当前位置:文档之家› 水电厂发电机变压器保护原理及继电保护措施 德吉卓玛

水电厂发电机变压器保护原理及继电保护措施 德吉卓玛

水电厂发电机变压器保护原理及继电保护措施 德吉卓玛
水电厂发电机变压器保护原理及继电保护措施 德吉卓玛

水电厂发电机变压器保护原理及继电保护措施德吉卓玛

发表时间:2019-08-26T13:26:19.110Z 来源:《电力设备》2019年第7期作者:德吉卓玛

[导读] 摘要:我国的经济急速发展,电力需求不断增加,正常供电、保证电力系统的平稳运行是我国进行社会生产的重要保障。

(国网西藏电力有限公司沃卡发电公司西藏山南 856000)

摘要:我国的经济急速发展,电力需求不断增加,正常供电、保证电力系统的平稳运行是我国进行社会生产的重要保障。水电厂作为电力供应中最为重要的保障因素之一,要想实现为广大市民和社会生产提供最为优质的供电服务,电力系统的稳定、安全的运行就只有提高水电厂继电保护技术,做到及时解决水电厂突出故障,将其对电力系统的负面影响程度降到最低。本文主要分析了水电厂发电机变压器保护原理及继电保护措施。

关键字:水电厂;发电机;原理;继电保护

水电厂是电力系统中的重要一环,影响着电力系统的安全运行。水电厂发电原理是利用水的压力将势能和动能转换为机械能,接着水轮机带动发电机使其转动,从而将机械能转换为电能。水电厂担负着调峰、调频的重要任务,决定着电力系统是否能够安全运行。继电保护是水电厂重要的保护自身系统的手段,它能够在最短的时间内使发生故障的设备与电力系统分开,减低故障对整体设备造成的不良影响。继电保护能够为用户带去安全可靠的电力,还能使供电系统不间断的运行,对促进水电厂长足发展有着重大的现实意义。

1水电厂发电机变压器继电保护的原理

当水电厂发电机中的定子单相接地极有可能会发展成为匝间短路、相间短路和两点接地短路。一旦发生短路,就会影响整个发电机的正常运转,进而影响整个电网系统的正常运行,所以其继电保护通常都是在其中性点设置高阻,即通过接地变压器来限制暂态过电压或以相同的原理建立一个保护系统。当定子绕组单相接地出现故障时,能够对发电机的系统进行100%的保护,如当故障发生时,能够立即反应并进行自动跳闸,以实现保护的目的。

2遵循水电厂继电保护的基本原则

水电厂是将水的位能和动能转化为电能的工厂,因位置、径流的不同,其具体的形式也是不同的。与火电厂不同,大多数水电厂是采用发电机和变压器接线连接的方式,但需要注意的是,大多水电厂的发电机容量都以小型为主(容量在25MW)。一般采用扩大单元接线,将几台小型的发电机共用一台变压器,然后经断路器后并联于母线上。而大型水电厂一般采用单元接线,且大多设置有发电机出口断路器,一般水电厂的发电机和变压器的继电保护配置是分开的,通常采用双套保护配置。

3水电厂继电保护的要求

继电保护装置应该具有选择行、速动性、灵敏性以及可靠性这几个特点。当继电保护装置进行工作时,它需要将发生故障的设备从系统中进行隔离,这就要求装备具有选择性,以满足供电系统的无故障的设备能够正常运行的要求;装置的速动性指的是,设备能够快速的选择出故障元件并进行切除,从而保证系统的稳定运行,将整个系统受到的损害降到最低,使由于故障引起的影响的范围尽可能的减小,从而使设备的自动重合闸和备用设备自动投入效果大大的提高。在继电保护装置的保护范围内,装置能够对发生异常的元件或者异常运行的设备有很高的反应能力,这是灵敏性的内涵。可靠性则是指保护装置能够很可靠的对其保护的范围进行动作。

4水电厂发电机变压器的继电保护措施

4.1发电机定、转子保护配置

在进行发电机定子保护和转子保护的过程中,所采用的主要装置有定子接地保护装置和转子接地保护装置。其中定子接地保护装置在进行具体保护作业时,是通过基波零序电压对定子绕组接地所形成的保护作用。之后利用三次谐波电压对定子中性点的绕组实行接地保护。在采用该装置执行继电保护的过程中,需要依据零序电压和三次谐波的运行情况来对定子的出口回路进行有效确定。只有这样才能使其适应性能得到有效提升,可以适用于大多数的发电机定子保护作业中。

转子接地故障问题主要表现为,励磁回路的一点出现接地现象,此时的发电机运行状态良好,并不会表现出明显的故障问题。然而在发生第二点接地故障时,便会对发电机的整体运行质量造成严重威胁。针对此类问题,转子接地保护装置会对力磁回路出现的一点接地现象进行有效辨别,并且快速找出发生接地故障的位置,同时发出警报信息,为相关的故障维修人员提供参考。使其能够在短时间内发现故障问题,并且采取停机运行的方式对接地故障问题进行排除之后,恢复发电机的正常运行。

4.2变压器的继电保护配置

水电厂的变压器分为主变压器和厂用变压器。主变压器的继电保护配置一般是由差动、重瓦斯、低压过流、零序、低压侧接地、轻瓦斯、温度升高和温度过高组成。根据水电厂和主变压器的具体情况,可以适当地加上间隙零序过流和差动速断保护建立一个新的保护配置。将一套工控机作为连接和管理主变压器继电保护配置和厂用变压器继电保护配置的单元管理机,从而简化二者外部的接线流程。厂用变压器的继电保护中原来装在高压开关柜上的保护配置可以拆除,便于对该保护装置的管理与维护。

5水电厂继电保护的发展前景探究

5.1继电保护逐渐走向信息化

现阶段的水电厂而言,其基本的运行要求就是具备安全性,所以,水电厂应该对继电保护技术的优化和提升做到有效重视。就当下我国水电厂的发展状况而言,继电保护不能只在故障排查水平上一直停滞不前,还应该重视自身系统安全运行和维护水平的提升。

