然后因1号减压阀的关闭而降低,在2号减压阀关闭完成后,该点成为盲管,其压力随水锤波的传播而上下波动,最后达到稳定;1号减压阀后点的压力首先升高,然后因减压阀的关闭而降低,但由于分水阀未关闭,故

1号减压阀后点压力最终稳定在其整定压力,其阀前点的压力

则首先上升,然后随着水锤波的传播和反射而上下波动。

从图3(c )可以看到,在关阀过程中,2号减压阀的开度一直减小,直至关闭;1号减压阀的开度首先减小,但因其下游分水阀一直开启,故其最终稳定在一个较小的开度上。

(2)2号减压阀先于末端阀关闭。

此种情况的假定条件是:在末端阀关闭完成之前,2号减压恒压阀已经关闭,且假定两个分水点保持分水阀开度不变。假定减压恒压阀从全开到全闭的匀速关闭时间为900s ,其关闭速率大于末端阀的关闭速率。

图4(a )、

(b )、(c )分别为上述条件下末端阀在1200s 内匀

(1200s匀速关闭,超压泄压阀,减压阀关闭时间为1200s)

图3 管线出口阀关阀水力过渡过程

速关闭时的沿线最大水锤压力与设计工作压力包络线、末端阀前点和减压恒压阀前阀后点压力的变化过程、减压阀开度的变化过程。

由于当末端阀关闭产生的增压波传递到减压恒压阀点后,该点压力大于减压恒压阀的整定压力时,减压恒压阀开始关闭,但由于其关闭速率大于末端阀的关闭速率,则2号减压恒压阀先于末端阀完全关闭。

从图4(a)可以看到,若减压恒压阀的关闭速率快于末端阀,则全线最大水锤压力均可控制在其设计工作压力范围内。

从图4(b)可以看到,随着管线末端阀的关闭,其阀前点压力逐渐升高,然后因2号减压阀的关闭而降低,最后在封闭的管道内小幅振荡;2号减压阀阀后点的压力首先升高,然后因减压阀的关闭速率大于末端阀的速率而在减压阀接近关闭时,快速下降,最后在封闭的管道内小幅振荡,其阀前点的压力首先升高,在2号减压阀关闭完成后,该点成为盲管,其压力随水锤波的传播而上下波动,最后达到稳定;1号减压阀后点的压力首先升高,然后因减压阀的关闭而降低,但由于分水阀未关闭,故1号减压阀后点压力最终稳定在其整定压力,其阀前点的压力则首先上升,然后随着水锤波的传播和反射而上下波动。

从图4(c)可以看到,在关阀过程中,2号减压阀的开度一直减小,直至关闭,在减压阀关闭而末端阀未关闭时,当阀后点压力降低时,出现短暂的打开过程,最后因末端阀门关闭,管道封闭而完全关闭;1号减压阀的开度首先减小,

但因其下游分水阀一直开启,故其最终稳定在一个较小的开度上。

(1200s匀速关闭,超压泄压阀,减压阀关闭时间为900s)

图4 管线末端阀关阀水力过渡过程

3.2.2 防护措施确定

根据上述计算结果,在管线中设置两处减压恒压阀并合理控制减压阀的动作速率可以将管线末端关阀水锤压力控制在管道现有设计工作压力范围内,但对减压恒压阀的自动调节开度的能力有较高的要求,受其驱动机构的影响较大。为确保工程安全,也可在管线末端阀的允许关闭时间范围内,根据图2的计算结果,提高部分管段的设计工作压力等级。

4 结 语

管线末端关阀水锤是重力有压输水系统水力过渡过程中的主要问题。本文结合工程实例,对该系统中的末端关阀水锤进行了计算分析,并对减压阀的水锤防护效果进行了预测,提出了相应的水锤防护措施,满足工程的水锤防护要求。□参考文献:

[1] Wylie E B,Streeter V L,Suo Liseng.Fluid Transient in Systems

[M].Prentice Hall,Englewood Cliff s,New J ersey,1993.

[2] [美]E B怀利,V L斯特里特.瞬变流[M].清华大学流体传动与

控制教研组译.北京:水利电力出版社,1983.

[3] 刘竹溪,刘光临.泵站水锤及其防护[M].北京:水利电力出版社,

1988.

[4] 王剑剑.减压阀在长距离输油管道上的使用[J].化工设备与管

道,2004,41(4):39-41.

[5] 张言禾,周孝德,朱满林,等.水力过渡过程中减压阀的数值分析

[J].西安理工大学学报,2007,23(4):360-364.

[6] 惠春莉,段军孝,高稳生,等.减压恒压阀及水锤预防阀在供水工

程中的应用[J].地下水,2002,24(4):228-229.

水泵输送管线发生水锤的原因及防护

水泵输送管线发生水锤的原因及防护 水锤又称水击。水(或其他液体)输送过程中,由于阀门突然开启或关闭、水泵突然停车、骤然启闭导叶等原因,使流速发生突然变化,同时压强产生 大幅度波动的现象。长距离输水工程应进行必要的水锤分析计算,并对管路 系统采取水锤综合防护计算,根据管道纵向布置、管径、设计水量、功能要求,确定空气阀的数量、型式、口径。 1水锤发生的原因、分类 1.1引起水锤过程的原因 (1)启泵、停泵、用启闭阀门或改变水泵转速、叶片角度调节流量时;尤其在迅速操作、使水流速度发生急剧变化的情况。 (2)事故停泵,即运行中的水泵动力突然中断时停泵。较多见的是配电系统故障、误操作、雷击等情况下的突然停泵。 1.2水锤破坏主要的表现形式 (1)水锤压力过高,引起水泵、阀门和管道破坏;或水锤压力过低,管道因失稳而破坏。 (2)水泵反转速过高或与水泵机组的临界转速相重合,以及突然停止反转过程或电动机再启动,从而引起电动机转子的永久变形,水泵机组的剧烈振动和联结轴的断裂。 (3)水泵倒流量过大,引起管网压力下降,水量减小,影响正常供水。 1.3.水锤的分类与判别 (1)按产生水锤的原因可分为:关(开)阀水锤、启泵水锤和停泵水锤; (2)按产生水锤时管道水流状态可分为:不出现水柱中断与出现水柱中断两类。前者水锤压力上升值△H通常不大于水泵额定扬程HR或水泵工作水头H0称正常水锤;后者当水柱再弥合时,水锤压力上升值较高,常大于HR或H0,是引起水锤事故的重要原因,故称非常水锤。

