当前位置:文档之家› SS6B电气线路分析及应急故障处理(上)

SS6B电气线路分析及应急故障处理(上)

SS6B电气线路分析及应急故障处理(上)
SS6B电气线路分析及应急故障处理(上)

2011届毕业设计任务书

一、课题名称:

SS6B型电力机车线路分析及故障的应急处理

二、指导教师:

颜琴峰

三、设计内容和要求:

1.课题概述:

随着国民经济的健康发展,铁路运输部门提出“高速、重载”的发展战略。SS6B 型电力机车是一种最高速度100KM/H,总功率4800KW的六轴牵引机车,可担当货运和客运牵引,多机重联时可担当重载货运牵引。

SS6B电力机车的控制技术实现了标准化和模块化,电子控制装置的基本原理具有通用性。

本次设计要求能在SS4G机车线路的学习基础上拓展机车线路的学习,力求掌握线路学习方法,最有效地利用学院的教学资源,培养学生分析、解决SS6B电力机车常见故障能力。

2、设计内容及要求:

(1)SS6B型电力机车主电路原理的分析

(2)SS6B型电力机车铺助电路原理的分析

(3)SS6B型电力机车控制电路原理与分析

(4)SS6B型电力机车电路常见故障的应急处理

四、设计参考书目:

1、《SS6B型电力机车》主编:刘友梅出版社:中国铁道出版社

2、《牵引电器》主编:张琳出版社:西南交通大学

3、《SS4型电力机车》主编:张有松出版社:中国铁道出版社

4、《电力电子技术》主编:徐利娟出版社:中国电力出版社

五、设计任务书要求

1、封面

要求:包括设计题目,班级,年级,姓名,指导老师,完成时间。

2、目录

要求:根据说明的内容决定,一般采用2~3级。

3、内容摘要

要求:200~400字左右,中英文。

4、正文

要求:原理、分析、论证说明及特点。

5、结束语

要求:包括对本课程设计的客观评价、设计特点、存在的问题以及改进的意见等。

6、附录

要求:包括参考文献作者、署名、出版地、出版年等、报纸、材料清单、封面

六、毕业设计进程安排(时间10周)

1、熟悉任务书、确定方案一周。

2、查阅资料一周。

3、内容的设计六周。

4、说明书的撰写一~五周。

5、答辩准备一~五周。

七、毕业设计答辩及论文要求

1、毕业设计答辩要求

答辩前三天,没位学生应按时将毕业设计说明书或毕业论文、专题报告等必须要资料交指导教师审阅,有指导教师写出审阅意见。

学生答辩时对字数部分应写出书面提纲,内容包括课题的任务、目的和意义,所采用的原始资料或参考文献、设计的基础内容和主要方法、成果评论和评价。

答辩小组质询课题的关键问题,质询与课题与课题密切相关的基础理论、知识、设计与计算方法、试验方法、测试方法、鉴别学生独立工作能力、创新能力。

2毕业设计论文要求

文字要求:

说明书要求打印(出图纸外),不能手写。文字通顺,语言流畅、排版合理、无错

别字、不允许抄袭。

图纸要求:

按工程制图标准图、图面整洁、布置合理、线条粗细均匀、圆弧连接光滑,尺寸标注规范、文字注释必须使用工程字书写。

曲线图表要求:

所有曲线、图表、线路图、程序框图、示意图等不准徒手画,必须按国家规定的标准或工程要求绘制。

本设计主要就SS6B型电力机车车上各电器,电机设备按其功能和在机车所产生的作用、电压等级分类分别组成主电路、辅助电路和控制电路。三种电路通过电磁感应原理、利用机车上现成的压缩空气以及电——机械联系起来,对机车实施控制。

主电路及使机车能产生向前、向后的牵引力和制动力的有关电器设备电路图,它主要有受电弓、主断路器、调压整流装置、牵引电机、牵引电气等组成、它主要由受电弓从接触网上去写电流将电能转变为牵引列车的机械能。

辅助电路即将由变压器次绕组提供的单相工频电劈成三相供给机车辅助设备供电的电路。这些辅助机组包括劈相机、制动风机、空气压缩机、变压器油泵,以及220V 的各种取暖设备等。它是保证主电路电器设备不可缺少的电路。

电力机车控制电路是机车三大电路中最为复杂的电路,属于低压直流小功率电路,它由司机控制器,低压电器,主电路和辅助电路中的各电路电磁线圈及各电器的联锁等组成。控制电路可以控制台上各按键开关盒司机控制器手柄位置操纵,使机车按照司机的意图运行.

机车故障应急处理是指在机车发生故障时,用最简便的方法、最短的时间,将故障部分切除,以防止故障扩大,维持故障运行。所谓故障运行指在故障状态下,经应急处理后,维持到终点站或站点的运行。

通过本设计,旨在提升电气化铁道技术专业学生的学习能力、分析能力,进一步理解电力机车控制电路的作用原理,在此基础上进行改进设计。

关键字:SS6B型电力机车主电路辅助电路控制电路应急故障处理

This design is mainly SS6B type electric locomotives, motor vehicle the electric equipment according to its function and in locomotive generated by function, voltage grade classification respectively composed the power circuit, auxiliary circuit and control circuit. Three kinds of circuit by electromagnetic induction principle, use on a motorcycle ready-made compressed air and electricity - linked to locomotive, mechanical implementing control.

Main circuit and make locomotive can produce forward, backward traction and braking force diagram of relevant electrical equipment, it mainly are influenced by electric bow, main breaker, pressure regulating rectification device, traction motor, traction electrical components, it mainly consists of electrify bow from catenary up write current electric energy to traction train mechanical energy

Auxiliary circuit soon by providing single-phase transformer times winding power frequency electric chopped into three-phase supply locomotive auxiliary equipment power supply circuit. The auxiliary units including split camera, brake fan, air compressor, transformer oil pump, and various kinds of heating equipment 220V. It is to guarantee the main circuit electrical equipment indispensable circuit.

