当前位置:文档之家› 高频变压器

高频变压器

高频变压器
高频变压器

高频变压器

高频变压器是作为开关电源最主要的组成部分。开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。典型的半桥式变压电路中最为显眼的是三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W 以上的电源,其磁芯直径(高度)就不得小于35mm。而辅助变压器,在电源功率不超过3 00W时其磁芯直径达到16mm就够了。

变压器的工作原理

变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。

变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。

高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次:10kHz-50kHz、50kHz-100kHz、100kHz~500kHz、5 00kHz~1MHz、1MHz以上。传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。[1]

高频变压器

悬赏分:0 - 解决时间:2009-1-15 15:35

高频变压器中的EC42型和EE42有什么区别,42前面的字母分别代表什么?

提问者:hbt0090 - 初学弟子一级最佳答案

EC42型和EE42型是用于高频变压器或电感的两种铁氧体磁芯的型号,这种磁芯由两个“E”形磁体组成,这两种型号磁芯的区别(亦即42前面字母的含义)在于:EC型的磁芯中芯柱为圆形,EE型的磁芯中芯柱为方形。

高频变压器用在低频电路会出现什么问题

悬赏分:0 - 解决时间:2007-5-25 18:28

高频变压器用在低频电路会出现什么问题;

低频变压器用在高频电路会出现什么问题?

比如50HZ和50KHZ!

提问者:余成YW S - 助理四级最佳答案

高频变压器用在低频电路中电流增大,可能烧坏变压器。由于电感量与交流电的频率成正比。低频变压器用在高频电路中电流减小,由于电感量与交流电的频率成正比,不会损坏变压器。高频电路不能正常工作。

关于大功率高频变压器的设计!

悬赏分:20 - 解决时间:2008-7-2 17:51

设计一个12V500A和12V1000A的高频变压器,所用的铁芯(环形非晶铁芯)导磁截面和窗口面积一样大吗?

提问者:lilibao9- 职场新人三级最佳答案

高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。在高频链的硬件电路设计中,高频变压器是重要的一环。

设计高频变压器首先应该从磁芯开始。开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。磁芯矫顽力低,磁滞面积小,则铁耗也少。高的电阻率,则涡流小,铁耗小。铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。

高频变压器的设计通常采用两种方法[3]:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁

性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。

注意:

1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。

2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。

单片开关电源高频变压器的设计要点

高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。

单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、TOtch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。

高频变压器是开关电源中进行能量储存与传输的重要部件,单片开关电源中高频变压器性能的优劣,不仅对电源效率有较大的影响,而且直接关系到电源的其它技术指标和电磁兼容性(EMC)。为此,一个高效率高频变压器应具备直流损耗和交流损耗低、漏感小、

绕组本身的分布电容及各绕组之间的耦合电容要小等条件。

高频变压器的直流损耗是由线

圈的铜损耗造成的。为提高效率,应尽量选择较粗的导线,并取电流密度J=4~10A/mm2。

高频变压器的交流损耗是由高频电流的趋肤效应以及磁芯的损耗引起的。高频电流通过导线时总是趋向于从表面流过,这会使导线的有效流通面积减小,并使导线的交流等效阻抗远高于铜电阻。高频电流对导体的穿透能力与开关频率的平方根成反比,为减小交流铜阻抗,导线半径不得超过高频电流可达深度的2倍。可供选用的导线线径与开关频率的关系曲线如图1所示。举例说明,当f=100kHz时,导线直径理论上可取φ0.4mm。但为了减小趋肤效应,实际可用更细的导线多股并绕,而不用一根粗导线绕制。

在设计高频变压器时必须把漏感减至最小。因为漏感愈大,产生的尖峰电压幅度愈高,漏极钳位电路的损耗就愈大,这必然导致电源效率降低。对于一个符合绝缘及安全性标准的高频变压器,其漏感量应为次级开路时初级电感量的1%~3%。要想达到1%以下的指标,在制造工艺上将难于实现。减小漏感时可采取以下措施:

减小初级绕组的匝数NP;

增大绕组的宽度(例如选EE型磁芯,以增加骨架宽度b);

增加绕组的高、宽比;

减小各绕组之间的绝缘层;

增加绕组之间的耦合程度。

电源高频变压器的设计方法

设计高频变压器是电源设计过程中的难点,下面以反馈式电流不连续电源高频变压器为例,介绍一种电源高频变压器的设计方法。

设计目标:电源输入交流电压在180V~260V之间,频率为50Hz,输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。

设计步骤:

1、计算高频变压器初级峰值电流Ipp

2、求最小工作周期系数Dmin

3、计算高频变压器的初级电感值Lp

4、计算出绕组面积Aw和铁心有效面积Ae的乘积Aw*Ae,选择铁心尺寸。

5、计算空气间隙长度Lg

6、计算变压器初级线圈Np

7、计算变压器次级线圈Ns

高频变压器:整流、变压

在传统的高频变压器设计中,由于磁心材料的限制,其工作频率较低,一般在20kHz 左右。随着电源技术的不断发展,电源系统的小型化,高频化和高功率比已成为一个永恒的研究方向和发展趋势。因此,研究使用频率更高的电源变压器是降低电源系统体积,提高电源输出功率比的关键因素。

作为开关电源最主要的组成部分,高频变压器相对诖 车墓て当溲蛊饔幸韵掠诺悖豪 锰 跆宀牧现瞥傻母咂当溲蛊骶哂凶 恍 矢摺⑻寤 ∏傻奶氐悖欢 车墓て当溲蛊鞴ぷ

髟?0Hz下,输出相同功率时需要较大的截面积而导致变压器体积庞大,不利于电源的小型化设计,而且电源转换效率也低于开关电源。

电脑使用的开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电。在这个电路中,开关管的最大电流对电源输出功率的大小有一定的限制(通常应用于300W电源的MOS管体积较大,有的电源甚至使用了耐流达到10A的开关管),而高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少,由于工作在很高的频率下,对元件质量的要求和线路的搭配有很高的要求。

抑制高频变压器的音频噪声

高频变压器EE或EI型磁芯之间的吸引力,能使两个磁芯发生位移;绕组电流相互间的引力或斥力,也能使线圈产生偏移。此外,受机械振动时能导致周期性的形变。上述因素均会使高频变压器在工作时发出音频噪声。10W以下单片开关电源的音频噪声频率,约为10kHz~20kHz。