随着不断创新的信息技术,越加发达的网络科技技术,只有让继电保护系统传统观念得以突破,才能让自身得到改善,要对系统保护做到重视。水电厂应该对新技术的运用进行适当考虑,让数据信息的共享得以实现,促使重合闸装置与保护单元能够得到更加有效的合作,让系统运行的安全性、平稳性得到保障和提升。此外,信息化还能够对出现故障的位置和测距做到准确判断,节省故障类型和性质判断的时间,对故障的快速解决有着非常重要的帮助。

5.2越来越高的智能化程度

当下,随着我国科技的不断进步,人工智能身为我国科技发展中一种全新技术,遗传了算法、进化规划以及神经网络等,已经广泛运用到了水电厂中,让水电厂中原本较为复杂的问题得到了非常轻松的解决,让效率得到了很大程度提升。对当下我国水电厂继电保护科研工作来说,相关技术人员进行科研的主要方向就是实现人工智能化。因为继电保护系统本身就已经具备了如网络和专家系统等智能化系统,所以在有效结合人工智能之后,能够更加准确地分析出系统可能存在的不确定因素,对影响智能诊断的因素做到及时发现,让诊断结

发电机变压器组继电保护运行规程

继电保护运行规程 元件保护 第一节发电机变压器保护 一、保护简介 发变组保护采用许继生产的WFB—100Q微机型发变组成套保护装置,包括发电机、主变压器常用高压变压器的保护装置,其由三块保护屏嵌装十一个箱体、一台工控机组成。装置采用分层式多CPU并行工作方式,下层十三个保护模块共同构成整套保护。上层单元管理机(工控机) 负责人机接口和全部信息处理,保护模块之间及保护模块与工控机之间相互独立。整套保护出口有: 1.全停1 跳发电机出口开关、高厂A分支开关、高厂变B分支开关和灭磁开关及关汽机主汽门。 2.全停2 跳发电机出口开关、高厂变A分支开关、高厂变B分支开关和灭磁开关及关汽机主汽门。 3.解列跳发电机出口开关和汽机甩负荷。 4.解列灭磁跳发电机出口开关、灭磁开关和汽机甩负荷。 5.减出力减出力至定值。 6.母线解列跳110KV母联断路器。

7.厂用电切除跳高厂变A分支开关、高厂变B分支开关,同时启动切换A、B分支厂用电。 8.A分支解列跳高厂变A分支开关同时启动切换A分支厂用电。9.B分支解列跳高厂变B分支开关同时启动切换B分支厂用电。 二、保护A屏 1、保护屏组成: 其由一个WFB—105箱、两个WFB—108箱和一个XCK—103出口箱体构成。a、箱一WFB—105由三块交流变换、一块直流变换、两块出口、两块保护模块、一块稳压电源插件组成,完成有发电机差动、TA断线、失磁、转子一点接地和转子两点接地保护功能。 b、箱二WFB—108由三块交流变换、一块辅助信号、一块出口、两块保护模块、两块稳压电源插件组成,完成有定子接地、励磁变过流、励磁变过负荷、主变瓦斯、主变温度、主变压力释放及主变冷却系统故障保护功能。 c、箱三WFB—108箱由三块交流变换、一块辅助信号、一块出口、两块保护模块、两块稳压电源插件组成,完成有匝间保护、YH断线、发电机对称过负荷,发电机负序过流、发电机断水、励磁系统故障和热工保护(我厂没用) 保护功能。 d、箱四XCK—103出口器箱由八块NZK—98、一块NZK—98、一块NFJ—98和两块NSJ—98插件组成。NZK—98只用三块,其功能为全停1、全停2、解列、解

200mw发电机变压器组继电保护设计

引言 电力系统继电保护的设计与配置是否合理会直接影响到电力系统的安全运行,所以必须合理地选择保护配置和进行正确的整定计算。 本次设计要求为200MW发电机-变压器组配置继电保护和自动装置,目的为通过本次设计,进一步加深对所学知识的理解,以及理解保护与保护之间的配合问题。 大型发电机的造价昂贵,结构复杂,一旦发生故障遭到破坏,其检修难度大,检修时间长,要造成很大的经济损失。例:一台200MW汽轮发电机,因励磁回路两点接地使大轴和汽缸磁化,为退磁停机一个月以上,姑且不论检修费用和对国民经济造成的间接损失,仅电能损耗就近千万元,大机组在电力系统内占有重要地位,特别是单机容量占系统容量很大比例的情况下,大机组的突然切除,会对电力系统造成很大的扰动。另外,大型汽轮发电机的起停特别费时、费钱,以停机7~8小时的热起动为例:200MW发电机组就得需要7小时。因此,非必需的情况下,不要使大型发电机组频繁起动,更不要轻易紧急突然停机,这就对继电保护提出了更高的要求,所以在配置继电保护和自动装置时,要充分考虑各方面的因素,力求继电保护和自动装置准确、可靠、灵敏。