所谓水柱中断,就是在水锤过程中,由于管道某处压力低于水的汽化压力而产生,即: Pi/γ+Pa/γ≤Ps/γ (1-1) 式中: Pi/γ—管道中某点的压力(M); Pa/γ—大气压力(M); Ps/γ—水的饱和蒸汽压力(绝对压力),在常温下取2-3M; γ—水的容重。 (3)对于关(开)阀水锤,与关(开)阀时间T。有关可分为: 直接水锤: Tc<Tγ(1-2)间接水锤: Tc>Tγ (1-3) 式中:Tγ—水锤相(秒),见公式(1-12)。 2 停泵水锤防护措施 由于停泵水锤可能导致泵站和输水系统发生严重事故(如泵房内设备或管道破裂导致泵房淹没,输水管破裂导致沿途房屋渍水),因此有必要根据具体情况采取相应的措施来消除停泵水锤或消减水锤压力。 (1)降低输水管线的流速,可在一定程度上降低水锤压力,但会增大输水管管径,增加工程投资。 (2)输水管线布置时应考虑尽量避免出现驼峰或坡度剧变。 (3)通过模拟,选用转动惯量GD2较大的水泵机组或加装有足够惯性的飞轮,可在一定程度上降低水锤值。 (4)设置水锤消除装置 ①调压室:调压室是一个钢制或钢筋混凝土的水箱,压力管道上的调压室有单向与双向调压室两种。

水锤产生的原因危害及预防措施

谈水锤产生原因 、危害和预防措施 水锤产生原因、 我公司施工的绿城千岛湖度假公寓1#楼工程,空调管道中连接风机盘管的不锈钢软接出现多处断裂,造成吊顶泡水的严重后果。另外杭州金沙港旅游文化村度假用房某楼也发生了给水铜管管件断裂的事故,同样造成了吊顶泡水的严重后果。这二起事故都造成较大经济损和负面影响,经现场踏勘和相关情况的了解分析,造成这二起事故的原因为“水锤”。 先说说什么叫水锤、产生水锤的原因及其危害:水锤是在突然停泵或者在阀门关闭或打开太快时,由于压力水流的惯性,产生的水流冲击波,由于象锤子敲打一样,所以叫水锤。水锤产生的原因是: 1、阀门突然开启或关闭。由于管道内壁光滑,水流动自如,当阀门突然关闭,水流对阀门及管壁,主要是阀门会产生一个压力,后续水流在惯性的作用下,使压力迅速达到最大,并产生破坏作用,这是正水锤。相反,关闭的阀门在突然打开时,也会产生水锤,叫负水锤,也有一定的破坏力,但没有前者大。2、水泵突然停止或开启。水泵起动时,在不到1s的时间内,即可从静止状态加速到额定转速,管道内的流量则从零增加到额定流量。由于流体具有动量和一定程度的可压缩性,所以,流量的急剧变化将在管道内引起压强过压或过低的冲击,以及出现“空化”现象;水泵停止时,管道中的水靠惯性以逐渐减慢的速度继续向用水点流动,然后流速降到零,管道中的水在重力水头作用下,又开始向水泵倒流,速度由零逐渐增大。由于管道中水的流速变化,从而引起水锤的发生。3、管道中存在空气。空气柱在突然降压或升压时会膨胀或压缩推动水柱运动,这样气推水、水推气,形成水锤。另外管道向高处输水(高差超过20米);水泵总扬程(或工作压力)大;

长距离供水管线水锤防护措施

长距离供水管线水锤防护措施 发表时间:2019-04-28T15:33:29.030Z 来源:《基层建设》2019年第6期作者:张楠楠邸海龙 [导读] 摘要:水锤是影响长距离压力输水工程安全运行的一个重要因素,不少工程因水锤而引起爆管,造成了严重的经济损失.长距离有压输水管道易发生水锤危害,尤以高扬程多起伏管道水锤防护难度最大,发生水锤的可能性最大。 中冶沈勘秦皇岛工程设计研究总院有限公司河北秦皇岛 066004 摘要:水锤是影响长距离压力输水工程安全运行的一个重要因素,不少工程因水锤而引起爆管,造成了严重的经济损失.长距离有压输水管道易发生水锤危害,尤以高扬程多起伏管道水锤防护难度最大,发生水锤的可能性最大。由于长距离输水工程管线长,管道起伏大,要求输水保证率高,因此工程的安全运行问题越来越受到科研、设计、施工及运行管理人员的重视。本文结合水锤特征,根据长距离输水管道系统的特点,提出有效的水锤防护措施。 关键词:长距离;输水系统;水锤防护 我国是一个水资源贫乏的国家,人均水资源占有量很低。有些地区水已成为制约经济发展的“瓶颈”。新中国成立以来,随着工农业的发展,科学技术的进步,我国兴建了40多万处泵站工程。已建和正在修建的许多大型泵站工程,向几十公里甚至更远的地方供水。 