Electric locomotive control circuit is locomotive three circuits most complex circuit, belong to the low voltage dc small power circuit, it by the driver controller, low voltage electric appliance, main circuit and auxiliary circuit in various magnetic coil and the electric circuit of interlocking etc. Control circuit can console each key-press switch box driver controller handle position manipulation, make locomotive driver intention according to operation.

Locomotive fault emergency treatment is to point to in locomotive at fault, use convenient method, the shortest time, fault partial nephrectomy, in order to prevent the fault expand, maintain fault operation. So-called fault operation refers in fault state that the emergency treatment, maintain the terminal or site operation.

Through this design, aims to promote electrified railway vocational students' learning ability, analytical ability, further understanding of electric locomotive control circuit action principle, based on this modification design

Key word: SS6B type electric locomotive main circuit auxiliary circuit control circuit

目录

第1章概述 (1)

1.1简介 (1)

1.2技术参数 (3)

第2章主电路原理的分析 (5)

2.1简介 (5)

2.2主电路结构的分析 (5)

第3章辅助电路原理的分析 (14)

3.1简介 (14)

3.2辅助电路的构成分析 (14)

第4章控制电路原理的分析..................................... 错误!未定义书签。

4.1简介................................................. 错误!未定义书签。

4.2控制电路的构成分析 .................................... 错误!未定义书签。第5章 SS6B电力机车故障处理................................... 错误!未定义书签。

5.1主电路常见故障处理 .................................... 错误!未定义书签。

5.2辅助电路常见故障处理................................... 错误!未定义书签。

5.3控制电路常见故障处理................................... 错误!未定义书签。心得体会.................................................... 错误!未定义书签。附图及参考文献............................................... 错误!未定义书签。

第1章概述

SS6B型电力机车是我国作为标准化、模块化原则设计的6轴货运机车。它同SS4B 型8轴重载货运机车构成模块化系列,被列入铁道部1992年科技发展计划新项目开发项目,由株洲电力机车厂和株洲电力机车研究所等单位于1994年研制成功,并成为郑宝铁路第三批招标中标机车。该型电力机车在韶山型系列电力机车成熟技术的基础上,吸收消化8K、6K等国外机车的先进技术,使韶山型系列机车整体技术性能和运用品质得到进一步的提高,使相控电力机车的交直电转动系统实现标准化合模块化。

1.1简介

SS6B型电力机车是一种最高速度100KM/H,总功率4800KW的6 轴机车,课担当货运和客运牵引,多机重联时也可以担当重载货运牵引。

SS6B型电力机车点传动系统采用标准化的不对称三段半控桥整流电路,实施相控调压,实现了恒流准恒速控制的牵引调速特性。整流桥先大桥后小桥的顺控方式,结构合理,控制简单,可靠性高,能获得近似于四段桥的综合效果。设有功率因数补偿装置,利用谐振原理重点对三次谐波分量的吸收,使机车网侧电源获得较高的功率因数和较小的谐波干扰电流,具有明显经济效益。机车采用ZD114型6级串励脉流牵引电动机,按标准话设计原理实现单电机功率800KW,1020V级中等端电压,C级全绝缘结构,半叠片式机座,滚动轴承抱轴悬挂结构,新型刷架系统,整流换向性能好。为了改善动态换向,磁场削弱电路还配合装有分流电抗器,通过超过1100V和磁场削弱级实现了大于1.6的恒功系数,使机车恒功区达到50~80KM\H范围。按标准化设计原则机车采用加馈电阻制动,实施低速区制动电流的馈入,实现了恒制动力准恒速控制的制动调速特征。电阻制动回路利用串入得整流桥(大桥)相控调节方式完成了电流加馈作用。

SS6B型电力机车为Co-Co轴长,由2台3轴转向架组成,Co转向架保留了传统的“目”字形构架,Ⅰ、Ⅱ系弹簧悬挂和轴箱定位结构,但愿是踏面制动器等,新采用了低位平牵引杆装置(牵引点高430mm)、牵引电机滚动抱轴半悬挂、单边直齿刚性齿轮传动等,使转向架动力学性能和粘着利用率获得改善。车体仍然是整体承载结构,可承受2450KN纵向静载荷的实验,双端司机室、大顶盖结构、大面积通风百叶窗等均采用传统成熟技术。

SS6B型电力机车的控制技术也实现了标准化和模块化,电子控制装置的基础原理具有通用性,课实施牵引工况的恒流准恒速特性控制,制动工况的恒制动准恒速特性控制,空点联合制动控制,空转防滑保护控制,功率因数补偿控制,轴重转移电气补偿控制以及故障诊断等功能。

SS6B型电力机车的辅助电路仍采用韶山系列电力机车的成熟技术,为旋转式劈相机供电系统。每台机车设2台劈相机,各辅助电机采用交流电磁接触器控制通断,三相自动开关进行保护。高压电器采用的2台受电弓为TSG3型,是引进8K型电力机车受电弓的消化吸收产品;加装有高压电压互感器,供网压表和电度表使用;主变压器TBQ7-7324/25型是一体化油箱结构的多绕组分裂式变压器,各牵引绕组实现全去耦,共油箱的还有4个滤波电抗器,采用油循环强迫风冷系统,热交换器是铝合金板翘式散热器。

SS6B型电力机车制动机系统为传统的DK-1电空制动机的改进型,具有电空制动、空电联合制动功能,以保证在重载牵引,长大坡道下坡准恒速控制调速的需要。采用电制动优先、空气制动不偿的原则,实施空电联合制动,使列车运行的安全性得到提高。

SS6B改型电力机车样图:

1.2技术参数

1.2.1使用环境条件

海拔不超过 1500m

周围空气温度(遮荫处) -25~40℃

最大相对湿度 90%(最湿月平

均能承受一般风、沙、

雨的侵袭

1.2.2主要技术参数

用途客、货运

电流制单相交流50Hz

工作电压

额定值 25kV

最大值 29kV

最小值 19kV

超压保护 31kV

欠压保护 17.5kV

轴式 Co—Co

整备重量 138t(1)

轴重 23t

电传动方式交-直电传动系统

机车功率 4800kW

持续速度 50km/h(半磨耗轮)

最高速度 100km/h

持续牵引力 337.5kN(半磨耗轮)

启动牵引力 471kN

恒功速度范围 50~80km/h

电制动方式加馈电阻制动

轮周电制动功率 4800kW(50~80km/h)

最大恒制动力 288kN(10~50km/h)

功率因数补偿容量 1160kV?A

调速方式不等分三段桥相控整流、

无极调压加三级磁场削弱特性控制方式恒流准恒速控制

功率因数≥0.9(1/2额定功率以

总功率≥0.82(额定工况)

车钩中心距 21416mm

车体长度 20211mm

车体宽度 3100mm

落弓距轨面高 4754mm

受电弓工作高 5200~6500mm

受电弓滑板中心距 11200mm

转向架固定轴距 2300+2000mm

机车全轴距 15800mm

转向架牵引点中心距 13290mm

转向架牵引点距轨面高 430mm(平拉杆式)

轨距 1435mm

车钩中心距轨面高(880±10)mm

车轮直径 1250mm

齿轮传动方式单侧直齿减速主、从齿轮

传动

齿轮传动比 74∶17=4.35

基础制动装置具有闸瓦间隙自动调节

的独立作用式单元制动

空气压缩机能力 2×1.6㎡/min

总风缸容量 1.2m3

沙箱总容量 0.8m3

空气制动机系统 DK-1型机车电空制动机

第2章主电路原理的分析

2.1简介

SS6B型和SS4B型电力机车的电传动系统是按通用化、标准化、系列化原则设计的两种交-直传动电力机车。在电气线路基本上相同,与SS4B型电力机车电气线路相比,仅在6轴与4轴组合上有区别,同样由主电路、辅助电路和控制电路组成。

机车主电路采用了标准化、模块化结构,整流电路为大功率晶闸管和二极管组成的不等分三段半控整流桥。牵引电机励磁回路设有分流电抗器,以改善牵引电机在磁场削弱工况时的动态换向性能。主电路中设有功率因数补偿装置,以提高机车的功率因数和减少谐波干扰电流,改善了电网的供电品质。此外,机车主电路中电制动采用加馈电阻制动,以提高机车低速区的电制动性能。

机车辅助电路采用双台旋转式劈相机供电系统,以提高辅助系统的可靠性和三相电源电流、电压的对称性。辅助电路主要由交流380V回路和交流220V回路组成,对各回路中的不同负载,分别设有不同类型和等级的自动开关进行保护,电路简洁,性能稳定可靠。

机车控制电路由有接点控制(继电控制)电路和无接点控制(电子控制)电路组成。机车控制电路还具有机车重联控制技术,可实现多机重联牵引和多机特性的一致性;并采用了列车监控系统和语音记录装置能实现机车运行状态控制、信息显示和存储,给机车运行安全、故障诊断和处理提供方便.

2.2主电路结构的分析

2.2.1网侧高压电路(25kV电路,见图2-1)

网侧高压电路的主要设备有受电弓1AP和2AP、空气断路器4QF、避雷器5F、高压电压互感器6TV、高压电流互感器7TA、主变压器8TM的高压(原边)绕组AX、电度表检测电流用的9TA、PFC功率因数补偿用电流互感器109TA。

低压部分有自动开关102QA、网压表103PV、104PV电度表105PJ、PFC功率因数补偿用叵步变压器100TV,以及接地回流装置110E、120E、130E、140E、150E和160E。这些电器设备所组成的电路主要用于检测机车网压和提供电度表用的电压信号及PFC功率因数补偿用同步信号。与传统的机车相比,该电路具有如下特点:

1.在25kV网侧电路中,加设了新型

金属氧化物避雷器5F,以取代传统的放

电间隙,作妇电压和雷击保护;

2.在受电弓与主断路器之间,设置

有网侧电压互感器(25 kV/100V),便于

司机在司机壁内掌握受电弓的升降状况

和网压的情况;

3.为提高机车的可靠性,实现机车

的简统化、通用化设计,采用了传统的

TSG3型受电弓、TDZlA型空气断路器和

TBYl型网侧高压电压互感器;

4.增设有PFC控制用电压、电流互

感器;

5.接地回流系统采用主变压器高压

绕组X端经电缆、接地回流装置到车轮、

钢轨。与车体、电气设备保护性接地分

开,提高了机车可靠性。

2.2.2整流调压电路

整流调压电路分为两个独立的单元,分别

向相应的转向架供电。图2—2SS6B型电力机

车一个转向架供电的不等分三段半控整流桥主电路图。

由牵引绕组a1b1x1和a2x2供电给主整流

器70v,组成前转向架供电单元;由牵引绕组

a3b3x3和a4x4供电给主整流器80v,组成后

转向架供电单元。

不等分三段整流调压电路通过其整流调

压电路顺序触发晶闸管V9和V10、V3和V4、

V5和V6则可得到最大输出电压为1/2Ud、

3/4Ud、Ud。其中各段绕组电压为:

Ua2x2=Ua1x1=2Ua1b1=2Ub1x1=695.5V

图2-2 转向架整流调压简化电路不等分三段整流桥的工作顺序如下所

述:

首先投入四臂桥,即触发V9和V10,投入a2x2绕组,V9、V10顺序移相,整流电压由零逐渐升至Ud/2(Ud为总整流电压),V1和V2续流。在电压正半周时,电流路径为a2一V7—71号导线一平波电抗器一电机一72号导线一V2-V1—V10一x2一a2;当电压处于负半周时,电流路径为x2一V9—71号导线一平波电抗器一电机一72号导线—V2一V1一V8—a2一x2。