第1章继电保护的配置 1.1 概述 200MW发电机组造价昂贵,结构复杂,一旦发生故障,其检修难度大,时间长,将造成较大的经济损失。因此,在考虑200MW机组继电保护的总体配置时,应最大限度地保证机组安全和缩小故障破坏范围,尽可能避免不必要的突然停机,对某些异常工况采用自动处理装置,特别要避免保护装置的误动和拒动,这样不仅要求有足够的的可靠性、灵敏性、选择性和快速性,还要求继电保护在总体配置上尽量做到完善、合理,避免繁琐、复杂。 200MW机组保护装置可分为短路保护和异常运行保护两类。短路保护是用以反应被保护区域内发生的各种类型的短路故障,为了防止保护拒动或断路器拒动,设主保护和后备保护。异常运行保护是用以反应各种可能给机组造成危害的异常工况,不设后备保护。 为了满足电力系统稳定方面的要求,对于200MW发电机-变压器组故障要求快速切除。 为了确保正确快速切除故障,要求对200MW发电机-变压器组设置双重快速保护。 各保护装置动作后所控制的对象,依保护装置的性质、选择性要求和故障处理方式的不同而不同,对于发电机双绕组变压器,通常有以下几种处理方式: 全停:停汽机、停锅炉、断开高压侧断路器、灭磁、断开高压厂用变压器低压侧断路器、使机炉及其辅机停止工作。 解列灭磁:断开高压侧断路器、灭磁、断开高压厂用变压器低压侧断路器。 解列:断开高压侧断路器。 减出力:减少原动机的输出功率。 发信号:发出声光信号或光信号。 母线解列:对双母线系统,断开母线联络断路器,缩小故障波及范围。 1.2保护配置依据――《继电保护和安全自动装置技术规程》 1. 对300MW及以上的汽轮发电机组,应装设双重快速保护,即装设发电机纵联差动 保护、变压器纵差动保护和发电机、变压器共用纵联差动保护。 2. 发电机-变压器组:对100MW及以上的发电机,应装设保护区为100%的定子接地 保护。 3. 对于定子绕组为星形联接,每相有并联分支且中性点有分支引出端子的发电机, 应装设单继电器式横差保护。 4. 200MW及以上的发电机应装设负序过电流保护和单元件低电压起动的过电流保护, 当灵敏度不满足要求时,可采用阻抗保护。 5. 对于200MW及以上汽轮发电机宜装设过电压保护。 6. 对过负荷引起的发电机定子绕组过电流,应装设定子绕组过负荷保护。 7. 发电机转子承受负序电流的能力,以I2t≤A为判据,其中I为以额定电流为基准

第八章发电机-变压器保护举例

第八章发电机-变压器保护举例 本章以RCS-985发电机-变压器组成套保护装置为例。 第一节保护典型配置 一、概述 RCS-985采用了高性能数字信号处理器DSP芯片为基础的硬件系统,并配以32位CPU用作辅助功能处理。是真正的数字式发电机变压器保护装置。 RCS-985为数字式发电机变压器保护装置,适用于大型汽轮发电机、水轮发电机、燃汽轮发电机、抽水蓄能机组等类型的发电机变压器组单元接线及其他机组接线方式,并能满足发电厂电气监控自动化系统的要求。 RCS-985提供一个发电机变压器单元所需要的全部电量保护,保护范围:主变压器、发电机、高厂变、励磁变(励磁机)。根据实际工程需要,配置相应的保护功能。 对于一个大型发-变组单元或一台大型发电机,配置两套RCS-985保护装置,可以实现主保护、异常运行保护、后备保护的全套双重化,操作回路和非电量保护装置独立组屏。两套RCS-985取不同组TA,主保护、后备保护共用一组TA,出口对应不同的跳闸线圈,因此,具有以下优点: (1)设计简洁,二次回路清晰; (2)运行方便,安全可靠,符合反措要求; (3)整定、调试和维护方便。 二、保护功能配置及典型配屏方案 RCS-985装置充分考虑大型发电机变压器组保护最大配置要求。包括了主变、发电机、高厂变、励磁变(励磁机)的全部保护功能。 1.典型配置方案 如图8-1所示发-变组单元,发-变组按三块屏配置,A、B屏配置两套RCS-985A,分别取自不同的TA,每套RCS-985A包括一个发-变组单元全部电量保护,C屏配置非电量保护装置。图中标出了接入A屏的TA 极性端,其他接入B屏的TA极性端与A屏定义相同。 本配置方案也适用于100MW及以上相同主接线的发-变组单元。图中为励磁机的主接线方式,配置方案也适用于励磁变的主接线方式。 2.配置说明 (1)差动保护配置说明 1)配置方案:对于300MW及以上机组,A、B屏均配置发-变组差动、主变差动、发电机差动、高厂变差动。 2)差动保护原理方案:对于发-变组差动、变压器差动、高厂变差动,需提供两种涌流判别原理,如二次谐波原理、波形判别原理等,一般一套装置中差动保护投二次谐波原理,另一套装置投波形判别原理。 发电机差动也具有两种不同原理的比率差动:比率差动、工频变化量差动。 (2)后备保护和异常运行保护配置说明 A、B屏均配置发-变组单元全部后备保护,各自使用不同的TA。 1)对于零序电流保护,如没有两组零序TA,则A屏接入零序TA,B屏可以采用套管自产零序电流。此方式两套零序电流保护范围有所区别,定值整定时需分别计算。 2)转子接地保护因两套保护之间相互影响,正常运行时只投入一套,需退出本屏装置运行时,切换至另一套转子接地保护。 3.外加20Hz电源定子接地保护配置 配置外加20Hz电源定子接地保护时,需配置20Hz电源、滤波器、中间变流器、分压电阻、负荷电阻附加设备,附加设备单独组成一块屏。 4. 电流互感器配置说明

电力系统继电保护课程设计

" 课题:发电机继电保护设计 专业:电气工程及其自动化 班级: 姓名: 指导教师: 设计日期: 成绩:

目录 1.绪论 (1) 继电保护概述 (1) 继电保护基本要求 (1) 2.发电机变压器参数 (2) 原始资料 (2) 发电厂规模 (5) 主接线(一机组一出线) (5) 课程设计的主要内容 (5) 3.短路电流计算 (6) 相关短路点及短路方式的选择 (6) 短路计算点的选择 (7) 整定电流选择 (9) 4.发电机保护配置的选取及整定原则 (9) 发电机的保护配置 (9) 发电机纵差保护整定 (10) 发电机的定子单相接地保护 (11) 发电机的负序过电流和转子接地保护 (11) 发电机的失磁保护 (12) 发电机的其他保护 (12) 5.继电保护整定计算 (13) 发电机纵差保护整定 (13) 过电流保护整定 (14) 过负荷保护整定 (15) 6.仿真图 (16) 7.总结 (17) 8.参考文献 (18) 9.附录 (19)