在长距离输水工程中,对加压供水系统安全危害较大的是水锤事故,不少工程因水锤而遭受严重破坏。水锤事故的成因不同,产生危害也不同,有的造成压力管道破坏(即爆管),有的造成泵房被淹,有的设备被打坏,伤及操作人员等,给正常的生活的生产带来了严重的影响和经济损失。由于泵站工程在国民经济建设中作用重大,其安全经济运行也备受人们重视。 1 水锤定义及特性 1.1 水锤定义 在有压管路中流动的液体,由于某种外界原因(如阀门突然关闭、水泵或水轮机组突然停车等)使得液体流速发生突然变化,并由于液体的惯性作用,引起压强急剧升高和降低的交替变化,这种水力现象称为水锤。 1.2 水锤特性 水锤实际上是由于水流速度变化而产生的惯性力。当突然启闭阀门时,由于启闭时间短、流量变化快,因而水击压力往往较大,而且整个变化过程是较快的。由于管壁具有弹性和水体的可压缩性,水击压力将以弹性波的形式沿管道传播。水击波传播过程中,在外部条件发生变化处均要发生波的反射。发射特性决定于边界处的物理特性。 2 长距离供水管线水锤防护的必要性 2.1 水锤产生原因 水锤是在突然停电或者在阀门关闭太快时,由于压力水流的惯性,产生水流冲击波,就象锤子敲打一样。水流冲击波来回产生的力,有时会很大,从而破坏阀门和水泵。在水管内部,管内壁光滑,水流动自如。当打开的阀门突然关闭,水流对阀门及管壁,主要是阀门会产生一个压力。后续水流在惯性的作用下,迅速达到最大,并产生破坏作用,这就是水利学当中的“水锤效应”,也就是正水锤。在水利管道建设中都要考虑这一因素。相反,关闭的阀门在突然打开后,也会产生水锤,叫负水锤,也有一定的破坏力,但没有前者大。 2.2 水锤危害 在长距离输水工程中,水柱弥合水锤的危害较大,输水管道的流速变化是经常出现的,管道中水流速度变化时,致使管道中水压力升高或降低,在压力低于水的气化压力时,水柱就被拉断,出现断流空腔,在空腔处的水流弥合时将产生强烈的撞击,从而导致管道中的水压力升高,继而形成断流弥合水锤。弥合水锤升值很大,在实验装置观测到的竟达到工作压力的2-4倍,因此对输水安全性的危害很大。 3 水锤防治方法 3.1 缓闭止回阀 缓闭止回阀是止回阀的一种,它是通过缓闭作用来进行水锤防护的。理论和实践证明目前性能较好的是水泵控制阀和液控蝶阀两种。对于较小管径使用水泵控制阀较好;中等管径两种阀门各有千秋;较大管径一般说来液控蝶阀技术优势更大。缓闭止回阀装设在水泵出口处,其口径与水泵出口口径一致。高扬程多起伏输水管道,尤其出现管道局部断流时,水流回冲流速较大,缓闭止回阀快慢二阶段关闭角度的确定更为重要。因此,较重要的工程应该经过水锤计算确定其工作参数,缓闭止回阀选用的公称压力等级也应经过计算确定,以增强安全可靠性。 3.2 双向调压塔 双向调压塔是一种兼有注水与泄水缓冲的水锤防护设备,其设置的主要目的是:防止压力输水干管中产生负压,一旦管道中压力降低,调压塔迅速向管道补水。当管道中水锤压力升高时,它允许高压水流入调压塔中,从而起到缓冲水锤升压的作用。双向调压塔结构简单,工作安全可靠,维护工作少,防护效果好。但是造价高,地形和压力限制塔的高度,水质易受污染以及防冻问题阻碍了双向调压塔的使用。 3.3 箱式双向调压塔 箱式双向调压塔完全具有普通双向调压塔的优点,且克服了超压泄压阀存在的拒动作和滞动作等问题,使管道泄压迅速及时,安全程度大幅度提高;当管道内出现负压时,该调压塔可迅速向管道内补水,以防止水柱拉断产生断流弥合水锤。在水锤防护性能上几乎完全等同于普通双向调压塔,而且其高度可大幅度降低,一般仅2m~5m即可,从而提高了双向调压塔的使用范围,大大降低了工程造价,对于长距离高扬程多起伏管道是一种安全可靠的水锤防护措施。 3.4 进排气阀和超压泄压阀 对于高扬程多起伏长距离输水管道,工况较复杂对水锤防护要求较高,应采用具有恒速缓冲功能的排气阀。恒速缓冲排气阀是恒速排气,既能保证管道中气体及时排出,又使气体在管道内起到一定气垫的作用,在排气结束时又具有缓闭功能,对消减断流弥合水锤效果明显。 3.5 其他防护措施 在水泵汇水总管处装空气罐,但通常空气罐体积较庞大,对于高扬程的输水系统在压力变化范围较大时不宜使用。在管道上装止回阀,可将管道中水柱人为地截成数段,从而减小每段的作用水头,但浪费能耗,管理维修麻烦,实际工程中很少采用。