当V9和V10满开放后,六臂桥投入。第一步是维持V9和V10满开放,触发V3和V4,绕组a1b1投入。电源处于正半周时,电流路径为a2—V7—71号导线一平波电抗器一电机一72号导线—V4—b1一a1一V1—V10--x2—a2;当电源处于负半周时,电流路径为x2一V9—71号导线一平波电抗器一电机一72号导线一v2一a1—b1—V3—V8—a2一x2。此时,V3、V4顺序移相,整流电压在(1/2-3/4)Ud之间调节。

当V3和V4满开放后,V3、V4、V9和V10维持满开放,并触发V5和V6,b1x1绕组再投入V5和V6顺序移相,整流电压在(3/4—1)Ud之间调节。当电源处于正半周时,电流路径为a2一V7—71号导线—平波电抗器—电机一72号导线一V6一x1一a1一V1—V10一x2一a2;当电源处于负半周时,电流路径为x2一V9—71号导线一平波电抗器—>电机一72号导线—V2—a1一x1一V5一V8一a2—x2。

在整流器的输出端还分别并联了电阻75R和76R,其电阻的作用有两个:一是机车高压空载做限压试验时,作整流器的负载,起续流作用;二是正常运行时,能够吸收部分过电压。

2.2.3牵引供电电路(见图2-3)

机车的牵引电路,即机车主电路的直流电路部分。

机车牵引供电电路,采用转向架独立供电方式。第一转向架的三台牵引电机1M、2M、3M并联,由主整流器70v供电;第二转向架的三台牵引电机4M、5M、6M并联,由主整流器80v供电。两组供电电路完全相同且完全独立。

牵引电机支路的电流路径基本相同,现以第一牵引电机支路为例加以说明:其电流路径为正极母线71一平波电抗器11L一线路接触器12KM一电流传感器111SC一电机电枢一位置转换开关的“牵”一“制”鼓107QPR1—>位置转换开关的“前”一“后”鼓107QPVl→主极磁场绕组→107QPV1→牵引电机隔离开关19QS→107QPR1→负极母线72。与主极绕组并联的有固定分路电阻14R、I级磁场削弱电阻15R和接触器17KM、Ⅱ级磁场削弱电阻16R和接触器18KM。14R与主极绕组并联后,实现机车的固定磁场削弱,其磁场削弱系数为0.96。通过接触器17KM的闭合,投入15R,实现机车的I级磁场削弱

其磁场削弱系数为0.70。通过接触器18KM的闭合,投入16R,实现机车的Ⅱ级磁场削弱,其磁场削弱系数为0.55。当17KM和18KM同时闭合时,15R和16R同时投入,实现机车的Ⅲ级磁场削弱,其磁场削弱系数为0.45。为了改善机车运行时牵引电机的脉流换向性能,特设置分流电抗器113L(123L、133L、143L、153L、163L)。磁场削弱电阻电路与分流电抗器串联后,再与主极绕组并联。

由于三轴转向架第一台牵引电机与第二、第三台牵引电机布置方向一致,其相对旋转方向相同。以第一转向架前进方向为例,从1M、2M、3M电机非换向器端看去,电枢旋转方向应为顺时针方向;第一转向架与第二转向架反向布置,因此第二转向架4M、5M、6M电机为反时针方向。由此,各牵引电机的电枢与主极绕组的相对接线方式是:

1M:A11A12——D11D12

2M:A21A22——D21D22

3M:A31A32——D31D32

4M: A41A42——D42D41

5M:A51A52——D52D51

6M:A61A62——D62D61

述接线方式为机车向前方向时的状况。当机车向后时,主极绕组通过“前”一“后”

换向鼓反向接线。

牵引电机故障隔离开关19QS、29QS、39QS、49QS、59QS和69QS均为单刀双投开关,有上、下两个位置,上为运行位,下为故障位。当牵引电机之一故障时,将相应牵引电机故障隔离开关置故障位,其相应常开联锁接点打开相应线路接触器,该电机支路与供电电路隔离,不投入工作。若为牵引电机接地故障,可以采取将刀开关置于中间位,使电机支路一头靠线路接触器打开,另一头靠隔离刀开关打开,使牵引电机与主电路完全隔离,否则仍会引起接地继电器动作。

库用开关20QP和50QP为双刀双投开关。在正常运行位时,其主刀与主电路隔离,其相接点接通受电弓升弓电空阀,方可升弓;在库用位时,其主刀将库用插座30XS或40XS电源分别与2M电机或5M电机的电枢正极引线22或52及总负极72或82连接,其辅助接点断开受电弓升弓电空阀的电源线,使其在库用位时不能升弓。只要20QP或50QP 之一在库用位,即可在库内动车。同时,通过相应的联锁接点可分别接通12KM、22KM 和32KM、42KM或52KM和62KM,从而使1M、3M或4M、6M通电,以便于工厂出厂试验或机务段出库试电机转向、出人库及轮对旋轮。

空载试验转换开关10QP和60QP,为三刀双投开关。当机车处于正常运行时,10QP 和60QP将1位和6位电压传感器112SV和162SV分别与1M和6M的电枢相连,其相应辅助接点接通12KM、22KM、32KM、42KM、52KM和62KM的电空阀;当机车处于空载试验位时,10QP和60QP将112SV和162SV分别与主整流器70V和80V的输出端相连,同时短接76R和86R,其相应辅助接点断开线路接触器12KM、22KM、32KM、42KM、52KM和62KM的电空阀电源线,使10QP或60QP置于试验位时电机与整流器脱开,确保空载试验时的安全性。