1.绪论 继电保护概述 电力系统在运行中,由于电气设备的绝缘老化、损坏、雷击、鸟害、设备缺陷或误操作等原因,可能发生各种故障和不正常运行状态。最常见的而且也是最危险的故障是各种类型的短路,最常见的不正常运行状态是过负荷,最常见的短路故障是单相接地。这些故障和不正常运行状态严重危及电力系统的安全和可靠运行,这就需要继电保护装置来反应设备的这些不正常运行状态。 所谓继电保护装置,就是指能反应电力系统中电气设备所发生的故障或不正常状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本作用是:①当电力系统发生故障时,能自动地、迅速地、有选择性地将故障设备从电力系统中切除,以保证系统其余部分迅速恢复正常运行,并使故障设备不再继续遭受损坏。②当系统发生不正常状态时,能自动地、及时地、有选择性地发出信号通知运行人员进行处理,或者切除那些继续运行会引起故障的电气设备。 继电保护基本要求 可见,继电保护装置是电力系统必不可少的重要组成部分,对保障系统安全运行、保证电能质量、防止故障的扩大和事故的发生,都有极其重要的作用。为完成继电保护的基本任务,对于动作于断路器跳闸的继电保护装置,必须满足以下四项基本要求: (1)选择性 选择性是指电力系统发生故障时,继电保护仅将故障部分切除,保障其他无故障部分继续运行,以尽量缩小停电范围。继电保护装置的选择性,是依靠采用合适类型的继电保护装置和正确选择其整定值,使各级保护相互配合而实现的。 (2)快速性 为了保证电力系统运行的稳定性和对用户可靠供电,以及避免和减轻电气设备在事故时所遭受的损害,要求继电保护装置尽快地动作,尽快地切除故障部分。但是,并不是对所有的故障情况,都要求快速切除故障,应根据被保护对象在电力系统中的地位和作用,来确定其保护的动作速度。 (3)灵敏性 灵敏性是继电保护装置对其保护范围内发生的故障或不正常工作状态的反应能力,一般以灵敏系数K表示。灵敏系数K越大,说明保护的灵敏度越高。每种继电保护均有特定的保护区(发电机、变压器、母线、线路等),各保护区的范围是通过设计计算后人为确定的,保护区的边界值称为该保护的整定值。 (4)可靠性 可靠性是指当保护范围内发生故障或不正常工作状态时,保护装置能够可靠动作而不致拒绝动作,而在电气设备无故障或在保护范围以外发生故障时,保护装置不发生误动。保护装置拒绝动作或误动作,都将使保护装置成为扩大事故或直接产生事故的根源。因此,提高保护装置的可靠性是非常重要的。 以上对继电保护装置所提出的四项基本要求是互相紧密联系的,有时是相互矛盾的。例如,为了满足选择性,有时就要求保护动作必须具有一定的延时,为了保证灵敏度,有时就允许保护装置无选择地动作,再采用自动重合闸装置进

60MW汽轮发电机继电保护设计

摘要 本次设计的课题是60MW汽轮发电机变压器二次保护设计,本次设计内容通过计算出短路电流选择发电机以及变压器的保护类型,以及整定计算。从保证发电机变压器能够在出现故障及不正常运行情况下可以使设备跳出运行或发出信号考虑设计方案,从而完成60MW汽轮发电机及变压器保护设计。 根据本电厂主接线的型式和容量需要对发电机和变压器分别设置主保护和后备保护,使得保护范围缩小,保护能够相互配合,最大程度让电厂供电和输电的可靠性提高,保证供电的稳定。 关键词发电厂变压器发电机短路电流计算保护装置

Abstract The design of the subject is 60MW turbine generator transformer protection design, the design content through the calculated short circuit current transformer protection and choose generator types, and setting calculation,. From ensuring generator transformer can appear in fault and not the normal operation conditions can make the equipment running or jump out to signal considered the design scheme, thus completing 60MW turbine generator and transformer protection design. According to the power plant type and capacity of the connection to generators and transformers set respectively main protection and backup protection, making the scope of protection, the protection can cooperate with each other, the greatest degree to the reliability of power supply and power transmission improve, guarantee the stability of the power supply. Key words Power plant Transformer Generator Calculation of short- circuit current Protector