建筑消防给水系统中停泵水锤的算法及防护措施

建筑消防给水系统中停泵水锤的算法及防护措施 Algorithms and prevention measures for stop-pump water hammer in building fire protection water supply system 摘要:介绍了建筑消防给水系统中水锤的概念与危害;阐述了目前常用的停泵水锤计算方法,并对各种算法的优缺点和适用条件进行了比较;最后,提出了建筑消防系统中停泵水锤的防护措施。 Abstract:Concept and hazard of water hammer in building fire protection water supply system were introduced. Various algorithms currently used for computing stop-pump water hammer were analyzed, and a comparison of the advantages and disadvantages as well as the applicable conditions was made. Finally, prevention measures for stop-pump water hammer in building fire protection water supply system were put forward. 关键词:消防给水停泵水锤防护措施 Key words: fire protection water supply, stop-pump water hammer, prevention measures 引言 水锤是管道瞬变流动中的一种压力波,它的产生是由于管道中某一截面液体流速发生了改变。这种改变可能是正常的流量调节,也可能是事故而使流量堵截,从而使该处压力产生一个突然的跃升或下跌。消防给水管网内的水体平时处于静止状态,检查测试或临警使用

长距离输水管线水锤防护案例分析

长距离输水管线水锤防护案例分析 发表时间:2019-05-28T15:55:26.500Z 来源:《防护工程》2019年第4期作者:马晓未 [导读] 我国水资源匮乏,而且空间分布不均,为了满足高速增长的城市用水量需求,许多长距离输水管线得以建造。 河北省水利水电勘测设计研究院 摘要:长距离输水管线的水锤防护分析主要包括事故停泵以及提升泵站启泵时的管线水锤防护。输水管线的水锤防护方案有多种选择,但对于长距离输水管线,选择一个积极有效的水锤防护方案以抵抗瞬时产生的压力是一个很大的挑战。结合实际工程,论述了长距离输水管线水锤防护的建议以及水锤防护装置的防护效果,可供类似工程参考借鉴。 关键词:长距离输水管线;水锤;水锤防护 我国水资源匮乏,而且空间分布不均,为了满足高速增长的城市用水量需求,许多长距离输水管线得以建造。当输水管线的稳态条件发生变化时,例如水泵断电、水泵开启或者是阀门关闭时,都会产生水锤现象。输水管线的水锤分析以及防护方案的选择,应在输水工程设计阶段完成。如果没有首先建立瞬态的水力模型,水锤对输水管线的影响将会很难被预测。因此笔者针对我国长距离输水管线工程的现状和特点,选取了平坦地区和大坡度长距离输水管线2种典型工程实例论述了输水管线的瞬态水力分析以及水锤防护建议。 1水锤的原因 1.1管材与施工质量影响 传统供水管道材质通常情况下,都是灰口铸铁管。此种管材不仅具有非常大的脆性,而且整体强度比较低,这就导致管体组织疏松,无法消除气孔。给水管道使用期间,不仅受到横向受力,也会受到外力振动,这就使得给水管道需要承受很大的应力,久而久之,就会出现纵向破裂。我国老城市供水管道铺设已有五、六十年,管道材质老化严重,导致管道爆漏多。在施工时,由于沟槽开挖未能达到标准、管道焊接和施工人员的个人问题也会造成水锤的隐患。 1.2应力作用 应力是由覆土压力、水压、温度变化、不均匀沉降等产生的环向拉应力、环向弯曲应力、温差纵向拉应力、纵向弯曲应力或承口开裂应力。 (1)水压轴向应力:σ水压=μ·σh???σh=PD/2σ (2)温变产生的轴向压力:σ温变=E·α·(t1-t2) (3)不均匀沉降产生的压力:σb=ii·Mi/Wi (4)许用应力:[σ]=K·φ·σs 地基沉降应力和温变应力是造成管道爆漏的主要应力因素。 1.3气囊与水锤 水力学分析表明,管道输水期间,因为管道并不是真空,因此水并不是连续的,相同介质的流体。如果给水管道运输距离比较长,则水流速设计通常都不会太大,此时管道中的空气同城都是以气囊形式集中在管子上部。如果管道起伏比较多,气囊通常位于管道凸起点,而如果给水管道起伏不大,则气囊存在着形式就比较分散。如果水流倒流,管道中的空气可能会由于负压出现,水蒸气而随之流动,很多气体由此被压缩到管道顶部,而受到水流影响,最后分成一个个气囊,气囊在管道中不断运动,使得管道内部出现了比较强烈的压力振荡。管内压强不断提升,管壁持续受到冲击,一旦超过管材承受能力,管道就会损坏。 压力变化值:?P=ρ·c·(?v) ?P—-压力升高值???????????ρ—-水的密度 c—水击波传播速度??????????v—水流速度变化值 水锤是在突然停电或者在阀门关闭太快时,由于压力水流的惯性,产生水流冲击波,就象锤子敲打一样,所以叫水锤。水锤效应只和水本身的惯性有关系,和水泵没有关系。 1.4腐蚀 硫酸盐还原菌是厌氧腐蚀的诱发根源,微生物往往是局部附着。金属的表面所被附着的部位难以与氧气接触,进而产生氧浓差电池致使附着物下面的金属被强烈地腐蚀。与此同时,好养细菌在代谢作用的过程中也会消耗大部分的氧气而造成氧浓度差异,进而也产生氧浓差电池。耗氧量大的区域相对于其他区域而言为阳极,使得集体产生局部腐蚀,阴极去极化作用则是腐蚀中的关键步骤,相关腐蚀反应式为: 硫酸盐还原菌阴极去极化作用公式为: SO42-+8H→S2-?+4H2O 腐蚀反应产物:Fe2+S2-→FeS 腐蚀反应产物:3Fe2++6OH--→3Fe(OH)2↓ 总反应式:4Fe+SO42-+4H2O→FeS+3Fe(OH)2+2OH- 通过硫酸盐还原菌活动所产生的硫化亚铁、硫化氢以及细菌氢化酶为阴极反应提供所需的氢,并决定了阴极去极化与金属腐蚀的速率。 2水锤实例分析与处置 2.1某市水锤事件分析 2010年11月,位于山海关古城内,1995年铺设的铸铁管DN300配水管网暴漏。原因分析:经现场查看,多数管网是由于管网年久老化以及管材材质脆裂和气候环境变化后地面下沉导致了该管网断裂。 2012年10月,由山海关向啤酒厂的城市供水管网PE管材DN500发生突发暴漏。经现场勘察,是由于管网附近有施工队伍施工,在不了解地下设施情况盲目施工,导致用挖掘机挖土方时触碰到管网,造成管网损坏。原因分析:上述暴漏属于人为造成,因施工方未按照城

防止水锤破坏的几种措施

防止水锤破坏的几种措施 水锤是供水装置中常见的一种物理现象,它在供水装置管路中的破坏力是惊人的,对管网的安全平稳运行是十分有害的,容易造成爆管事故。岳阳石油化工总厂是一个建于丘陵地区的大型石化企业,由于地形复杂,易产生水锤,岳化供排水厂的上水系统管网经常发生爆管,已经发生过多起因水锤造成的爆管或设备损坏事故,对生产厂家用水和居民用水供应造成不良影响。近年来,经过采取技术改造,采用新型水锤防护设备,本厂管网运行情况大为好转,爆管频次下降了一半以上,下面是该厂的一些做法,供同行参考。 1.采用恒压控制技术 采用PLC自动控制系统,对机泵进行变频调速控制,对整个供水泵房系统操作实行自动控制。供水管网压力随着工况的变化而不断变化,机泵工频运行时经常出现低压或超压现象,容易产生水锤,导致对管道和设备的破坏,采用PLC自动控制系统,通过对管网压力的检测,反馈控制水泵的开、停和转速调节,控制流量,进而使压力维持一定水平,可以通过控制微机设定机泵供水压力,保持恒压供水,避免了过大的压力波动,使产生水锤的概率减小。 2.采用泄压保护技术 2.1水锤消除器:该设备主要防止停泵水锤,一般安装在水泵出口管道附近,利用管道本身的压力为动力来实现低压自动动作,即当管道中的压力低于设定保护值时,排水口会自动打开放水泄压,以平衡局部管道的压力,防止水锤对设备和管道的冲击,消除器一般可分为机械式和液压式两种,机械式消除器动作后由人工恢复,液压式消除器可自动复位。 2.2泄压保护阀:该设备安装在管道的任何位置,和水锤消除器工作原理一样,只是设定的动作压力是高压,当管路中压力高于设定保护值时,

排水口会自动打开泄压。 3.采用控制流速技术 3.1采用水力控制阀,一种采用液压装置控制开关的阀门,一般安装于水泵出口,该阀利用机泵出口与管网的压力差实现自动启闭,阀门上一般装有活塞缸或膜片室控制阀板启闭速度,通过缓闭来减小停泵水锤冲击,从而有效消除水锤。 3.2采用快闭式止回阀,该阀结构是在快闭阀板前采用导流结构,停泵时,阀板同时关闭,依靠快闭阀板支撑住回流水柱,使其没有冲击位移,从而避免产生停泵水锤。 4.在管路中各峰点安装可靠的排气阀也是必不可少的措施 我们采取的做法是对供水装置的泵房实施自动控制、变频恒压改造,并配套在机泵出口安装水力控制阀(或快闭式止回阀),在管网各主干管上安装水锤消除器和泄压阀,在各管道波峰点安装自动排气阀,通过以上措施,效果显著,我们实施改造的生活用水系统,在1999年底至2(XE年上半年,实现了零爆管率(改造前平均一年有十几次爆管)。