为防止磁芯之间产生相对位移,通常以环氧树脂作胶合剂,将两个磁芯的3个接触面(含中心柱)进行粘接。但这种刚性连接方式的效果并不理想。因为这无法将音频噪声减至最低,况且胶合剂过多,磁芯在受机械应力时还容易折断。国外最近采用一种特殊的“玻璃珠”(glassbeads)胶合剂,来粘合EE、EI等类型的铁氧体磁芯,效果甚佳。这种胶合剂是把玻璃珠和胶着物按照1:9的比例配制而成的混合物,它在100℃以上的温度环境中放置1h即可固化。其作用与滚珠轴承有某种相似之处,固化后每个磁芯仍能独立地在小范围内产生形变或移位,而总体位置不变,这就对形变起到了抑制作用。用玻璃珠胶合剂粘接的高频变压器内部。采用这种工艺可将音频噪声降低5dB。高频变压器的屏蔽

为防止高频变压器的泄漏磁场对相邻电路造成干扰,可把一铜片环绕在变压器外部,该屏蔽带相当于短路环,能对泄漏磁场起到抑制作用,屏蔽带应与地接通。

基本知识

将两个线圈*近放在一起,当一个线圈线中的电流变化时,穿过另一线圈的磁通会发生相应的变化,从而使该线圈中出现感应电势,这就是互感现象。变压器就是根据互感原理制成的。

按工作频率分,有高频变压器、中频变压器、低频变压器、脉冲变压器。如收音机的磁性天线,它是高频;在收音机的中频放大级,用的是中频的,俗称“中周”;低频的种类较多,有电源变压器、输入变压器等;电视机的行输出变压器,也称“高压包”,它是一种脉冲变压器。

变压比、额定功率、温升、效率、空载电流、绝缘电阻均为其主要技术参数。

在电路中电压变换、电流变换、传递功率、阻抗匹配、或阻抗变换等用途。

电子变压器在电源技术中的作用

作用

电子变压器和半导体开关器件,半导体整流器件,电容器一起,称为电源装置中的4大主要元器件。它在电源装置中的作用:

起电压和功率变换作用;

起传递宽带、声频、中周功率和信号作用;

起传递脉冲、驱动和触发信号作用;

起原边和副边绝缘隔离作用;

起单相变三相或三相变单相作用,起改变输出相位作用;

起改变输出频率作用;

起改变输出阻抗与负载阻抗相匹配作用;

起稳定输出电压或电流作用,起调节输出电压作用;

起交流和直流滤波作用;

起抑制电磁干扰作用,起抑制噪声作用;

起吸收浪涌电流作用,减缓电流变化速率;

起储能作用,起帮助半导体开关换向作用;

起开关作用;

起调节电感作用;

起变换电压、电流或脉冲检测信号。

从以上的列举可以看出,不论是直流电源,交流电源,还是特种电源,都离不开电子变压器。有人把电源界定为经过高频开关变换的直流电源和交流电源。在介绍软磁电磁元件在电源技术中的作用时,往往举高频开关电源中的各种电磁元件为例证。同时,在电子电源中使用的软磁电磁元件中,各种变压器占主要地位,因此用变压器作为电子电源中软磁元件的代表,称它们为“电子变压器”。

绕制变压器的材料

要绕制一个变压器我们必须对有关的材料要有一定的认识,下面为你提供了这方面的知识。

1、铁心材料:

使用的铁心材料主要有铁片、低硅片,高硅片,的钢片中加入硅能降低钢片的导电性,增加电阻率,它可减少涡流,使其损耗减少。我们通常称为加了硅的钢片为硅钢片,变压器的质量所用的硅钢片的质量有很大的关系,硅钢片的质量通常用磁通密度B来表示,一般黑铁片的B值为6000-8000、低硅片为9000-11000,高硅片为12000-16000。

2、通常用的材料有

漆包线,沙包线,丝包线,最常用的漆包线。对于导线的要求,是导电性能好,绝缘漆层有足够耐热性能,并且要有一定的耐腐蚀能力。一般情况下最好用Q2型号的高强度的聚脂漆包线。

3、绝缘材料

在绕制过程中,线圈框架层间的隔离、绕阻间的隔离,均要使用绝缘材料,一般的变压器框架材料可用酚醛纸板制作,层间可用聚脂薄膜或电话纸作隔离,绕阻间可用黄腊布作隔离。

4、浸渍材料:

绕制好后,还要过最后一道工序,就是浸渍绝缘漆,它能增强变压器的机械强度、提高绝缘性能、延长使用寿命,一般情况下,可采用甲酚清漆作为浸渍材料。

高频电源变压器的设计原则

高频电源变压器作为一种产品,自然带有商品的属性,因此其设计原则和其他商品一样,是在具体使用条件下完成具体的功能中追求性能价格比最好。有时可能偏重性能和效率,有时可能偏重价格和成本。现在,轻、薄、短、小,成为它的发展方向,是强调降低成本。其中成为一大难点的高频电源变压器,更需要在这方面下功夫。如果能认真考虑一下它的设计原则,追求更好的性能价格比,传送不到10VA的单片开关电源高频变压器,应当设计出更轻、薄、短、小的方案来。不谈成本,市场的价值规律是无情的!许多性能好的产品,往往由于价格不能为市场接受而遭冷落和淘汰。往往一种新产品最后被成本否决。一些“节能不节钱”的产品为什么在市场上推广不开值得大家深思。

产品成本,不但包括材料成本,生产成本,还包括研发成本,设计成本。因此,为了节约时间,根据以往的经验,对它的铁损铜损比例、漏感与激磁电感比例、原边和副边绕组损耗比例、电流密度提供一些参考数据,对窗口填充程度,绕组导线和结构推荐一些方案,有什么不好?为什么一定要按步就班地来回进行推算和仿真,才不是概念错误?作者曾在20世纪80年代中开发高频磁放大器式开关电源,以温升最低为条件,对高频电源变压器进行过优化设计。由于热阻难以确定,结果与试制样品相差甚远,不得不再次修正。现在有些公司的磁芯产品说明书中,为了缩短用户设计的时间,有的列出简化的设计公式,有的用表列出磁芯在某种工作频率下的传送功率。这种既为用户着想,又推广公司产品的双赢行为,是完全符合市场规律的行为,绝不是什么需要辨析的错误概念。问题是提供的参考数据,推荐的方案是否是经验的总结?有没有普遍性?包括“辨析”一文中提出的一些说法,都需要经过实践检验,才能站得住脚。