变压器差动保护

第二节变压器差动保护 1.概述 电气主设备内部故障的主保护方案之一是差动保护,差动保护在发电机上的应用是比较简单的,但是作为变压器内部故障的主保护,差动保护将有许多特点和困难。 变压器有两个和更多个电压等级,构成差动保护所用电流互感器的额定参数各不相同,由此产生的差动保护不平衡电流将比发电机大得多。 变压器每相原副边电流之差(正常运行时的励磁涌流)将作为变压器差动保护不平衡电流的一种来源,特别是当变压器过励磁运行时,励磁电流可达变压器额定电流的水平,势必引起差动保护误动作。更有甚者,在空载变压器突然合闸时,或者变压器外部短路被切除而变压器端电压突然恢复时,暂态励磁电流(即励磁涌流)的大小可与短路电流相比拟,在这样大的不平衡电流下,要求差动保护不误动,是一个相当复杂困难的技术问题。 正常运行中的变压器,根据电力系统的要求,需要调节分接头,这又将增大变压器差动保护的不平衡电流。 变压器差动保护能反应高、低压绕组的匝间短路,而匝间短路时虽然短路环中的电流很大,但流入差动保护的电流可能不大。 变压器差动保护还应能反应高压侧(中性点直接接地系统)经高阻接地的单相短路,此时故障电流也较小。 综上所述,差动保护用于变压器,一方面由于各种因素产生较大和很大的不平衡电流,另一方面又要求能反应具有流出电流的轻微匝间短路,可见变压器差动保护要比发电机差动保护复杂得多。 2.配置原则 对变压器引出线、套管及内部的短路故障,应装设相应的保护装置,并应符合下列规定: (1) 10MVA及以上的单独运行变压器和6.3MVA及以上的并列运行变压器,应装设纵联差动 保护。6.3MVA及以下单独运行的重要变压器,亦可装设纵联差动保护。 (2) 10MVA以下的变压器可装设电流速断保护和过电流保护。2MVA及以上的变压器,当电 流速断灵敏系数不符合要求时,宜装设纵联差动保护。 (3) 0.4MVA及以上,一次电压为10kV及以下,线圈为三角-星形连接的变压器,可采用两 相三继电器式的过流保护。 (4) 以上所述各相保护装置,应动作于断开变压器的各侧断路器。 3.要求达到的性能指标 (1) 具有防止区外故障误动的制动特性; (2) 具有防止励磁涌流引起误动的功能; (3) 宜具有TA断线判别功能,并能选择闭锁差动或报警,当电流超过额定电流的 1.5~2倍 时可自动解除闭锁; (4) 动作时间(2倍整定值时)不大于50ms; (5) 整定值允差±5%。 4.原理及其微机实现 4.1四方 4.1.1 保护原理 变压器差动包括主变差动、发变组差动、厂用变差动、起/备变差动、励磁变差动等,对于高压侧为500kV的一个半开关接线方式,发变组差动及主变差动保护应反应四侧的电流量。

发电机的主要保护

发电机的主要保护 1. 继电保护及自动装置的一般规定 继电保护及自动装置是保证电网运行。保护电气设备的主要装置,保护装置使用不当或不正确动作将会引起事故或事故扩大,损坏电气设备甚至整个电力系统瓦解。 1)继电保护盘的前后,都应有明显的设备名称,盘上的继电器、压板和试验部件及端子排都应有明显的标志名称,投入运行前由继保人员负责做 好。 2)任何情况下,设备不容许无保护运行,若开关改非自动,应在有关调度和本厂领导同意下情况方可短时停用其中一部分保护。 3)继电保护和自动装置的投入、停用、试验或更改定值,如由系统调度管理的设备,则应按调度命令执行;如由本厂管理的设备,则应按值长命 令执行。 4)运行人员一般只进行投入,切除装置的压板、控制开关(切换开关)和操作控制电源的操作,在事故处理或发生异常情况时,可以在查明图纸 的情况下进行必要的处理,并做好必要记录。 5)运行人员处的继电保护图纸应经常保持正确完整。当继电保护回路接线变动后,检修人员应及时送交异动报告和修改底图。 2.继电保护及自动装置的维护与管理 1).值班人员在接班时,应巡视保护装置,并检查以下项目: (1)继电保护及自动装置罩壳是否完好,无过热、水蒸汽、异声等不正常现象

。 (2)继电保护及自动装置信号应指示正确。 (3)继电保护及自动装置的运行方式,出口压板等应符合被保护设备的当时运行方式, (4)所有保护装置应保持清洁,做保护装置清洁工作时,要小心谨慎,对保护装置不可敲击,并注意固定不可靠的电阻,灯座,小线等。 (5)监视直流母线电压在220V左右,以防止因直流电压不正常而使保护装置拒动或误动作。监视直流系统绝缘正常,以防止因系统绝缘降低或直流接地造成保护装置误动作 (6)开关跳、合闸回路应良好(跳闸灯亮代表合闸回路正常,合闸灯亮代表跳闸回路正常;跳、合闸灯同时亮或不亮代表回路不正常)。 2).系统发生异常或事故时,值班人员应进行下列工作: (1)立即检查保护装置有无动作,哪些保护动作信号有指示。 (2)准确记录保护动作,电流冲击、电压摆动,负荷变化情况,开关跳闸、合闸时间, 当时的一次系统运行方式,故障发生地点、现象等。 (3)各种保护与自动装置动作情况详细记录后,对装置进行检查,复归信号。(4)保护动作开关跳闸,在强送电前,应先复归保护。 (5)向值长或调度报告发生的异常情况;并说明哪些保护动作,哪些开关跳闸、合闸及时间。 (6)若遇保护及自动装置动作异常,应通知检修人员处理。 (7)退出或投入继电保护及自动装置应按调度或值长命令执行.并将上述情况记在值班记录簿内。对于有可能误动的保护装置,必须先退出,事后报告值长,通知继电人员处理。

变压器和发电机的保护

对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 变压器保护配备一般根据变压器的容量和电压等级。小型变压器配过流和速断保护就够了,甚至可以用熔断器保护;中型变压器(1250kVA以上)可以再加上瓦斯保护;更大的变压器(如6300kVA以上)一般应再配备差动保护。 变压器保护配置的基本原则 1、瓦斯保护: 800KVA及以上的油浸式变压器和400KVA以上的车间内油浸式变压器,均应装设瓦斯保护。瓦斯保护用来反应变压器油箱内部的短路故障以及油面降低,其中重瓦斯保护动作于跳开变 压器各电源侧断路器,轻瓦斯保护动作于发出信号。 2、纵差保护或电流速断保护: 6300KVA及以上并列运行的变压器,10000KVA及以上单独运行的变压器,发电厂厂用或工业企业中自用6300KVA及以上重要的变压器,应装设纵差保护。其他电力变压器,应装设电流速断保护,其过电流保护的动作时限应大于0.5S。对于2000KVA以上的变压器,当电流速断保护灵敏度不能满足要求时,也应装设纵差保护。纵差保护用于反应电力变压器绕组、套管及引出线发生的短路故障,其保护动作于跳开变压器各电源侧断路器并发相应信号。 3、相间短路的后备保护: 相间短路的后备保护用于反应外部相间短路引起的变压器过电流,同时作为瓦斯保护和纵差保护(或电流速断保护)的后备保护,其动作时限按电流保护的阶梯形原则来整定,延时动作于跳开变压器各电源侧断路器,并发相应信号。一般采用过流保护、复合电压起动过电流保护或负序电流单相低电压保护等。