长距离重力流输配管网水锤防护探讨

长距离重力流输配管网水锤防护探讨 发表时间:2016-05-28T12:28:47.903Z 来源:《基层建设》2016年2期作者:王秉钧1 杨廷浩2 [导读] 1、2.中国市政工程中南设计研究总院有限公司湖北武汉 430000 只有深入了解各种水锤防护装置的特性及其消锤原理,才能在对水锤进行详尽计算分析后根据水锤压力变化的特点及经济条件合理选用。王秉钧1 杨廷浩2 1、2.中国市政工程中南设计研究总院有限公司湖北武汉 430000 摘要:目前,我国长距离大型重力流输水工程越来越多,随之而来的工程爆管问题引起越来越多工程人员的注意。长距离有压重力流输水管道中易发生水柱分离与断流弥合水锤,并造成严重的水锤危害。管道系统水锤防护问题,作为输水管道安全运行的重要课题之一,是很有必要进行深入研究的。在长距离输水管线中,尤以多起伏管道水锤防护难度最大,发生水锤事故最多。实际工程更需要这方面的技术,根据输水系统的实际特点,设计合理、有效、经济的水锤防护措施。 关键词:市政输配水管网;重力流;水锤防护目前,我国许多大中城市尤其是北方城市由于当地水资源缺乏,不能满足国民经济迅速发展和人民生活水平不断提高对水的需求,必须兴建长距离调水工程,以缓解水的供需矛盾。重力流管道输水方式因其具有可随地形条件铺设,对地质条件要求不高,渗漏损失小,能保证输水水质,施工方便,造价较低,管理方便等优点,常作为设计者优先考虑的方案。因此长距离重力流输水管路的水锤防护技术分析,不仅对供水工程的设计提供科学依据,而且对指导供水工程的安全运行也具有十分重要的意义。 重力流输水管水锤防护分析输水管起末端的高度差越大时,有压重力输水的可利用水头就越大,当确定输水设计流量时,输水管管径越小,投资越少,输水管流速越大,运行时可能引起的水锤升压就越高。有压重力输水在以下三种情况需消减富余能量[4]:(1)当可利用水头过大,管中流速超过3m/s或超过水锤计算所确定的最大流速时; (2)起端(如水库等)水位变幅较大时; (3)低于设计流量运行,输水管下游管道因压力增加较多,不利于安全输水时。 第一,三种情况减压装置常设在输水管的中下游;第二种情况常设在输水管中上游;第一,三种情况设置的减压阀对输水管还具有较好的水锤防护和减少漏失水量的功能。多起伏以及落差较大的“U”字形重力流管路系统是否需要减压和分几级减压,主要取决于输水管总落差的大小和管道的承压能力。落差越大,管道允许承压能力越低,需要设置减压的级数就越多。针对重力流管路系统,降低管材承压等级、减少工程造价,并预防水锤的发生是重点;消减关阀水锤,将借助于缓闭蝶阀和减压措施,防护管道某些部位可能产生水柱中断,以及断流水锤升压,减少爆管事故;对于较平坦的管路系统,主要以减压恒压阀为降压措施,用恒速缓冲排气阀及时排出管道气体,预防断流弥合水锤,避免气水两项流的发生。 各类水锤防护方法的技术分析消能减压防护技术分析静水中是具有压力的,作用在单位面积上的静水压力为静水压强,它随水的深度增加而增加。静水压强的大小,是相对于大气压而言的。输水管道内作用在管道内壁的静水压力,在与大气相接触时,即在瞬间,静压能量以其他方式转化消耗,此时视管道内液体与大气接触面的相对压强为零,即消能构筑物必须有与大气相连接的装置,并且要达到简单和保证饮用水供水安全的目的。输水管道内除去只与水深有关的静水压强外,还存在动水压强,它不仅与该点的空间位置有关,还与水的流动有关。 重力输水管管径按充分利用作用水头选取,故在设计流量工况下运行时无剩余能量,在流量低于设计流量下运行时,水头损失减少,重力流输水管路就有了富余能量。在安装减压阀的系统中富余能量的大部分由减压阀自动消除,使管路末端压力减轻[7]。安装减压阀利于管道安全运行和降低维修成本。根据《城镇供水长距离输水管(渠)道工程技术规范》可知,减压阀出口恒压值根据最大设计水量水压线调整出口压力值,可实现在最大设计流量时不减压消能,而仅消减小流量运行产生的富余能量。 关阀水锤防护分析 减压恒压阀防护 重力流输水管道因阀件及管道接头等漏水、管道爆裂、下游系统正常保养等原因需停运时,绝大多数采用关下游出口阀门的方法[7]。由于阀门阻力系数在匀速关阀过程中不是均匀增加的(一般是在关阀前60°~70°增大不多,对流量减少也不大,但在以后的20°~30°则突然增加),故极易造成很大的关阀水锤。管道长度越大,阀门阻力系数值对流量的影响越小,越易造成最后突然关阀时流量最大。而重力流输水管安装减压阀后,受影响管道长度减小,水头变化减小,可见减压阀对水锤防护作用极大。 缓闭蝶阀防护 关阀水锤防护最简单有效的方法是延长阀门关闭的时间,选择可控制的两阶段关闭蝶阀。就某一种管道安装情况来说,应考虑几种可能的解决办法,这些方法包括:在阀门处布置旁通管;对阀门最后15%~20%开度提供缓冲保护;采用双速(两段式启闭)阀门。延长阀门关闭(或打开)时间,可以将水锤压力控制在一定范围内,这对大型阀门是简单易行的。对于长管线来说,按照控制水锤压力反算的阀门关闭(开启)时间往往较长,达到5min~10min甚至更多,同调度运用灵活性要求构成了矛盾。因此,对长管道的水锤危害问题应进行专家分析,采用组合方案。 缓冲排气技术分析 长距离输水管路的高点处或膝部,由于很多原因常常会聚集大量气体,引起管道气堵,甚至水流中断;或者发生水柱分离水锤,形成液体局部汽化空腔(蒸汽腔)。为了保护管路,沿管路必要处可设置进排气阀。根据气液两相流态分析,造成管道排气困难及爆管水阻增大等现象的主要是段塞流,故工程实践中均利用恒压缓冲排气阀能满足管道中水气相间条件下能连续大量排气的要求,从而安全、平稳的排出管道中气体,防止气阻增大带来危害。根据国外相关技术资料和国内近年来的工程实验,输水管道上排气阀的布置方式为管道坡度小于1时,每隔0.5km~1.0km设一个,每个排气阀都设在该管段的最高点,当多起伏管道时,可根据其起伏高度分析是否需要增加,必要时进行相应的水力计算。