每一台牵引电机设有一台直流电流传感器和一台直流电压传感器,其作用除提供电子控制的电机电流与电压反馈信号外,还通过电子柜,作为司机台电流表与电压表显示的信号的检测。直流电压传感器设置在电枢两端,它有两个优点:一是在牵引与制动时,从司机台均能看牵引电机电压;二是三台并联的牵引电机之一空转时,电枢电压的反应较快。

另外,电机的过流信号由直流电流传感器经电子柜发出,进行卸载或跳主断。牵引电机过流保护整定值为1300A(1+5%)。

2.2.4加馈电阻制动电路

SS6B型电力机车采用了加馈电阻制动电路,主要优点是能够获得较好的制动特性,特别是低速制动特性。见附图1为机车加馈制动工况时的电路图。

加馈电阻制动又称为“补足”电阻制动;它是在常规电阻制动的基础上发展的一种能耗制动技术。根据理论分析可知,机车轮周制动力为

B=CФIz(N)

式中 C———机车结构常数;

Ф—电机主极磁通,Wb

Iz——电机电枢电流,A。

在常规的电阻制动中,当电机主励磁最大恒定后,电枢电流(制动电流)Iz随着机车速度减小而减小。因此,机车轮周制动力也随着机车速度的变化而变化;为了克服机车轮周制动力在机车低速区域减小的状况,加馈电阻制动是从电网中吸收电能,通过主相控整流器向电机电枢补足Iz并保持恒定,以此机车在低速区域获得理想的轮周最大恒定制动力。

机车处于加馈电阻制动时,位置转换开关已转换到制动位,牵引电机电枢与主极绕组脱离并与制动电阻串联,且同一转向架的3台电机电枢支路并联之后,与主整流器串联构成回路。,每台车6台电机的主极绕组串联连接,经励磁接触器、励磁整流器(99V)构成回路,由主变压器励磁绕组供电。

现以1M电机为例,叙述一下电路电流的路径:

1.当机车速度高于33km/h时,机车处于纯电阻制动状态。其电流路径为71母线→11L平波电抗器→12KM线路接触器→111SC电流传感器→1M电机电枢→107QPR1位置转换开关“牵”--“制”鼓→13R制动电阻→73母线→V8→V7→71母线。

2.当机车速度低于33km/h时,机车处于加馈电阻制动状态。当电源处于正半周时,其电流路径为a2→V7→71母线→11L平波电抗器→12KM线路接触器→111SC电流传感器一1M电机电枢一107QPR1位置转换开关“牵”--“制”鼓一13R制动电阻→73母线→V10→x2→a2;当电源处于负半周时,其电流路径为x2→V9→71母线→11L平波电抗器→12KM线路接触器→111SC电流传感器→1M电机电枢→107QPS1位置转移开关“牵”一“制”鼓→13R制动电阻→73母线→V8→a2→x2。

电阻制动时,主变压器的励磁绕组a5一x5经励磁接触器91KM向励磁整流器99v 供电,并与1-6M牵引电机主极绕组串联,且励磁电流方向与牵引时相反,由下往上。从励磁整流输出端开始,其电流路径为91母线→199SC电流传感器→90母线→107QPRl 位置转换开“牵”--“制”鼓→19QS→107QPV1→D12→D11→107QPVl→14母线→107QPR2→29QS→107QFV2→D22→D21→107QPV2→24母线→107QPR3→39QS→107QFV3→D32→D31→107QPV3→34母线→108QPR6→69QS→108QPV6→D61→D62→108QPV6→64母线→

108QPR5→59QS→108QPV5→D51→D52→108QPV5→54母线→108QPR4→49QS→108QPV4→D41→D42→44母线→92KM励磁接触器→82母线。

第一转向架牵引电机1M、2M、3M电枢,制动电阻及主整流器70V组成第一转向架主接地保护系统,由主接地继电器97KE担负保护功能。第二转向架牵引电机4M、5M、6M电枢,制动电阻,主整流器80V及励磁整流器99V,负极母线82为主整流器80V与励磁整流器99V的公共点,组成第二转向架主接地保护系统,由主接地继电器98KE担负保护功能。由此形成两个独立的接地保护电路系统。

制动工况时,当一台牵引电机或制动电阻故障后,应将相应隔离开关置故障位,则线路接触器打开,电枢回路被甩开,主极绕组被短路无电流但有电位。

为了能在静止状况下检查加馈制动系统是否正常,机车在静止时,系统仍能给出50A 的加馈制动电流(此时励磁电流达到最大值930A)。机车在此加馈制动电流的作用下,将有向后动车的趋势,这一点应引起高度重视,以利机车安全。

2.2.5PFC电路

SS6B型电力机车主要

电路设置有4组完全相同的

PFC装置。

PFC电路结构见图2—

4。

该装置是通过滤波电容

器和滤波电抗器组成的串联

谐振电路,来吸收机车的三

次谐波流,以提高机车的功

率因数。它主要由真空接触器(电磁式)、开关晶闸管、滤波电容器、滤波电抗器和故障隔离开关及放电电阻等电器组成。

机车采用的电磁式真空接触器具有接通、分断能力大,电气和机械寿命长等优点。在电路中,采用该真空接触器的作用和目的主要有两点:一是当晶闸管开关被击穿时,利用其分断能力大的优势起电路的保护作用;二是采用该真空接触器之后,可简化机车的控制系统和机车的结构设计。

在PFC电路中设有故障隔离开关,在PFC电路出现接地时作隔离处理用。当故障隔离关处于故障位时,一方面使PFC电路与机车主变压器的牵引绕组完全隔离;另一方面,通过辅助联锁控制真空接触器主触头分断,同时,其主闸刀还将对电容器进行放电。

为确保人身安全,在每组PFC电路中的滤波电容器和滤波电抗器上并联了一个电阻(800n),当司机取出司机钥匙时,滤波电容器上的电压能够快速放电。该电阻的投入是靠放电继电器(116KM、126KM、156KM和166KM)来实现的。