水电站发电机变压器保护原理及继电保护方式

龙源期刊网 https://www.doczj.com/doc/cc1298561.html, 水电站发电机变压器保护原理及继电保护方式 作者:张伟周桂林 来源:《科学与财富》2018年第09期 摘要:在水电站发电机变压器中安装继电保护装置,可以保障变压器的稳定运行,使水电站为用户提供可靠的电力。基于此,笔者从水电站发电机变压器的保护原理入手,根据继电保护的原则以及变压器常见的多种故障,对变压器的继电保护方式进行了分析,变压器主要包括短路故障的主保护、后备保护以及接地故障的保护这三种继电保护方式,从整体上保障了变压器的稳定运行,有助于水电站的长久运行。 关键词:水电站;变压器;继电保护 前言:在水电站发电机变压器的正常运行中,难免会产生一些故障,对电力系统的稳定运行造成不利影响。为了解决这一问题,大部分水电站都会采用继电保护方式对变压器进行保护,避免变压器故障的影响范围进一步扩大。而且继电保护装置可以及时提醒水电站的运维人员排除变压器故障,从而保障电力系统的稳定运行。因此,对于水电站发电机变压器保护原理及继电保护方式分析具有一定的实践意义。 1.水电站发电机变压器保护原理 1.1定子接地继电保护原理 当水电站发电机变压器内部的定子出现单相接地现象的时候,会导致匝间短路、相间短路以及接地短路,对变压器的正常运行造成不利影响,从而危害到整个电力系统。因此,水电站需要对变压器进行保护,通常是在变压器定子的中性点配备高阻,对暂态过电压进行控制,为变压器提供全面的保护。如果在继电保护的过程中,变压器出现了其他故障,则继电保护装置会自动跳闸,从根本上保护变压器。 1.2变压器继电保护装置 对于水电站发电机而言,主要涉及到主变压器以及厂用变压器这两种变压器,主变压器应用的继电保护装置包括差动装置、重瓦斯装置以及零序装置等,在变压器运行时,技术人员需要根据发电机以及变压器的实际运行状况,选择适当的零序过电流加入到继电保护装置中,实现变压器的保护;厂用变压器应用的继电保护装置主要是在开关柜中安装保护装置。;两种变压器的继电保护装置通过工控机进行连接,使变压器的接线更为简便,有助于继电装置的管理以及维护[1]。

长沙理工大学继电保护课程设计

目录 一、任务书 (2) 1、基本资料与数据 (2) 2、设计内容及要求 (2) 3、设计成果 (2) 二、三绕组变压器B’保护配置及整定计算 (5) 1、保护配置 (5) 2、短路电流的计算 (5) 3、复合电压启动的过流保护整定计算 (6) (a)整定计算过程及校验 (6) (b)装设原则 (9) 三、附录 1、附表 (10) 2、附图 (a)原始资料图 (11) (b)拓扑图 (14) (c)保护原理图 (16) 四、设计总结 (23) 参考文献 (24)

一任务书 1、基本资料和数据: 本电站为位于本省西南部山区某江中下游的一个水电站,距县城35KM,水电站保证出力为9200KW,年利用小时数为5300小时/年,多年平均发电量为1.866亿度/年,装有4台相同的悬式水轮发电机组,单机容量为8800KW.水轮机为混流式,型号为HL220-LJ-230,机组额定容量为10000KW,韶关发电设备厂生产。 水轮发电机:型号为SF425/79-32,悬式,额定容为Pe=8800kw, 额定电压为Ue=6.3kv,额定电流为Ie=1008A,功率因数cos=0.8,额定转速Ne=187.5转/分,频率50HZ,飞逸转速为430转/分,转动惯量450吨米2,转子重63.6吨,总重量138.6吨,杭州发电设备厂生产。 调速器,型号WT-100,双微机调速器。 永磁机,型号TY65/133-16,功率1.5KVA,110V,25HZ,哈尔滨电机厂生产。 发电机励磁装置,自并激可控硅励磁装置,励磁变压器SL1-250/10,接法:Y/Y-12。 负荷情况: D1为本县城,Pe=5000KW,COSΦ=0.8,距本站35KM,可用单回架空线供电。 D2为本县一个有色金属开发基地,Pe=3000kw,cosΦ=0.8,距本站55KM,可用单回架空线经D1供电。 D3为本县一个新兴城镇,Pe=3000KW,cosΦ=0.8,距本站25KM,可用单回架空线供电。D3所采用的降压变的型号为SJL1-4000/35/10.5,Y/-11,Ud%=7 D4为本县新兴城镇的一个现代化农业开发基地,Pe=2000KW,COSΦ=0.7,距本站45KM(距新兴城镇20KM),可用单回架空线经D3供电。D4所采用的降压变的型号为SJL1-3150/35/10.5,Y/-11,Ud%=7 D5为本县一个新兴工业城镇,Pe=3000KW,COSΦ=0.8,距本站30KM,可用单回架空线供电。 D6为近区负荷,距本站6KM,Pe=1000KW,COSΦ=0.7,可用10KV单回线配电。 本站生活变压器型号:SL7-630/10.5, 容量:630KVA,额定电压:10.5/0.4/0.23(KV),阻抗电压Ud%=4.5,Y/Y0-12。 本站联入系统设计 (1)本站可通过一回架空线路与本地区电力系统的距本站50KM的110KV枢纽变电所B1相连,以便丰水季节将本站17000KW的多余电力送入系统,在枯水季节(元月份)由本 站供电的地方负荷需从系统倒送电能。 (2) 在本站某江上游30KM处,正在兴建一个小型水电站,装机容量为4×3000KW,在丰水季节尚有7000KW的多余电能,需经本站送入地区电力系统。