水锤产生的条件、危害及防护措施

水锤产生的条件、危害及防护措施 水锤简介 水锤又称水击。是指水或其他液体输送过程中,由于阀门突然开关、水泵骤然启停等原因,流速突然变化且压强大幅波动的现象。说的通俗些:突然停电或阀门关闭太快,由于压力水流的惯性,产生水流冲击波,就象锤子敲打一样,我们称之为水锤。 供水管道壁光滑,后续水流在惯性的“帮凶”下,水力迅速达到最大,所以容易造成破坏作用(如破坏阀门和水泵等),这就是水力学中的“水锤效应”,也叫正水锤;相反,阀门或水泵突然开启,也会产生水锤效应,叫负水锤。这种大幅波动的压力冲击波,极易导致管道因局部超压而破裂、损坏设备等。所以水锤效应防护是供水管道工程设计施工中必须要考虑的关键因素。 水锤产生的条件 1、阀门突然开启或关闭; 2、水泵机组突然停车或开启; 3、单管向高处输水(供水地形高差超过20米); 4、水泵总扬程(或工作压力)大; 5、输水管道中水流速度过大; 6、输水管道过长,且地形变化大。 7、不规范的施工是给水管道工程存在的隐患 7.1如三通、弯头、异径管等节点的水泥止推墩制作不符合要求。 水锤效应的危害 水锤引起的压强升高,可达管道正常工作压强的几倍,甚至几十倍。这种大幅度的压强波动,对管路系统造成的危害主要有: 1、引起管道强烈振动,管道接头断开; 2、破坏阀门,严重的压强过高造成管道爆管,供水管网压力降低; 3、反之,压强过低又会导致管子的瘪塌,还会损坏阀门和固定件; 4、引起水泵反转,破坏泵房内设备或管道,严重的造成泵房淹没,造成人身伤亡等重大事故,影响生产和生活。 消除或减轻水锤的防护措施 对于水锤的防护措施很多,但需根据水锤可能产生的原因,采取不同的措施。 1、降低输水管线的流速,可在一定程度上降低水锤压力,但会增大输水管管径,增加工程投资。输水管线布置时应考虑尽量避免出现驼峰或坡度剧变减少输水管道长度,管线愈长,停泵水锤值愈大。由一个泵站变两个泵站,用吸水井把两个泵站衔接起来。 停泵水锤的大小主要与泵房的几何扬程有关,几何扬程愈高,停泵水锤值也愈大。因此,应根据当地实际情况选用合理的水泵扬程。 事故停泵后,应待止回阀后管道充满水再启动水泵。 启泵时水泵出口阀门不要全开,否则会产生很大的水冲击。很多泵站的重大水锤事故多在这种情况下产生。 停泵水锤 所谓停泵水锤是指突然断电或其他原因造成开阀停车时,在水泵和压力管道中由于流速的突然变化而引起压力升降的水力冲击现象。例如电力系统或电器设备发生故障、水泵机组偶发故障等原因,都可能发生离心泵开阀停车,从而引发停泵水锤。 停泵水锤的最高压力可达正常工作压力的200%,甚至更高可以使管道及设备击毁,一般事故造成“跑水”、停水;严重事故造成泵房被淹、设备损坏、设施被毁,甚至于造成人身伤亡

高扬程大起伏地形长距离输水工程水锤防护实例研究

高扬程大起伏地形长距离输水工程水锤防护实例研究 针对我国某长距离压力输水工程,通过不同防护设备方案比选对管道进行水锤防护实例研究。结果证明,在高扬程大起伏地形长输管线中,以空气阀作为必备的基础防护措施,合理设置抗水锤气压罐可有效保证高扬程大起伏地形长距离输水工程的管道运行安全。 标签:压力长输管道;高扬程;大起伏地形;水锤 引言 长距离输水工程作为一种解决缺水地区水资源问题的重要方法,已在多处地区使用,但长距离有压输水管道中水锤现象经常发生,尤其高扬程大起伏地形长输管线更易产生水锤,由此造成的损失及伤害不可估量。因此,现针对高扬程大起伏长距离输水工程的特点进行水锤防护实例研究。 1 工程概况 某长距离压力输水工程全长13km,最大落差135m,蓄水池水位515m,吸水前池水位512m。管线起伏大,高点处易发生断流空腔水锤及断流空腔再弥合水锤。稳态计算结果管线建议承压能力为1.0~2.8Mpa,如图1所示,经分析,全线自由水头均在承压范围之内。 2 水锤防护方案的对比研究 本工程实例中主要采取两种水锤防护方案,单向调压塔方案和抗水锤气压罐方案(以下简称“气压罐方案”),这两个方案均以空气阀为必备基础防护措施。 首先,在无任何水锤防护措施的情况下,根据电算成果绘制出此工况下的压力包络线,全线多处出现负压,如图1所示。 图1 管线无水锤防护压力包络线图2空气阀位置图 根据该工程扬程高、落差大等特点及以往工程经验,为了水锤防护及通水,在管线坡峰处设置三级缓排式空气阀,在管线起伏不大处设置复合式空气阀作为水锤防护基础措施。本工程共设置复合式空气阀10处,三级缓排式空气阀7处。 由图2分析可知,复合式空气阀及三级缓排式空气阀不能有效缓解管线负压问题,当发生停泵水锤时,整个输水管路沿线仍多段出现水柱拉断现象,不满足水锤防护计算要求,需增加水锤防护设备,以保证管线安全运行。 2.1 单向调压塔方案

灌溉系统中水锤的解决方案

灌溉系统中水锤的防治办法 供水管道总会产生一阵阵有节奏的异响,作为工程人员我们应知道,这是水锤现象会危害我们的管网及设备,必须尽早处理及时预防。 一、何为水锤现象? 在有压力管路中,由于某种外界原因(如阀门突然关闭、水泵机组突然停机)使水的流速突然发生变化,从而引起水击,这种水力现象称为水击或水锤。液体在管内流动时,它具有动能,当液体突然停止,它的运动能量必须被消除。这时能量变成自停止点开始的高压波,以近声音的传播速度沿管路系统来回传递,使管内液体膨胀并撞击管路,发出刺耳的噪声。 也就是说:快速地开泵、停泵、开关阀门,使水的流速发生急剧变化,就是产生水锤现象的基本原因。 二、水锤的危害 水锤效应有极大的破坏性:由于水锤的产生,使得管道中压力急剧增大至超过正常压力的几倍甚至十几倍、几十倍,其危害很大,严重时会引起管道的破裂,影响生产和生活。压强过高,将引起管子的破裂,反之,压强过低又会导致管子的瘪塌,还会损坏阀门和固定件。 水锤现象可以破坏管道、水泵、阀门、并引起水泵反转,管网压力降低等。 三、常见水锤现象的原因分析及对策 既然管道系统内水的流速的急剧变化是产生水锤的基本原因,我们有必要对此展开深入地探讨,以便寻求应对之策。 1.各种阀门突然开启或关闭,水泵机组突然停机或开启 将响应太快调整为响应迟钝,比如延长开阀和关阀时间,选择开关动作迟钝的阀门,或者选择关键点位安装止回阀。 2.输水管道中水流速度过大;管道过长,且地形变化大 降低输水管线的流速,可在一定程度上降低水锤压力,但会增大输水管管径,增加工程投资。 输水管线布置时应考虑尽量避免出现驼峰或坡度剧变。 减少输水管道长度,管线愈长,水锤值愈大。高山地区灌溉可选择截断管道减压的方式,解决管道铺设过长的问题。也可采用增加专用阀门的方式进行水锤的消除。 采用水力控制阀:一种采用液压装置控制开关的阀门,一般安装于水泵出口,该阀利用机泵出口与管网的压力差实现自动启闭,阀门上一般装有活塞缸或膜片室控制阀板启闭速度,通过缓闭来减小水锤冲击,从而有效消除水锤。 采用快闭式止回阀:该阀结构是在快闭阀板前采用导流结构,停泵时,阀板同时关闭,依靠快闭阀板支撑住回流水柱,使其没有冲击位移,从而避免产生停泵水锤。