2.2.6保护电路

SS6B型电力机车主电路保护包括:短路、过流、过电压及主接地保护等四个方面。

1.短路保护

当网侧出现短路时,通过网侧电流互感器7TA一原边过流继电器101KC,使主断路器4QF动作,实现保护,整定值为320A。

当次边出现短路时,经次边电流互感器176TA、177TA、186TA及187TA→电子柜过流保护环节一使主断路器4QF动作,实现保护,整定值为3 000A(1土5%)。

硅元件击穿短路保护,取消传统电路在整流器每一个晶闸管上串联的快速熔断器,采用每一整流桥交流侧低电位的输入端串联一个快速熔断器来实现。这有两个显著优点:一是快速实现硅元件击穿短路保护;二是能有效保护同一桥臂其他未击穿短路硅元件。

2.过流保护

考虑到牵引工况和制动工况时,牵引电机的工况不同,牵引电机的整定值和保护方式设置也不同。

在牵引工况时,牵引电机的过流保护是通过直流电流传感器111SC、121SC、131SC、141SC、151SC和161SC一电子柜—主断路器来实现的,其整定值为1 300A(1±5%)。

在制动工况时,牵引电机的过流保护是通过直流电流传感器111SC、121SC、131SC、141SC、151SC和161SC一电子柜一励磁过流中间继电器559KA->励磁接触器91KM来实现的,整定值为1 000(1A±5%)。此外,还设有励磁绕组的过流保护,它是通过直流电流传感199SC一电子柜一励磁过流中间继电器559KA—>励磁接触器91KM来实现的。整定值1150A(1±5%)。

3.过电压保护

机车的过电压包括大气过电压、操作过电压、整流器换向过电压和调节过电压等。大气过电压保护主要采用两种方式:一是在网侧设置新型金属氧化物避雷器5F;二是在主变压器的各次边绕组上设置RC过电压吸收装置和牵引绕组上的非线性电阻138RV、139RV、148RV、149RV。牵引绕组上的RC吸收装置由71C与73R、72C与74R、81C与83R、82C与84R构成,励磁绕组上的RC吸收装置由93C与94R构成;辅助绕组上的RC吸收

装置由255C与260R构成。

当机车主断路器4QF打开或接通主变压器空载电流时,机车将产生操作过电压,通过网侧闭雷器5F和牵引绕组上的RC吸收装置和非线性电阻能够对此操作过电压进行抑制。

机车的主整流器70V和80V、励磁整流器99V的每一晶闸管及二极管上均并联有RC 吸收器,以抑制整流器的换向过电压。

另外,牵引电机的电压由主整流器进行限压控制,其限制值为1020V(1±5%)。

4.接地保护

牵引工况下,每“转向架供电单元”设一套接地保护系统,接地继电器动作制接地电流经195R或196R之后,通过其联路器动作,实现保护。

制动工况下,具有两套独立回路,励磁回路属于第二回路。为消除“死区”,回路各电势均为相加关系。为此,励磁电流方向与牵引时相反,改为由下而上,故障电枢电势方向亦相反,改为上正下负。当制动工况发生接地故障时,接地继电器动作,通过其联锁使主断路器动作,实现保护。

第一转向架供电单元的接地保护系统由接地继电器97KE、限流电阻193R、接地电阻195R、隔离开关95QS、电阻191R和电容197C组成;第二转向架供电单元的接地保护系统由器98KE、限流电阻194R、接地电阻196R、隔离开关96QS、电阻192R和电容198C组成。其中191R与197C、192R与198C是为了抑止97KE或98KE动作线圈两端因接地故障引起的尖峰过电压而设置的。95QS和96QS的作用在于当接地故障不能排除,并确认是一个接地点情况下,又仍需维持机车故障运行时,通过将其置故障位,使接地保护系统与主电路隔离、接地继电器不再动作而由主断路器保护。此时,195R或196R 使主电路呈高阻接地状态,限至“地”。

第3章辅助电路原理的分析

3.1简介

S S6B型电力机车辅助电路同其他SS系列机车辅助电路基本一样,即由劈相机实现的单一三相供电系统,辅机均采用三相异步电动机拖动。电源来自主变压器的辅助绕组a6—b6一x6,其中a6-x6的额定电压为388.7V,b6一x6的额定电压为225V,单相交流电源从b6一x6经库用转换刀开关235QS至导线201、202,给各辅机及窗加热、取暖设备供电。机车在库内可通过辅助电路库用插座294XS接人单相或三相380V库内电源,将235QS库用开关置库用位,辅助电路设备即可由库内电源供电。辅助电路原理图见附图2。

3.2辅助电路的构成分析

3.2.1单一三相供电系统

1、劈相机分相启动(见图3

—1)

SS6B型电力机车采用两台

YFX3—280M—4型劈相机(代号

1MG、2MG),其额定电压为380v,

额定功率为57kW。劈相机lMG、

2MG的运转与停止均通过其相应

接触器201KM、202KM控制。劈相

机1MG进行单相启动时,必须在

第二电动相绕组与发电相绕组间

接入启动电阻263R、以获得启动

力矩进行电阻分相启动。启动电

阻的投入与切除是通过接触器

213KM来执行的,劈相机启动继

电器283AK监测着1MC的全部启

动过程,并控制启动电阻回路的

开断,283AK的工作电源(DC 110V)