总之,千万记住:它是一种产品(即商品),设计原则是在具体的使用条件下完成具体的功能中追求性能价格比最好。检验设计的唯一标准是设计出的产品能否经受住市场的考验

EE型变压器参数及高频变压器计算Word版

我们知道,与一般的电流电压测量不同,磁场强度和磁感应强度的测量都是间接测量。磁场强度通过测量励磁电流后计算得到,磁感应强度是通过测量感应磁通后计算得到,参与计算的样品有效参数Le和Ae将直接与测量结果相关。 磁场强度的计算公式:H = N xI / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N xAe) 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 根据样品尺寸计算样品的有效参数Le和Ae,在不同的行业中,计算方法往往不统一,这可能使测试结果缺乏可比性。 在SMTest软磁测量软件中,样品有效参数的计算依照行业标准SJ/T10281。下面以环形样品为例,讲述样品有效磁路长度Le和有效截面积Ae的计算方法。 第一种情况:指定叠片系数Sx,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和 Ae,这是严格按照标准执行的计算方法。

第二种情况:指定材料密度De和样品质量W,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和 Ae,并可推算叠片系数Sx,这是另外一种计算方法,与标准有点差别,但计算结果与标准比较接近。 第三种情况:指定材料密度De和样品质量W,指定样品的外径A和内径B,不指定样品的高度。 不按SJ/T10281标准求磁芯常数,而是按平常的数学公式来求Le和Ae。这种计算方法与标准相差较大,只有环形样品才有这种计算方法。

反激变压器的详细公式的计算

单端反激开关电源变压器设计 单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。 1、已知的参数 这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。 2、计算 在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。反激电压由下式确定: V f=V Mos-V inDCMax-150V 反激电压和输出电压的关系由原、副边的匝比确定。所以确定了反激电压之后,就可以确定原、副边的匝比了。 N p/N s=V f/V out 另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式: V inDCMin?D Max=V f?(1-D Max) 设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。由能量守恒,我们有下式: 1/2?(I p1+I p2)?D Max?V inDCMin=P out/η 一般连续模式设计,我们令I p2=3I p1 这样就可以求出变换器的原边电流,由此可以得到原边电感量: L p= D Max?V inDCMin/f s?ΔI p 对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。 可由A w A e法求出所要铁芯: A w A e=(L p?I p22?104/ B w?K0?K j)1.14 在上式中,A w为磁芯窗口面积,单位为cm2 A e为磁芯截面积,单位为cm2 L p为原边电感量,单位为H I p2为原边峰值电流,单位为A B w为磁芯工作磁感应强度,单位为T K0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4 K j为电流密度系数,一般取395A/cm2 根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯

高频变压器的分析与设计.

高频链中高频变压器的分析与设计 文章作者:四川成都西南交通大学龙海峰郭世明江苏南京国电南京自动化股份有限公司呙道静文章类型:设计应用文章加入时间:2004年9月6日14:54 文章出处:电源技术应用 摘要:高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体 积和重量。在高频链的硬件电路设计中,高频变压器是重要的一环。叙述了高频变压器的设计过程。 实验结果证明该设计满足要求。 关键词:高频链;高频变压器;逆变器 引言 MESPELAGE于1977年提出了高频链逆变技术的新概念[1]。高频链逆变技术与常规的逆变技术最 大的不同,在于利用高频变压器实现了输入与输出的电气隔离,减小了变压器的体积和重量。近年来, 高频链技术引起人们越来越多的兴趣。 1 概述 图1是传统的逆变器框图。其缺点是采用了笨重庞大的工频变压器和滤波电感,导致效率低,噪 音大,可靠性差。另外,谐波含量大,波形畸变严重,与要求的优质正弦波相差甚远。

图2所示为电压源高频链逆变器的框图,该方案是当今研究的最先进方案[2],也是本文中采用的方案。采用此方案有其一系列的优点,诸如,以小型的高频变压器替代工频变压器;只有两级功率变换;正弦波质量高;控制灵活等。高频变压器是高频链的核心部件,肩负着隔离和传输功率的重任,其性能好坏直接决定逆变器的性能好坏。不合格的变压器温升高,效率低,漏感严重,输出波形畸变大,直接影响电路的稳定性和可靠性,甚至损坏开关器件,导致实验失败。 2 高频变压器的设计 设计高频变压器首先应该从磁芯开始。开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。磁芯矫顽力低,磁滞面积小,则铁耗也少。高的电阻率,则涡流小,铁耗小。各种磁芯物理性能及价格比如表1所列。铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。本文采用的就是铁氧体材料。 表1 各种磁芯特性比较表

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5 层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该

高频开关电源变压器的动态测试

高频开关电源变压器的动态测试 (JP2581B+JP619B材料功耗测量系统应用笔记之一) 1 引言 目前,对高频开关电源变压器电磁参数‘测试’大约使用两种方法:一种是用LCR表测量一些基本电磁参数,例如,开关电源变压器初次级电感、漏感、分布电容、绕组直流电阻以及匝比、相位等,我们称这种测试方法为’静态’测试;一种是将开关电源变压器放到主机上考核其工作情况,对已经定型生产的开关电源变压器,为考核外购磁芯质量,通过测量变压器工作温升判断磁芯的损耗比较直观简便。前一种方法因在弱场、低频低磁感应强度(例如Bm<0.25mT、f=1kHz)下测量,由于磁性材料特性的非线性、不可逆和对温度敏感,其在强场下工作与在弱场情况下工作电磁特性有很大不同。弱场下测量结果不能反映磁性器件工作在强场下的情况;后一种方法虽随主机在强场下应用,但不能得到被测器件电磁参数。磁芯损耗需要专用仪器才能测量。 高频开关电源变压器的上述测试分析现状影响了此类器件的开发和生产。 需要开发一种仪器或测试系统,这种测试系统能够模拟实际工作条件,完成对高频开关电源变压器主要电磁参数分析,例如,各种负载(包括满载和空载)情况下变压器初级复数阻抗z、有效初级电感L,通过功率Pth、功率损耗PT、传输效率η以及在指定频率下磁芯的传输功率密度等,我们称这种模拟实际工作条件的测试为‘动态’测试。作为磁性器件综合测试系统,还要求具有对磁芯材料功率损耗分析功能。在电磁机器进一步小型化、高频化和采用高密度组装情况下对器件进行‘动态’分析,对加速象高频开关电源之类的电磁器件开发、提高器件质量显得特别重要。 2 测试系统简介 JP2581B+JP619B材料功耗及器件功率测量系统是一种交流电压、电流和功率精密测量装置。其主要测量功能、指标和测量精度非常适用于磁性材料和磁性器件(例如,开关电源变压器)研究开发和磁芯产品快速检测。该系统配套完整,自成体系,无需用户增加额外投资,系统主要测试功能如下: 1、软磁材料及器件交流功率损耗(总功耗PL , 质量比功耗 Pcm , 体积比功耗 Pcv)测量; 2、磁性材料振幅磁导率μa测量; 3、磁芯(有效)振幅磁导率(μa)e测量; 磁芯因素(AL)e.测量 以上测量均符合IEC367--1(或GB9632--88)标准中推荐的测量方法。 4、电感、电容及组成器件(例如,开关电源变压器)等效电磁参数的动态测量和分析; 5、由测量结果分析器件下列参数: z |z| Ls Rs Lp Rp C Q D。 测试系统具有如下使用、操作特点:

高频变压器工作原理及用途

高频变压器工作原理及用途 简介 是作为开关电源最主要的组成部分。开关电源中的拓扑结构有很多。比如半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行变压,输岀交流电,高频 变压器各个绕组线圈的匝数比例则决定了输岀电压的多少。典型的半桥式变压电路中最为显眼的是三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W以上的电源,其磁芯直径(高度)就不得小于35mm而辅助变压器,在电源功率不超过300W时其磁芯直径达到16mm就够了。 工作原理 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其 余的绕组叫次级线圈。 用途 高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档 次:10kHz- 50kHz、50kHz-100kHz、100kHz?500kHz、500kHz?1MHz 1MHz以上。传送功率比较大的情况 下,功率器件一般采用IGBT,由于IGBT存在关断电流拖尾现象,所以工作频率比较低;传送功率比较小的,可以采用MOSFET工作频率就比较高。 制造工艺 高频变压器的制造工艺要点一。 绕线 A确定BOBBIN的参数

B所有绕线要求平整不重叠为原则 C单组绕线以单色线即可,双组绕线必需以双色线或开线浸锡来分脚位,以免绕错 D横跨线必需贴胶带隔离 1. 疏绕完全均匀疏开 2. 密绕排线均匀紧密 3. 线圈两边与绕线槽边缘保持足够的安全距离A,B 4. 套管长度必须足够,一端伸入绕线管的安全胶带以内,另一端伸出BOBBIN上沿面,但不得靠近PIN 5. 最外层胶带切割在铁芯组合面,切割处必须被铁芯覆盖。 6. 胶带边缘与绕线槽平齐,胶带不歪斜,不反摺不破损。 7. 跨越线底下须贴胶带,保持跨越线与底下线圈绝缘。 高频变压器的制造工艺要点二。 缠线 A 立式BOBBIN 粗线:0.8 ?以上缠线1圈 细线0.2-0.8 ?缠线1.5圈 极细线0.2 ?以下缠线2-3圈 立式BOBBIN缠法之原则:缠线尽量压到底以不超过凸点为原则。 B卧式BOBBIN :约缠2-3圈,疏绕不要压到底,以免焊锡时烫伤BOBBIN如果有宽度限制且规格严格时才用此方式,将缠线压到底后焊锡,再剪边PIN,以减少整个变压器的宽度。 C横式(卧式,BOBBIN之缠法:约缠2-3圈疏绕,不要压到底以免焊锡时烫伤BOBBIN 注:如果产品有宽度限制且规格紧必须将缠线部分剪短时为特例,此时即必须将缠线尽量压到底。 高频变压器的制造工艺要点三. 套管 一般套管之位置规则:

高频变压器检验规范

页序1of3 版本首版发行制定审核日期A/0版本变更 批准: 生效日期:

页序2of3 1.0 目的 规范高频变压器的检验内容与方式,以确保来料品质符合产品生产要求 2.0 范围 仅适用于高频变压器的一般检验 3.0 参考 COP830-01不合格品控制程序 COP743-01来料检验控制程序 4.0 定义 一种由铁氧体和漆包线组成的电子元器件,主要作用是在频率较高的范围内转换电磁过程 5.0 责任 5.1 IQC负责其物料检验或试验 5.2 MRB负责不合格物料的处理 6.0 程序: 6.1抽样 6.1.1外观检验:依据MIL-STD-105E按LevelⅡ级水准进行抽样,抽样时应随机从批量不同的包装单元中抽取,切忌单一从最小单元中抽取样品数 6.1.2特性&尺寸与实验则按Level S-2级水准进行抽样,并从LevelⅡ级抽样数中抽取样品数 6.2检验项目及标准 检验项目检验标准 缺陷判定 检验方法 Min Maj Cri 外观1.胶芯无破裂、烂。 2.针脚光亮、无氧化发黑、锈蚀、压痕、变 形、毛刺、锡点大或过高。 3.磁芯无破损、断裂、披锋、结合处间隙小、 均匀。 4.表面无积油、锡渣。 5.变压器无露铜。 × × × × × 以内臂长 70%左右时 照样品目视 检验 尺寸1.符合设计/开发确认资料或样品要求。 2.允许公差以零件规格书为准,无要求时, 一般允许公差: 外形尺寸:±0.5mm 引脚直径、长度:±0.1mm 引脚间中心距离:±0.3mm 初次间引脚中心距离:±0.5mm × ×参照样品检 验用游标卡 尺、千分尺 测量 制定审核批准

标 准高频变压器检验规范 文件编号QA-WI-577 版本A/0 页序3of3 检验项目检验标准 缺陷判定 检验方法 Min Maj Cri 特性1.电感量符合零件规格书要求,无要求时, 一般误差:±10% 2.直流电阻符合零件规格书,无要求时,一 般误差:±15% 3.相位正确。 4.初级、次级、磁芯之间耐压不低于工程确 认资料要求。 × × × × 1.LCR仪表 测试。 2.用LCR仪 表测试,同 相增加,反 相减少。 3.用高压机 测试。 实验1.可焊性 表面光泽、无凹凸点毛刺,浸锡均匀,无发 黑或不沾锡现象。 × 锡槽法可焊 性实验。 (温度 350℃± 20℃) 制定审核批准

EI 铁芯电源变压器计算步骤

铁芯电源变压器计算步骤 编写者:黄永吾 已知变压器有以下主要参数: 初级电压U1=220V, 频率f=50Hz 次级电压U2=20V, 电流I2=1A 其他一些要求如安规、温升、电压调整率、环境、(防潮、防震、防灰尘等)、工作状态、寿命等。

型变压器设计软件计算步骤如下: 1.计算变压器功率容量: 2.选择铁芯型号: 3.计算铁芯磁路等效长度: 4.计算铁芯有效截面积: 5.计算变压器等效散热面积: 6.计算铁芯重量: 7.计算胶芯容纳导线面积: 8.初定电压调整率: 9.选择负载磁通密度: 10.计算匝数: 11.计算空载电流: 12.计算次级折算至初级电流: 13.计算铁芯铁损: 14.计算铁损电流: 15.计算初级电流:

16.计算各绕组最大导线直径: 17.校核能否绕下: 18.计算各绕组平均长度: 19.计算各绕组导线电阻: 20.计算各绕组导线质量: 21.计算各绕组铜损: 22.计算各绕组次级空载电压: 23.核算各绕组次级负载电压: 24.核算初级电流: 25.核算电压调整率: 重复8~25项计算三次: 26.修正次级匝数: 重复8~25项计算三次: 27核算变压器温升:

型变压器设计软件计算步骤如下: 1. 计算变压器功率容量:以下为结构计算: 2. 选择铁芯型号:16.计算各绕组最大导线直径: 3. 计算铁芯磁路等效长度:17.校核能否绕下: 4. 计算铁芯有效截面积:18.计算各绕组平均长度: 5. 计算变压器等效散热面积:19.计算各绕组导线电阻: 6. 计算铁芯重量: 20.计算各绕组导线质量: 7. 计算胶芯容纳导线面积:21.计算各绕组铜损: 8. 初定电压调整率:22.计算各绕组次级空载电压: 9. 选择负载磁通密度: 23.核算各绕组次级负载电压: 10.计算匝数:24.核算初级电流: 11.计算空载电流: 25.核算电压调整率: 12.计算次级折算至初级电流:重复8~24项计算三次: 13.计算铁芯铁损:26.修正次级匝数: 14.计算铁损电流:重复8~24项计算三次: 15.计算初级电流: 27.核算变压器温升:

高频变压器大全

EF型高频变压器详细资料 ?EF型高频变压器 ?各种电子、电器线路的必需元件之一 ?做工优良,品质保证 ET型高频变压器详细资料 具有杂散电容小,纹波系数低,电感偏差小等特点用于彩色电视电源,液晶显示电源,电脑开关电源,电子镇流器等主要型号有:DL-ET24、DL-ET28、DL-ET28A等 EFD型高频变压器详细资料 EFD型变压器是为了适应超薄型开关电源而设计的一款高频变压器。它拥有扁型的铁氧体磁芯,它的形状能同时满足电源变压器高功率的要求和超薄体积的要求,同样也能适应开关电源在温升方面的要求,但对

PCB板的要求会提高;其它性能接近于EE型和EC型变压器。 EFD变压器常用型号有EFD15,EFD20,EFD25,EFD30等.

ER/EC型高频变压器详细资料 EC/ER型变压器是基本型的铁氧体磁芯,它们被广泛用于开关电源及和多种电子线路中,振荡方式有全桥,半桥,单端式,谐振式,推挽式线路等,具有优良的材料特性,适用于典型的变压器结构,EC/ER磁芯的圆柱型中心柱,使之绕线较为容易,并增大了绕组的截面积,可增大输出功率,适用于各种开关电源变压器和阻流线圈。 EC型变压器的型号有EC2820,EC3542,EC4042,EC4950,EC5345,EC70等。 下表列出部分产品的外形尺寸及输出功率。 随着磁材特性和工作频率的不同,最大输出功率会有所不同,表中数据仅供参考。 测试条件1KHz/1V,耐压AC2000V,绝缘电阻:DC500V ≥200MΩ。 序号规格 外型尺寸mm参考VA重量A B C f=50KHz f=100KHz参考值g 1EC-28283430425835 2EC-3535462910015078 3EC-40404732180290110 4EC-42424741240380125 5EC-494958536501000191以上数据仅供参考。 EI型高频变压器详细资料

高频变压器制作与技术参数

高频变压器制作与技术参数 脉冲变压器也可称作开关变压器,或简单地称作高频变压器。在传统的高频变压器设计中,由于磁芯材料的限制,其工作频率较低,一般在20kHz左右。随着电源技术的不断发展,电源系统的小型化、高频化和大功率化已成为一个永恒的研究方向和发展趋势。因此,研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率比的关键因素。 随着应用技术领域的不断扩展,开关电源的应用愈来愈广泛,但制作开关电源的主要技术和耗费主要精力就是制作开关变压器的部件。 开关变压器与普通变压器的区别大致有以下几点: (1)电源电压不是正弦波,而是交流方波,初级绕组中电流都是非正弦波。 (2)变压器的工作频率比较高,通常都在几十赫兹,甚至高达几十万赫兹。在确定铁芯材料及损耗时必须考虑能满足高频工作的需要及铁芯中有高次谐波的影响。 (3)绕组线路比较复杂,多半都有中心抽头。这不仅增大了初级绕组的尺寸,增大了变压器的体积和重量,而且使绕组在铁芯窗口中的分布关系发生变化。

图1 开关电源原理图 本文介绍了一款如图1所示的DC—DC变换器,输入电压为直流24V,输出电压分别为5V 及12V的多路直流输出。要求各路输出电流都在lA以上,核心器件是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片UC3842,最高工作频率可达200kHz。根据锌锰铁氧体合金的优异电磁性能,通过具体示例介绍工作频率为100kHz的高频开关电源变压器的设计及注意事项。 2变压器磁芯的选择与工作点的确定 2.1 磁芯材料的选择 从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

功率铁氧体磁芯 常用功率铁氧体材料牌号技术参数 EI型磁芯规格及参数

PQ型磁芯规格及参数 EE型磁芯规格及参数 EC、EER型磁芯规格及参数

1,磁芯向有效截面积:Ae 2,磁芯向有效磁路长度:le 3,相对幅值磁导率:μa 4,饱和磁通密度:Bs 1磁芯损耗:正弦波与矩形波比较 一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。对于高电阻率的磁性材料如类似铁氧体,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。材料中存在高的涡流损耗(如大 一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。但在元件存在铜损的情况下,这是不正确的。在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。举个例子,在 20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激

励磁芯损耗的两倍。例如,对于许多开关电源来说,具有矩形波激励磁芯的 5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。 2Q值曲线 所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。这些测试参数通常是用置于磁芯上的最适用的绕组完成的。对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。 对于钼坡莫合金磁粉芯同样是正确的。用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。3电感量、AL系数和磁导率 在正常情况下,磁芯制造厂商会发布电感器和滤波器磁芯的AL系数、电感量和磁导率等参数。这些AL的极限值建立在初始磁导率范围或者低磁通密度的基础上。对于测试AL系数,这是很重要的,测试AL系数是在低磁通密度下实施的。 某些质量管理引入检验部门,希望由他们用几匝绕组检查磁芯,并用不能控制频率或激励电压的数字电桥测试磁芯。几乎毫不例外,以几百高斯、若干