管道水锤破坏的消除措施

管道水锤破坏的消除措施 [摘要]介绍了给水管道的水锤形成的各种原因及分类,针对水锤的形成原因提出了不同的水锤防护措施,并分析其工作原理,保证供水管道系统的正常运行,有很好的借鉴作用。 [关键词]给水管道;管道施工;水锤事故;预防措施 1.引言 社会经济的发展,人们生活水平的提高,要求我们城市供水系统的正常运作也要得到相应的保证。在城市管道事故中管道水锤现象是比较常见但是危害又相对较大的管道破坏形式。因此,对水锤破坏进行相关的分析并提出一些有效的防治措施具有很大的实际意义。 2.水锤 2.1水锤的定义。水锤是有压管道中的非恒定流现象。当阀门或水泵突然的打开,使水的流速突然发生变化,从而引起压强急剧升高和降低的交替变化,这种变化以一定的速度向上游或下游传播,并且在边界上发生反射,这种水力现象称为水锤。交替升降的压强称为水锤压强。 2.2水锤产生的原因和分类。水锤产生的主要物理原因是液体具有惯性和可压缩性,水锤现象的实质可归纳为由于管道内水体流速的改变,导致水体的动量发生改变而引起作用力变化的结果。一般说来,输水管道系统中的过渡过程的起因大体有:启泵和停泵,机组转速发生变化或运行不稳定、动力故障;空气进入水泵或管道系统,泵内发生回流,阀门启闭,线路分流、激流等。其中以事故停机引起的水锤破坏尤为的严重。从不同的角度划分,水锤主要分为以下几种:(1)依照理论分析可以分为刚性水锤和弹性水锤;(2)按关阀历时和水锤相位的关系可以分为直接水锤和简介水锤;(3)按外部成因可以分为启动水锤、关阀水锤和停泵水锤;(4)按水锤发生的不同输水道可以分为封闭管道的水锤、明渠中的水锤和明满交替的水锤;(5)按水锤波动的现象分为水柱连续的水锤和水柱分离的水锤现象。 2.3水锤的危害。水锤有极大的破坏性。由于水锤产生的瞬时压强可达管道中正常工作压强的几十倍甚至于数百倍,这种大幅度的压强波动,可导致管道系统强烈振动产生噪声,可能破坏管道、水泵、阀门,并引起水泵反转,管网压力降低等。 3.水锤的消除措施 针对上述水锤形成的机理分析,笔者通过结合工程实践提出几种管道施工过程中经常用到的防护措施。

Hammer软件在输水管道水锤分析中的应用

Hammer软件在市政管道中的应用 田文军(Bentley 软件(北京)有限公司) 摘要:本文介绍了水锤的基本概念,危害和工程中的预防。根据建设工程中的问题提出预防水锤发生的措施,以提高供水系统的运行安全和可靠性,进而降低投资成本简化运行。并通过Bentley Haestad HAMMER 展示电算法在水锤预防当中的应用。 关键词:Hammer 水锤供水系统长距离输水爆管建设成本运行管理水力计算计算机模拟 1.水锤危害及其防控 1)水锤的定义 水锤是指在压力管道中由于液体流速的急剧变化,造成管中的液体压力显著、反复、迅速地变化,(例如水泵骤停、突然关闭阀门),由液体的压缩性和管道的弹性引起的输送系统中的压力波动,在压力急剧升高的位置产生破坏。水锤的破坏力惊人,对管网的安全平稳运行是十分有害的,容易造成爆管事故。 防止水锤爆管事故的方法有:输水系统中加调压装置,改变管网布置和构成,以达到改变水锤冲击波频率和强度的目的。 2)水锤的危害 水泵启动和停机、阀门启闭、工况改变以及事故紧急停机等动态过渡过程造成的输水管道内压力急剧变化和水锤作用等,常常导致泵房和机组产生振动。由于水锤的产生,使得管道中压力急剧增大至超过正常压力的几倍甚至十几倍,其危害很大,会引起管道的破裂,影响生产和生活。因此必须在长距离压力管段输送系统中安装安全装置。 水锤有正水锤和负水锤之分,它们的危害有: 正水锤时,管道中的压力升高,可以超过管中正常压力的几十倍至几百倍,以致管壁产生很大的应力,而压力的反复变化将引起管道和设备的振动,管道的应力交变变化,将造成管道、管件和设备的损坏。 负水锤时,管道中的压力降低,应力交递变化,出会引起管道和设备振动。同时负水锤时,管中产生不利的真空,造成水柱断流,和再次结合形成的弥合水锤,对管道破坏更为严重。 目前我国泵站相关设计规范(室外给水设计规范GB50013-2006;泵站设计规范GB/T 50265-97)中对水锤防护的计算已经做以相应的规定。 3)管道系统设计和规划中的水锤因素 工程师在设计给水管网过程中需要考虑预算和技术因素,包括运行成本、概算、建设地点和地形条件等因素。在设计管网和消除水锤设备中需要不断进行复杂的风险评估和方案比选,以降低建设成本和运行风险。通常管线规划在平坦地区。在这些系统中需要调整管线平面走向和剖面位置,防止管道在高点积气或压力过低。