从导线531经533KT常开联锁由

导线281引入。当按下劈相机按键开关后,213KM闭合,启动电阻投入,而后201KM闭

机电设备电气线路的故障分析及处理

龙源期刊网 https://www.doczj.com/doc/cc10978029.html, 机电设备电气线路的故障分析及处理 作者:石明东 来源:《大经贸》2018年第05期 【摘要】在工业化自动化不断推进的今天,机电设备的运行状态对目前的经济发展和人们的生活水平都有着很大的影响。所以为了保障机电设备的正常运行,电力主管部门应该加大对电气设备的维护中应该定期的对电气线路进行检测和维护。本文主要针对机电设备的电气线路故障产生的原因以及解决办法和对线路处理措施。 【关键词】机电设备电气线路故障处理措施 一、分析机电设备电气线路故障的检修步骤 1、维护人员首先要对机电设备的操作和安装有充分的了解。在故障出现时,能及时停止运行。并对照机电设备的安装图纸寻找故障点。对于机电设备电气接线图和工作原理要进行详尽的了解。对于一些机电设备中的易损部件的维修步骤和方法更是要深入的分析和研究。这些都是机电设备的维护人员在日常的工作中必须提前熟悉和掌握的。 2、当机电设备在运行过程中出现故障时,检修维护人员要在第一时间与设备的操作人员进行沟通。检修人员要通过沟通了解设备在出现故障前后的运行情况和故障引起的后果。这些都会减少寻找故障排除的时间,提高检修效率及时的恢复生产。 3、在充分了解了故障发生的情况之后,根据设备的电气图纸和施工图纸对设备的故障点进行初步的研究和分析。尽力寻找故障发生的范围和可能的故障点。 4、在机电设备的故障点确定后,针对不同的故障点采取不同的维修方法。如出现外观问题,则需对故障点的外观进行重新的修复。在外观检测没有出现问题时,从故障点的内部的结构和工作原理对设备进行检修。这里又分为日常检修范围内的故障点和不属于日常检修内的故障点两类问题。对于输入日常检修范围内的故障点,根据日常对故障问题的预案进行维修。如不是日常检修范围内的故障点,则需对故障点的原理进行分析,从设计上找出故障发生的原因,避免类似故障再次发生。 机电设备的检修工作,常常带有很强的危险性质,特别是那些不属于日常故障点的事故出现时,所以对于机电设备的检修需要注意的问题很多,先总结归纳如下: (1)机电设备的线路中如出现短路故障,则不能使用实验法进行检测和维修,如采用实验法则会对机电设备的其他部分造成损害,使故障进一步的扩大。(2)在进行故障点的线路检查时,要将故障点线路与其他的线路在接口处断开,避免在检修时对其他的线路造成损坏。(3)在机电设备检修时不要随意的接通机电设备的电源,以免在未检修完成的情况下,对设备造成损坏。

电气线路常见故障

电气线路常见故障 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电气线路常见故障电气线路故障可能导致触电、火灾、停电等多种事故。下面对电气线路的常见故障作—简要分析。 一、架空线路故障 架空线路敞露在户外,会受到气候和环境条件的影响。雷击、大雾、大风、雨雪、高温、严寒、洪水、烟尘和灰尘、纤维等都会从不同的方面对架空线路造成威胁。 当风力超过线路杆塔的稳定度或机械强度时,就会使杆塔歪倒或损坏。这种事故一般是在出现了超出设计所考虑的风速条件时才会发生。如果杆塔因锈蚀或腐朽而使机械强度降低,即使在正常风力下也可能发生这种事故。大风还可能导致混线及接地事故,也可能发生倒杆事故。此外,风力还可能引起导线、避雷线的混线事故。 雨水对架空线路的重要影响是造成停电事故和倒杆。毛毛细雨能使脏污的绝缘子发生闪络,从而引起停电事故;倾盆大雨又可能造成山洪爆发而冲倒线路杆塔。 雷电击中线路时,有可能使绝缘子发生闪络或击穿。

导线、避雷线覆冰时,不仅加重了导线和杆塔的机械负载,而且使导线弧垂增大,造成对地安全距离不足。当覆冰脱落时,又会使导线、避雷线发生跳动,引起混线。 高温季节,导线会因气温升高,弧垂加大而发生对地放电;严冬季节,导线又因气温下降收缩而使弧垂减小,承担不了过大的张力而拉断。 周围环境对架空线路安全运行的影响,视环境的不同而不同。例如,化工厂或沿海区域的线路容易发生污闪,河道附近的线路易遭受冲刷,路边和采石厂附近的线路易受外力的破坏等。 季节和环境是密切相关的。例如,化工区的线路常在大雾季节或雨雪季节发生故障,河道附近的线路也只在雨汛季节才会受到洪水的损害。 生产排出来的烟尘和其他有害气体会使厂矿架空线路绝缘子的绝缘水平显着降低,以致在空气湿度较大的天气里发生闪络事故;在木杆线路上,因绝缘子表面污秽,泄漏电流增大,会引起木杆、木横担燃烧事故。有些氧化作用很强的气体会腐蚀金属杆塔、导线、避雷线和金具。

电动机常见故障分析及处理(案列)

项目:排除电动机常见故障 学习目的 掌握排除电动机常见故障方法 工作准备 电动机一台,万用表、电桥、常用电动工具 操作步骤 电源接通后,电动机不转,熔丝烧断 运作中的电动机要严格按照国家相关质量标准进行检查以确保电动机的正常使用,运作的电动机与被拖动的设备位置要恰当,保证运行的稳定性,不能有晃动,保证通风性能良好。有些电动机因为各种原因需要经常的挪动,搬运等,对于这种电动机要加强日常的维护和检查,保证电动机运转的稳定性。 1、事故现象: 原因分析: 1)缺一相电源,或定子绕组一接反。 2)定子绕组相间短路。 3)定子绕组接地。 4)定子绕组接线错误。 5)熔丝截面过小。 6)电源线短路或接地。 故障判断: 1)首先可用万用表电阻档检查电源开关三相触头是否可靠闭合。 2)如开关正常则用双臂电桥来测量电机定子绕组相间直阻,以判定定子绕组是否完好。 3)如电机直阻正常可用摇表测量电机定子绕组和电源线对地绝缘电阻,判断电源线或电机是否发生接地故障。 4)如电机定子和电源线绝缘均正常则检查电机电源熔丝(如有)所标熔断电流同电机功率是否相匹配。 5)如以上检查均正常则应考虑电机定子绕组是否接反,如怀疑绕组接反可使用直流法重新判定绕