高频变压器的制作工艺

高频变压器的制作工艺》 一.绕线 1.材料确认 1.1 BOBBIN规格之确认. 1.2不用的PIN须剪去时,应在未绕线前先剪掉,以防绕完线后再剪除时会刮伤WIRE或剪错脚,而且可以避免绕线时缠错脚位. 1.3 确认BOBBIN完整:不得有破损和裂缝. 1.4将BOBBIN正确插入治具,一般特殊标记為1脚(斜角為PIN 1),如果图面无註明,则1脚朝机器. 1.5须包醋酸布的先依工程图要求包好,紧靠BOBBIN两侧,再在指定的PIN上先缠线(或先鉤线)后开始绕线,原则上绕线应在指定的范围内绕线 2.绕线方式 根据变压器要求不同,绕线的方式大致可分為以下几种 2.1一层密绕:佈线只佔一层,紧密的线与线间没有空隙.整齐的绕线. (如图6.1) 2.2 均等绕:在绕线范围内以相等的间隔进行绕线;间隔误差在20%以内可以允收.(如图6.2) 2.3 多层密绕:在一个绕组一层无法绕完,必须绕至第二层或二层以上,此绕法分為三种情况: a.任意绕:在一定程度上整齐排列,达到最上层时,佈线已零乱,呈凹凸不平状况,这是绕线中最粗略的绕线方法 . b.整列密绕:几乎所有的佈线都整齐排列,但有若乾的佈线零乱(约佔全体30%,圈数少的约佔5%REF). c.完全整列密绕:绕线至最上层也不零乱,绕线很整齐的排列著,这是绕线中最难的绕线方法. 2.4 定位绕线:佈线指定在固定的位置,一般分五种情况(如图6.3)

图6.3 2.5 并绕:两根以上的WIRE同时平行的绕同一组线,各自平行的绕,不可交叉.此绕法大致可分為四种情况:(如图6.4)

图6.4 3.注意事项: 3.1当起绕(START)和结束(FINISH)出入线在BOBBIN同一侧时,结束端迴线前须贴一块横越胶布(CROSSOVER TAPE)作隔离。 3.2出入线於使用BOBBIN之凹槽出线时,原则上以一线一凹槽方式出线,若同一PIN有多组可使用同一凹槽或相邻的凹槽出线,唯在焊锡及装套管时要注意避免短路。 3.3 绕线时需均匀整齐绕满BOBBIN绕线区為原则,除工程图面上有特别规定绕法时,则以图面為準。3.4变压器中有加铁氟龙套且有折回线时,其出入线所加之铁氟龙套管须与BOBBIN凹槽口齐平(或至少达2/3高),并自BOBBIN凹槽出线以防止因套管过长造成拉力将线扯断。但若為L PIN水平方向缠线,则套管应与BOBBIN边齐平(或至少2/3长)。(如图3 ) 3.5变压器中须加醋酸布作為档墙胶带时,其档墙胶带必须紧靠模型两边.為避免线包过胖及影响漏感过高,故要求2TS以上之醋酸布重叠不可超过5mm,包一圈之醋酸布只须包0.9T,留缺口以利於凡立水良好的渗入底层.醋酸布宽度择用与变压器安规要求有关,VED绕法ACT宽度3.2mm包两边且须加TUBE.绕法:PIN端6mm/ 4.8mm/4.4mm/4mm; TOP端3mm/2.4mm/2.2mm/2mm 时不须TUBE.绕线时铜线不可上档墙,若有套管,套管必须伸入档墙3mm以上. 4.引线要领: 4.1 飞线引线 4.1.1引线、长度长度按工程程图要求控製,如须绞线,长度须多预留10%. 4.1.2套管须深入挡墙3mm以上.(如图6.5)

高频变压器设计原则要求和程序

高频变压器设计原则要求和程序 摘要:从高频变压器作为一种产品(即商品)出发,说明了它的设计原则和要求,并介绍了它的设计程序。 1前言 同一个英文名称“Power 高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆 变电源变压器的。按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。这样,既有工作频率的差别,又有传送功率的差别,新晨阳电容电感工作频率不同档次的电源变 压器设计方法不一样,也应当是不言而喻的。 如上所述,作者对高频变压器的设计原则、要求和程序不存在错误概念,而是在2003年7月初,阅读《电源技术应用》2003年第6期特别推荐的2篇高频磁性元件设计文章后,产生了疑虑,感到有些问题值得进一步商讨,因此才动笔写本文。正如《电源技术应用》主编寄语所说的那样:“具体地分析具体的情况”,写的目的,是尝试把最难详细说明和选择的磁性元件之一的高频变压器的设计问 题弄清楚。如有说得不对的地方,敬请几位作者和广大读者指正。 以设计原则为出发点,可以对高频变压器提出4项设计要求:使用条件,完成功能,提高效率,降低成本。 1使用条件 电磁兼容性是指高频变压器既不产生对外界的电磁干扰,又能承受外界的电磁 干扰。电磁干扰包括可闻的音频噪声和不可闻的高频噪声。高频变压器产生电磁干扰的主要原因之一是磁芯的磁致伸缩。磁致伸缩大的软磁材料,产生的电磁干扰大。例如,锰锌软磁铁氧体,磁致伸缩系数λS为21×10-6,是取向硅钢的7倍以上,是高磁导坡莫合金和非晶合金的20倍以上,是微晶纳米晶合金的10倍以上。因此锰锌软磁铁氧体磁芯产生的电磁干扰大。高频变压器产生电磁干扰的主要原因还有磁芯之间的吸力和绕组导线之间的斥力。这些力的变化频率与高频电源变压器的工作频率一致。因此,工作频率为100kHz左右的高频变压器,没有特殊原因是不会产生20kHz以下音频噪声的。既然提出10W以下单片开关电源的音频噪声频率,约为10kHz~20kHz,一定有其原因。由于没有画出噪声频谱图,具体原因说不清楚,但是由高频电源变压器本身产生的可能性不大,没有必要采用玻璃珠胶合剂粘合磁芯。至于采用这种粘合工艺可将音频噪声降低5dB,请给出实例与数据以及对噪声原因的详细说明,才会令人可信。 屏蔽是防止电磁干扰,增加高频变压器电磁兼容性的好办法。但是为了阻止高频变压器的电磁干扰传播,在设计磁芯结构和设计绕组结构也应当采取相应的措施,