管道水锤

能源环境 管道水锤破坏的消除措施 中色十二冶金建设有限公司(山西河津) 段效坚 【摘 要】介绍了给水管道的水锤形成的各种原因及分类,针对水锤的形成原因提出了不同的水锤防护措施,并分析其工作原理,保证供水管道系统的正常运行,有很好的借鉴作用。 【关键词】给水管道;管道施工;水锤事故;预防措施 1.引言 社会经济的发展,人们生活水平的提高,要求我们城市供水系统的正常运作也要得到相应的保证。在城市管道事故中管道水锤现象是比较常见但是危害又相对较大的管道破坏形式。因此,对水锤破坏进行相关的分析并提出一些有效的防治措施具有很大的实际意义。 2.水锤 2.1水锤的定义。水锤是有压管道中的非恒定流现象。当阀门或水泵突然的打开,使水的流速突然发生变化,从而引起压强急剧升高和降低的交替变化,这种变化以一定的速度向上游或下游传播,并且在边界上发生反射,这种水力现象称为水锤。交替升降的压强称为水锤压强。 2.2水锤产生的原因和分类。水锤产生的主要物理原因是液体具有惯性和可压缩性,水锤现象的实质可归纳为由于管道内水体流速的改变,导致水体的动量发生改变而引起作用力变化的结果。一般说来,输水管道系统中的过渡过程的起因大体有:启泵和停泵,机组转速发生变化或运行不稳定、动力故障;空气进入水泵或管道系统,泵内发生回流,阀门启闭,线路分流、激流等。其中以事故停机引起的水锤破坏尤为的严重。从不同的角度划分,水锤主要分为以下几种:(1)依照理论分析可以分为刚性水锤和弹性水锤;(2)按关阀历时和水锤相位的关系可以分为直接水锤和简介水锤;(3)按外部成因可以分为启动水锤、关阀水锤和停泵水锤;(4)按水锤发生的不同输水道可以分为封闭管道的水锤、明渠中的水锤和明满交替的水锤;(5)按水锤波动的现象分为水柱连续的水锤和水柱分离的水锤现象。 2.3水锤的危害。水锤有极大的破坏性。由于水锤产生的瞬时压强可达管道中正常工作压强的几十倍甚至于数百倍,这种大幅度的压强波动,可导致管道系统强烈振动产生噪声,可能破坏管道、水泵、阀门,并引起水泵反转,管网压力降低等。 3.水锤的消除措施 针对上述水锤形成的机理分析,笔者通过结合工程实践提出几种管道施工过程中经常用到的防护措施。 3.1空气罐防护。空气罐是一内部充有一定量压缩气体的金属水罐装置,一般情况下载在水泵出口附近的管道上安装。在因事故停泵后,管道中的压力降低,罐内空气迅速膨胀,在空气压力作用下下层水体迅速补充给主管道,防止水柱分离;倒泻水流会使得水泵进入水轮机工况后,泵出口的逆止阀迅速关闭,管中压力上升,出水管中的高压使水流入空气罐中,使罐内空气压缩,从而减小管道中的压力上升。为防止管道中产生过低的压力,入流量和出流量相等时差压孔口水头损失比值应控制在2:5:1左右。 3.2进排气阀。长距离输水管道在开始输水、停止输水和流量调节及事故停泵的不同工况下,需将管内空气排出或将管外空气补进管内,使压力管道系统不受气体、水锤负压等危害而安全运行的主要防护措施之一。可以把它的作用归纳为三方面:一是是管道发生水锤事故产生负压时,能及时的补充空气,不致负压过大而水柱分离;二是管道在运行情况下,能随时排出水中逸出的气体,避免气体的聚集、扩散而使输水量下降、管道漏水或引发气爆型水锤;三是空管道充水时及时排除管内空气,以免产生气阻而引发启泵水锤。 3.3单向调压塔防护。单向调压塔是一种用于防止产生水柱分离的经济可靠的防护措施,常设于容易产生负压的部位。这种调压塔由一个水塔与辅助支管、阀件等组成。水塔通过逆止阀与泵站主管道相连接,逆止阀的启闭由出水管道的压力控制。水泵起动时,逆止阀处于关闭状态,并补水管立即向水塔充水:当水位达到正常水位后,补水管出口的浮球阀关闭,自动保持塔里面的水位。非正常的停泵后,当出水管道压力下降到调压塔正常水位以下时,逆止阀将会迅速打开,通过辅助支管向主管道进行补水,防止管道因压力降低而产生水柱分离的现象,也很大程度降低了调压塔的高度。但是在实际应用工程中如果应用单向调压塔防护时应注意两点:(1)调压塔对于出水管道的保护范围是有限的,一般是相当于塔内最高水位以下的管道部分。如果在此高程以上的管道还可能产生水柱分离,则应根据管道的纵断面及最低压力线情况装设两个或多个调压塔。(2)补水后,调压塔应能迅速充水,准备下一次动作。因此,补水管应设计有足够的直径,水塔顶端的球阀应动作可靠。 3.4其他防护介绍。在常用的水锤防护措施中还有防爆膜、止回阀加旁通管、水锤消除器等几种,接下来将分别作简单的介绍。 1)防爆膜。防暴膜是在需要保护的管道上用一支管连接,并在其端部用一塑性金属膜片密封,当管中升压超过预定值时,膜片爆破,泄掉一部分高压水,以保证主管道的安全,起到水锤防护的效果。一般用于小流量、高扬程的泵站,作为其他防护措施的后备保护。2)惯性飞轮。在水泵机组主轴上增设惯性飞轮是为了加大水泵机组转动部分的转动惯量,以延长水泵机组的正转时间,有效避免管路中流速和水压的急剧降低、改善水锤压力猛烈波动状况,从而在一定程度上消弱了负压,防止了水柱分离现象的出现。3)止回阀加旁通管。对管线纵断面有凸部系统,水柱分离通常在某一凸部附近形成,且气穴会在一定范围内逐渐向高处波及,形成气穴流,当管路水流发生倒流后,气穴体积将迅速减小直至溃灭,产生很高的水柱弥合水锤,如能在水柱分离段的末端布置一逆止阀和旁通管,则可减小水柱弥合的升压和减小下游其他部位的水力波动。4)水锤消除器。水锤消除器实际上是具有一定泄水能力、并适合于泵站停泵水锤压力变化过程的安全阀。 4.新型水锤防护设备 以往防止水锤的办法是在压力管道上设置调压水箱、空气室、爆破膜片、水锤消除器、机组装设飞轮等。这些办法都可以在不同程度上防止水锤,但是它们普遍存在着占用厂房面积大,土建工程投资大的问题,而且运行不方便,目前可应用一些新型水锤防护设备。 4.1液控缓闭蝶阀。该阀在断电时可按预定的时间和角度,分快、慢二阶段关闭,能有效地降低管网中压力波动,消除流体在管网中的水锤危害,控制水泵反转,从而保证水泵和管网系统的安全可靠运行。 4.2缓闭止回阀。目的该类阀门有重锤式和蓄能式两种,可以根据需要在一定范围内对阀门关闭时间进行调整。缓闭止回阀克服了普通止回阀的缺点,具有如下特点:(1)泵启动后阀门能及时迅速打开。(2)正常运行时,要求阀瓣有尽可能大的开启角,并能稳定在全开位置。(3)停泵时阀门有优良的关闭特性,在突然停泵时既能阻止水倒流,保护水泵不致发生反转,达到保护水泵的目的;又能使其在关闭的最后阶段实现缓闭,减少突然关闭造成管路中的水锤,达到保护管路的。 5.结论 文章通过分析水锤形成原因,有针对性地提出了切实可行的水锤防护措施,如提出空气罐防护等,同时结合水锤防护的发展趋势,给出了未来水锤防护设备,以为同类工程提供参考借鉴。 参考文献 [1]柯勰,胡云进,万五一.缓闭式空气阀水锤防护效果研究[J].四川建材,2006,27(02):74-75. [2]高润清.水锤的研究与防护[J].价值工程,2007,29(06):101-103. [3]毕延龄.输水系统的水锤及水锤防护[J].建筑技术通讯(给水排水),2011,31(02):46-49.

相关主题
文本预览
相关文档 最新文档