发电机变压器保护检验规程

广东省飞来峡水利枢纽管理处技术规程 发电机、变压器继电保护装置检验规程 FLX/SJdz04-2012 发电机、变压器继电保护装置检验规程 1 范围 1.1本规程规定了飞来峡电厂继电保护装置的检验项目、内容、工艺要求、质量标准以及检验内容。 1.2本规程适用于飞来峡电厂发电机、变压器继电保护装置维护、检验和技术管理等工作。 1.3飞来峡水利枢纽管理处的生产管理人员和运行操作人员应了解本规程,各级自动化技术人员应熟知本规程,担负继电保护装置维护、检验的工作人员应熟悉本规程。 2 执行标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 2.1 GB 7261—2008 继电器及继电保护装置基本试验方法 2.2 GB 14285—2006 继电保护和安全自动装置技术规程 2.3 GB/T 15145—94 微机线路保护装置通用技术条件 2.4 GB 50171—92 电气装置安装工程盘、柜及二次回路结线施工及验收规范 2.5 DL/T 478—2001 静态继电保护及安全自动装置通用技术条件 2.6 DL/T 995-2006 继电保护和电网安全自动装置检验规程 2.7 DL/T 624—1997 继电保护微机型试验装置技术条件 2.8 国电调[2002]138号文《防止电力生产重大事故的二十五项重点要求》继电保护实施细则 2.9 国电发[2000]589号文《防止电力生产重大事故的二十五项重点要求》 2.10《国家电网公司十八项电网重大反事故措施》 3 发电机、变压器保护配置及技术参数

发电机、变压器保护试题范文

一、填空题 1、发电机在(定子绕组机端)发生单相接地时,机端零序电压为相电压,在(定子绕组中性点处)发生单相接地时,机端零序电压为零。 2、发电机单相接地时,较大的接地电流能在故障点引起电弧时,将使定子绕组的(绝缘和定子铁芯)烧坏,也容易发展成为危害更大的定子绕组相间或(匝间短路),因此,发电机应装设定子绕组单相接地保护。 3、利用基波零序电压的发电机定子单相接地保护不能作为(100%定子接地)保护,有死区。 4、发电机励磁回路接地保护,分为(一点接地)保护和(两点接地)保护。 5、当发电机带有不对称负荷或系统中发生不对称故障时,在定子绕组中将有(负序电流),在发电机中产生(反向)的旋转磁场,于是在转子中产生倍频电流,引起附加损耗,导致转子过热。 6、发电机在电力系统发生不对称短路时,在(转子)中就会感应出(100Hz)电流。 7、在变压器瓦斯保护中,轻瓦斯保护动作于(信号),重瓦斯保护动作于(跳闸)。 8、变压器中性点间隙接地的接地保护采用(零序电流继电器)与(零序电压继电器)并联方式构成,带有0.5s 的时限。 9、变压器复合电压起动的过电流保护,负序电压主要反应(不对称)短路故障,正序电压反应(对称)短路故障。 10、变压器充电时,励磁电流的大小与断路器合闸瞬间电压的相位角α有关,当(90α=?)时,不产生励磁涌流;当(0α=?)时,合闸磁通由零增至2m φ,励磁涌流最大。 二、选择题 1、发电机解列的含义是(B)。 A :断开发电机断路器、灭磁、甩负荷 B:断开发电机断路器、甩负荷 C:断开发电机断路器、灭磁 2、发电机出口发生三相短路时的输出功率为(C)。 A :额定功率 B :功率极限 C :零 3、发电机装设纵联差动保护,它作为(C)保护。 A :定子绕组的匝间短路 B :定子绕组的相间短路 C :定子绕组及其引出线的相间短路

变压器纵差保护与发电机纵差保护的区别

变压器纵差保护与发电机纵差保护的区别 变压器内部电气故障主要是:各侧绕组的匝间短路、中性点直接接地侧绕组的单相短路、内部引线和套管故障、各侧绕组相间短路。 发电机内部短路故障为:定子绕组不同相之间的相间短路、同相不同分支之间和同相同分支之间的匝间短路,兼顾定子绕组开焊故障,但不包括各种接地故障。 变压器纵差保护与发电机纵差保护一样,也可采用比率制动方式或标积制动方式达到外部短路不误动和内部短路灵敏动作的目的。 纵联差动保护(比率制动式纵差保护)是比较被保护设备各引出端电气量(例如电流)大小和相位的一种保护。 变压器纵差保护与发电机纵差保护的区别如下: 1、变压器各侧额定电压和额定电流各不相等,因此各侧电流互感器的型号一定不同,而且各侧三相接线方式不尽相同,所以各侧相电流的相位有也可能不一致,将使外部短路时不平衡电流增大,所以变压器纵差保护的最大系数比发电机的大,灵敏度相对来说要比较低。 2、变压器绕组常有调压分接头,有的还要求带负荷调节,使变压器纵差保护已调整平衡的二次电流又被破坏,不平衡电流增大,这样将使变压器纵差保护的最小动作电流和制动系数都要相应加大。 3、对于定子绕组的匝间短路,发电机纵差保护完全没有作用。变压器各侧绕组的匝间短路,通过变压器铁芯磁路的耦合,改变了各侧电流的大小和相位,使变压器纵差保护对匝间短路有作用。 4、无论变压器绕组还是发电机定子绕组的开焊故障,它们的完全纵差保护均不能起到保护作用而动作,但变压器还可以依靠瓦斯保护或压力保护。 5、变压器纵差保护范围除包括各侧绕组外,还包含变压器的铁心,即变压器纵差保护区内不仅有电路还有磁路,明显违反了纵差保护的理论基础(基尔霍夫电流定律)。而发电机的纵差保护对象内只有电路的联系,在没有故障时,不管外部发生什么故障,各相电流的矢量和总为零。 发电机纵差保护的工作原理是怎样的? 发电机纵差保护是根据差流法的原理来装设的。其原理接线图如下: 在发电机中性点侧与靠近发电机出口断路器QF处,装设性能、型号相同的两组电流互感器TA1、TA2,来比较定子绕组首尾端的电流值和相位,两组电流互感器,按环流法连接,差流回路接入电流继电器Ⅰ-Ⅰ. 在正常时,中性点与出口侧的电流数值和相位都相同,差流回路没有电流,继电器Ⅰ-Ⅰ不会动作。 在保护范围外发生短路故障,与正常运行时相似,差流回路也没有电流,保护也不会动。在保护范围内发生故障,流经电流继电器Ⅰ-Ⅰ的电流,为TA1、TA2电流互感器二次电流之差,继电器Ⅰ-Ⅰ启动,保护装置将动作。这就是发电机纵差保护的基本工作原理。 纵差保护2 变压器纵差保护是利用比较变压器两侧电流的幅值和相位的原理构成的。把变压器两侧的电流互感器按差接法接线,在正常运行和外部故障时,流入继电器的电流为两侧电流之差,其值接近为零,继电器不动作;在内部故障时,流入继电器的电流为两侧电流之和,其值为短路电流,继电器动作。 由此可见,变压器两侧电流互感器的接线正确与否,直接影响到纵差保护的动作可靠性。将