高频变压器的制作工艺

《高频变压器的制作工艺》 一.绕线 1.材料确认 1.1 BOBBIN规格之确认. 1.2不用的PIN须剪去时,应在未绕线前先剪掉,以防绕完线后再剪除时会刮伤 WIRE或剪错脚,而且可以避免绕线时缠错脚位. 1.3 确认BOBBIN完整:不得有破损和裂缝. 1.4将BOBBIN正确插入治具,一般特殊标记為1脚(斜角為PIN 1),如果图面无註明,则1脚朝机器. 1.5须包醋酸布的先依工程图要求包好,紧靠BOBBIN两侧,再在指定的PIN上先缠线(或先鉤线)后开始绕线,原则上绕线应在指定的范围内绕线 2.绕线方式 根据变压器要求不同,绕线的方式大致可分為以下几种 2.1一层密绕:佈线只佔一层,紧密的线与线间没有空隙.整齐的绕线. (如图6.1) 2.2 均等绕:在绕线范围内以相等的间隔进行绕线;间隔误差在20%以内可以允收.(如图6.2) 2.3 多层密绕:在一个绕组一层无法绕完,必须绕至第二层或二层以上,此绕法分為三种情况: a.任意绕:在一定程度上整齐排列,达到最上层时,佈线已零乱,呈凹凸不平状况,这是绕线中最粗略的绕线方法 . b.整列密绕:几乎所有的佈线都整齐排列,但有若乾的佈线零乱(约佔全体30%,圈数少的约佔5%REF). c.完全整列密绕:绕线至最上层也不零乱,绕线很整齐的排列著,这是绕线中最难的绕线方法. 2.4 定位绕线:佈线指定在固定的位置,一般分五种情况 (如图6.3)

2.5 并绕:两根以上的WIRE同时平行的绕同一组线,各自平行的绕,不可交叉.此绕法大致可分為四种情况:(如图6.4) 图6.4 3.注意事项: 3.1当起绕(START)和结束(FINISH)出入线在BOBBIN同一侧时,结束端迴线前须贴一块横越胶布(CROSSOVER TAPE)作隔离。 3.2出入线於使用BOBBIN之凹槽出线时,原则上以一线一凹槽方式出线,若同一PIN有多组可使用同一凹槽或相邻的凹槽出线,唯在焊锡及装套管时要注意避免短路。 3.3 绕线时需均匀整齐绕满BOBBIN绕线区為原则,除工程图面上有特别规定绕法时,则以图面為準。 3.4变压器中有加铁氟龙套且有折回线时,其出入线所加之铁氟龙套管须与 BOBBIN凹槽口齐平(或至少达2/3高),并自BOBBIN凹槽出线以防止因套管过长造成拉力将线扯断。但若為L PIN水平方向缠线,则套管应与 BOBBIN边齐平(或至少2/3长)。(如图3 )

高频变压器磁芯如何选型

高频变压器磁芯如何选型 电子变压器在电源技术中的作用,电源技术对电子变压器的要求,电子变压器采用新软磁材料和新磁芯结构对电源技术发展的影响. 电子变压器的使用条件,包括两方面内容:可靠性和电磁兼容性.以前只注意可靠性,现在由于环境保护意识增强,必须注意电磁兼容性. 可靠性是指在具体的使用条件下,电子变压器能正常工作到使用寿命为止.一般使用条件中对电子变压器影响最大的是环境温度.决定电子变压器受温度影响强度的参数是软磁材料的居里点.软磁材料居里点高,受温度影响小;软磁材料居里点低,对温度变化比较敏感,受温度影响大.例如锰锌铁氧体的居里点只有215℃,比较低,磁通密度、磁导率和损耗都随温度发生变化,除正常温度25℃而外,还要给出60℃,80℃,100℃时的各种参数数据.因此,锰锌铁氧体磁芯的工作温度一般限制在100℃以下,也就是环境温度为40℃时,温升必须低于60℃.钴基非晶合金的居里点为205℃,也低,使用温度也限制在100℃以下.铁基非晶合金的居里点为370℃,可以在150℃~ 180℃以下使用.高磁导坡莫合金的居里点为460℃至480℃,可以在200℃~250℃以下使用.微晶纳米晶合金的居里点为600℃,取向硅钢居里点为730℃,可以在300℃~400℃下使用. 电磁兼容性是指电子变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰.电磁干扰包括可听见的音频噪声和听不见的高频噪声.电子变压器产生电磁干扰的主要原因是磁芯的磁致伸缩.磁致伸缩系数大的软磁材料,产生的电磁干扰大.铁基非晶合金的磁致伸缩系数通常为最大(27~30)×10-6,必须采取减少噪声抑制干扰的措施.高磁导Ni50坡莫合金的磁致伸缩系数为25×10-6,锰锌铁氧体的磁致伸缩系数为21×10-6.以上这3种软磁材料属于容易产生电磁干扰的材料,在应用中要注意.3%取向硅钢的磁致伸缩系数为(1~3)×10-6,微晶纳米晶合金的磁致伸缩系数为(0.5~2)×10-6.这2种软磁材料属于比较容易产生电磁干扰的材料.6.5%硅钢的磁致伸缩系数为0.1×10-6,高磁导Ni80坡莫合金的磁致伸缩系数为(0.1~0.5)×10-6,钴基非晶合金的磁致伸缩系数为0.1×10-6以下.这3种软磁材料属于不太容易产生电磁干扰的材料.由磁致伸缩产生的电磁干扰的频率一般与电子变压器的工作频率相同.如果有低于或高于工作频率的电磁干扰,那是由其他原因产生的. 完成功能 电子变压器从功能上区分主要有变压器和电感器2种.特殊元件完成的功能另外讨论.变压器完成的功能有3个:功率传送、电压变换和绝缘隔离.电感器完成功能有2个:功率传送和纹波抑制 功率传送有2种方式.第一种是变压器传送方式,即外加在变压器原绕组上的交变电压,在磁芯中产生磁通变化,使副绕组感应电压,加在负载上,从而使电功率从原边传送到副边.传送功率的大小决定于感应电压,也就是决定于单位时间内的磁通密度变量ΔB.ΔB与磁导率无

推挽式开关电源的变压器参数计算

推挽式开关电源的变压器参数计算 用的开关变压器有两个初级线圈,它们都属于励磁线圈,但流过两个线圈的电流所产生的磁力线方向正好相反,因此,推挽式开关电源变压器属于双激式开关电源变压器;另外,推挽式开关电源变压器的次级线圈会同时被两个初级线圈所产生的磁场感应,因此,变压器的次级线圈同时存在正、反激电压输出;推挽式开关电源有多种工作模式,如:交流输出、整流输出、直流稳压输出,等工作模式,各种工作模式对变压器的参数要求会有不同的要求。 1-8-1-4-1.推挽式开关电源变压器初级线圈匝数的计算 由于推挽式变压器的铁心分别被流过变压器初级线圈N1绕组和N2两个绕组的电流轮流进行交替励磁,变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,因此,推挽式变压器铁心磁感应强度的变化范围比单激式变压器铁心磁感应强度的变化范围大好几倍,并且不容易出现磁通饱和现象。 推挽式变压器的铁心一般都可以不用留气隙,因此,变压器铁心的导磁率比单激式变压器铁心的导磁率高出很多,这样,推挽式变压器各线圈绕组的匝数就可以大大的减少,使变压器的铁心体积以及变压器的总体积都可以相对减小。 推挽式开关电源变压器的计算方法与前面正激式或反激式开关电源变压器的计算方法大体相同,只是对变压器铁心磁感应强度的变化范围选择有区别。对于具有双向磁极化的变压器铁心,其磁感应强度B的取值范围,可从负的最大值-Bm变化到正的最大值+Bm。 关于开关电源变压器的计算方法,请参考前面“1-6-3.正激式变压器开关电源电路参数计算”中的“2.1 变压器初级线圈匝数的计算”章节中的内容。 根据(1-95)式:

(1-150)式和(1-151)式就是计算双激式开关电源变压器初级线圈N1绕组匝数的公式。式中,N1为变压器初级线圈N1或N2绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Ui为加到变压器初级线圈N1绕组两端的电压,单位为伏;τ = Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒);F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F和τ取值要预留20%左右的余量。式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。 1-8-1-4-2.推挽式开关电源变压器初、次级线圈匝数比的计算 A)交流输出推挽式开关电源变压器初、次级线圈匝数比的计算 推挽式开关电源如果用于DC/AC或AC/AC逆变电源,即把直流逆变成交流输出,或把交流整流成直流后再逆变成交流输出,这种逆变电源一般输出电压都不需要调整,因此电路相对比较简单,工作效率很高。 用于逆变的推挽式开关电源一般输出电压都是占空比等于0.5的方波,由于方波的波形系数(有效值与半波平均值之比)等于1,因此,方波的有效值Uo与半波平均值Upa相等,并且方波的幅值Up与半波平均值Upa也相等。所以,只要知道输出电压的半波平均值就可以知道有效值,再根据半波平均值,就可以求得推挽式开关电源变压器初、次级线圈匝数比。 根据前面分析,推挽式变压器开关电源的输出电压uo,主要由开关电源变压器次级线圈N3绕组输出的正激电压来决定。因此,根据(1-128)、(1-129)、(1-131)其中一式就可以出推挽式变压器开关电源的输出电压的半波平均值。由此求得逆变式推挽开关电源变压器初、次级线圈匝数比: n=N3/N1 =Uo/Ui =Upa/Ui ——变压比,D为0.5时(1-152) (1-152)式就是计算逆变式推挽开关电源变压器初、次级线圈匝数比的公式。式中,N1为开关变压器初级线圈两个绕组其中一个的匝数,N3为变压器次级线圈的匝数,Uo输出电压的有效值,Ui为直流输入电压,Upa输出电压的半波平均值。 (1-152)式还没有考虑变压器的工作效率,当把变压器的工作效率也考虑进去时,最好在(1-152)式的右边乘以一个略大于1的系数。 B)直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比的计算 直流输出电压非调整式推挽开关电源,就是在DC/AC逆变电源的交流输出电路后面再接一级整流滤波电路。这种直流输出电压非调整式推挽开关电源的控制开关K1、K2的占空比与DC/AC逆变电源一样,一般都是0.5,因此,直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比可直接利用(1-152)式来计算。即: n=N3/N1 =Uo/Ui =Upa/Ui ——次/初级变压比,D为0.5时(1-152) 不过,在低电压、大电流输出时,一定要考虑整流二极管的电压降。 C)直流输出电压可调整式推挽开关电源变压器初、次级线圈匝数比的计算

高频变压器材料说明

高频变压器材料说明 一. 线架(BOBBIN) 1. 根据材质分为:热固性材料,热塑性材料. 1.1 热固性材料就是常用的电木(PHENOLIC). 1.2 热塑性材料可回收,包括尼龙(NYLON)、塑料(PET)、塑料(PBT)、FR530等. 2. 根据外形分为:立式、卧式、SMD等. 3. 特性及用途: 3.1 电木(PHENOLIC):稳定性高、不易变形、耐高温、表面光滑、易碎不能回收. 3.2 尼龙(NYLON):延展性好不易碎,表面光滑半透明,耐温115℃易吸水,使用前先用80℃的温 度烘烤,使固性稳定.一般用于耐油性强的变压器上. 3.3 塑料(PET):510系统,硬性高易成形,不易变形,耐温170℃,表面不光滑、不易碎,一般 用于绕线管. 3.4 塑料(PBT):较软不易变形,不耐高温(160℃),表面不光滑不易碎,一般用于绕线管. 3.5 FR530:不易变形,不耐高温,表面不光滑不易碎. 4. 检验方法: 4.1 外观检查 4.1.1要求拔掉的PIN脚是否符合要求. 4.1.2手感光滑,不能有毛边,不可有破损、裂痕、变形等不良. 4.1.3 PIN脚需整齐,不可有长短不一之情形. 4.2 尺度检查 4.2.1 依图面对各尺寸进行测量,看是否符合图面要求. 4.2.2 组装铁心检查,看是否与铁心相吻合,及组装铁心后各尺寸是否符合要求. 4.3 强度检查 4.3.1 用手捏压BOBBIN,是否容易破裂. 4.3.2 焊锡后观查,BOBBIN是否变形,PIN脚是否脱落,PIN脚不可有发黑、氧化等现象. 4.4 拉力测试 4.4.1依承认书进行测量,看是否符合要求. 二. 铜线(WIRE) 1. 根据绝缘等级分为:Y(90℃)、A(105℃)、E(120℃)、B(130℃)、F(155℃)、H(180℃)、H+(200 ℃)、C(220℃).根据漆包膜厚度分为:0种、1种、2种、3种(漆包膜厚度依次由厚至薄). 2. 根据材质分类及其特性. 2.1 聚胺基甲酸脂漆包线(UEW):是以Polyure thane树脂为主体的油脂为绝缘皮膜,烤漆于导 体而成. 2.1.1 其最大的特点为皮膜在300℃以上时,能于短时间内溶解,所以可不剥皮直接焊锡; 2.1.2 耐热性比合成树漆包线(PVF)优越; 2.1.3 耐酒精系列溶剂比一般漆包线差稍许,但实用上并无影响. 2.2 聚脂瓷漆包线(PEW):是以耐热的Terephthalic Polyester 树脂为主体的油脂为绝缘皮 膜烤漆于导体而成. 2.2.1 耐热性比合成树漆包线(PVF)、聚胺基甲酸脂漆包线(UEW)优越; 2.2.2 耐药性(碱性除外)、耐溶性优良;

相关主题
文本预览
相关文档 最新文档