直岗拉卡水电站电气一次及发电机继电保护设计

本科毕业设计(论文)通过答辩 优秀论文设计,答辩无忧,值得下载!摘要 本论文主要对直岗拉卡水电站进行电气一次及发电机继电保护设计。直岗拉卡水电站的总装机功率为5×45=225MW,共四回110kv出线与系统相连。 电气一次部分,首先是根据所给出的原始资料拟定五种电气主接线方案.然后对这五种方案进行可靠性、灵活性和经济性比较后,保留两种较合理的方案,对这两种方案进行短路电流计算;接着是根据短路电流计算结果进行主要电气设备的选型以及校验,包括断路器、隔离开关、母线、绝缘子等;最后再由经济性比较确定最终的电气主接线方案。 发电机继电保护的设计是对5台发电机进行保护保护类型的配置,保护的整定计算及校验,继电器的选型。论文还附有5张AutoCAD的图纸加以说明。包括电气主接线图、室外配电装置图、发电机保护的原理接线图、展开图、保护屏的布置及端子排接线图。 毕业设计的过程是一次将理论与实际相结合的过程,通过这次比较系统全面的进行设计之后,巩固和增强了电力系统学科主干课程的理解,树立了工程设计的观念,提高了电力系统设计的能力。 关键词:电气主接线,短路电流计算,设备选型,继电保护

The electric design and generator protection of Zhi Gang La Ka hydro-electric power Abstract The dissertation mainly designs the primary system and the generator ralay protection of Zhi Gang La Ka hydro-electric power.. The total power of Zhi Gang La Ka hydro-electric power is 5×45MW=225MW,connecting to system with 4 outline. For electric primary system, firstly draw up 5 drafts of main connection lines according to the firsthand information and datum. Then compare the 5 drafts from these aspects such as reliability, flexibility and economy, and keep two more reasonable plans than others. The short circuit current calculation is carried on.. And main electric equipments including circuit breakers、disconnectors、bus、insulator etc are choosed according to the result of short circuit current calculation. Finally the economy of these two plans are compared and main electrical connection plan is determined. Generator relay protection contains choosing the protection style of the 5 generator, setting calculation as well as the verification and confirm relay style. The dissertation attach to five AutoCAD drawings including the main electric connection, outdoor distribution equipment setting, the relay protection of generator, the decoration of protection scream. The process of the graduation design is a process of combining the theory with practice. The comprehensive and system training is helpful to enhance and consolidate the understanding and application of the branch curriculum of the electric subject, to set up the project idea and to improve the ability of the electrical system design. KEY WORDS: Main electrical connection, short circuit current calculation, Equipment selection, Generator relay protection 1

发电机变压器组保护整定

1、原始资料 某发电厂要扩建一个新厂,安装两台发电机变压器组,主接线如图(a)所示。 已知参数如下: (1)发电机 e P =200MW ,cos ?=0.85,e U ==15.75kV ,195%d x =,'24%d x =,''14.5%d x =;变压器e S =240MV A ,d U =0.105,接线Y ?-11,分接头1212 2.5%15.75kV ±?,分级绝缘。 (2)相间短路后备保护范围末端两相短路时,流经发电机的最小短路电流为14900A 。 (3)110kV 母线上出线后备保护动作时间为6s 。出线的零序后备保护最大动作电流为3250A ,最大动作时间为5s 。在最大运行方式下,出线的零序后备保护范围末端接地短路时流经变压器的零序电流为620A ,故障线路上的零序电流为903A 。在最小运行方式下,出线末端金属接地短路时,流经变压器的最小零序电流为1100A 。 (3)保护设计所需的最大三相短路电流的计算结果如图(b)、(c)所示。它们是归算到115kV 的安数(括号内为最小三相短路电流值)。 (a )主接线图 (b)110kV 母线短路时,短路电流分布图: (c)15.75kV 母线短路时,短路电流分布图 2、设计内容 ⑴、 发电机变压器组的保护方式 发电机变压器组的容量为200MW ,发电机与变压器之间无短路器,因此,除发电机变压器组需装设公用纵差动保护外,发电机、变压器均装设单独的纵差动保护。按照保护安装设规程,需安装的保护如下: ①、发电机变压器组: 纵差动保护 ②、发电机:a 、纵差动保护 b 、定子接地保护(零序电压保护) c 、定子绕组匝间短路保护 d 、定子绕组过电压保护 e 、相间短路的后备保护(负序过电流保护+低电压起动保护)

相关主题
文本预览
相关文档 最新文档