组首尾端。 处理方法: 1)检修故障开关触头,消除缺相。 2)查出短路点,并修复。 3)消除接地。 4)查出误接,改正之。 5)换较粗的熔丝。 6)重换电源线。 2、事故现象:通电后电动机不转动,有嗡嗡声 原因分析: 1)定子、转子绕组断路或电源一相无电。 2)绕组引出线首末接错,或绕组内部接反。 3)电源回路接点松动,接触电阻大。 4)负载过大,或转子被卡住。 5)电源电压过低。 6)小型电动机装配太紧或轴承内油脂过硬。 7)轴承卡住。 故障判断: 1)首先可用万用表电压档检查三相电源是否电压过低或有缺相。 2)如电源电压正常则用双臂电桥来测量电机定子绕组相间直阻,以判定定子绕组是否完好。 3)如电机直阻正常可用手转动电机转子以判断电机是否有卡涩现象,如有卡涩可将电机与负载解开再转动转子看卡涩是否消失,如消失则应检查负载是否过大或卡涩;如卡涩现象仍存在则需将电机解体做进一步检查。 4)如电机没有卡涩现象就仔细检查电机电源线螺丝是否松动,电源线本身是否损坏。 5)如以上检查均正常则应考虑电机定子绕组是否接反,如怀疑绕组接反可使用直流法重新判定绕组首尾端。 处理方法:

浅议电气控制回路故障排查方法及注意事项示范文本

浅议电气控制回路故障排查方法及注意事项示范文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

浅议电气控制回路故障排查方法及注意 事项示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 电气控制回路形式多样,复杂程度不一,其故障常常 和机械、液压系统交错在一起,难以分辨。常用的电气控 制回路故障的排查方法有:调查研究法、试验法、逻辑分 析法和测量法。一般情况下,调查研究法能帮助我们找出 故障现象;而试验法不仅能找出故障现象,而且还能找到 故障部位或故障回路;逻辑分析法石缩小故障范围的有效 方法;测量法是找出故障点的基本可靠和有效的方法。 (1)调查研究法 该方法主要是通过询问设备操作员,看有无由于故障 引起明显的外观征兆;听设备电器元件在运行时的声音与 正常运行时有无明显差异;摸电气发热元件及线路的温度

是否正常等。 在听电气设备运行声音是否正常而需要通电时,应以不损坏设备和扩大故障范围为前提;在摸靠近传动装置的电器元件和容易发生触电事故的故障部位时,必须在切断电源后进行,以确保人员和设备的安全。 (2)试验法 在不损伤电气和机械设备条件下,可通电进行试验的一种方法。通电试验一般可先进行点动试验各控制环节的的动作程序,若发现某一电器动作不符合要求,则说明故障范围在与此电器有关的电路中;然后在这部分故障电路中进行检查,便可找出故障点。 在采用试验法检查时,可以采用暂时切除部分电路(如主电路)的试验方法来检查各控制环节的动作是否正常。但必须注意不要随意用外力使接触器或继电器动作,以防引起事故发生。

机电设备电气线路的故障分析及处理

机电设备电气线路的故障分析及处理 摘要:机电设备在长期运行过程中会不可避免的出现各种故障,如电气故障、 机械故障或是液压故障等,当故障一旦出现,则需要检修者能熟练掌握机电设备 故障的检修步骤。在本文中,主要就机电设备电气线路故障进行阐述,首先论述 了机电设备电气线路的故障的检修步骤,进而详细阐述了机电设备电气线路常用 的检修处理方法,以供参考。 关键词:机电设备;电气线路;故障;处理 电气设备主要有电气主要接线、变压器、各种配电装置等,因为受工作环境、电压电流等多方面因素的影响,在运用过程中对电气设备的要求都较高。但因为 电气设备本身线路复杂、工作量大,加之各种人为和自然因素的影响,所以在运 用过程中常会出现各种故障,影响整个系统的工作。为此,分析和处理机电设备 电气线路故障十分重要和迫切。 1机电设备电气线路故障分析步骤 1.1技术人员必须全面、详细了解全部电气设备图件,如电气设备接线图、电气设备原理图、电气设备位置图、有关元件位置安装图等,尤其是要注重分析并 研究比较重要的部件维修图,必须确保精准。 1.2电气设备在运行过程中出现故障的时候,有关技术检修人员要第一时间跟操作设备的人员沟通交流,全面了解设备在出现故障之前和之后的实际运行情况 以及出现故障时的异常情况,尽快排除故障。 1.3技术检修人员要基于出现故障的情况,结合电气设备的有关图纸初步分析并研究故障问题,判定可能出现故障的位置或范围,便于后续故障处理工作的开展。 1.4初步判定故障范围之后,有关技术检修人员首先要多方位检查电气设备的外观,倘若电气设备外观没有任何问题就要结合电气设备的故障性质采用相应的 检测设备对电气设备展开检测。通常来说,检测电气设备都用实验法。 2机电设备电气线路故障的检修步骤 当机电设备在使用中出现故障时,需要及时的对电气线路和机电设备进行检 修和维护。特别是对一些以生产效益紧密相连的设备线路出现故障时,设备的维 护人员要严格的按照检修步骤和方法对设备和线路进行检修。本文主要讨论对于 机电设备的线路出现问题时的检修步骤。具体检修的步骤如下: 2.1机电设备的维护人员首先要对机电设备的操作和安装有充分的了解。在故障出现时,能及时停止运行。并对照机电设备的安装图纸寻找故障点。对于机电 设备电气接线图和工作原理要进行详尽的了解。对于一些机电设备中的易损部件 的维修步骤和方法更是要深入的分析和研究。这些都是机电设备的维护人员在日 常的工作中必须提前熟悉和掌握的。 2.2当机电设备在运行过程中出现故障时,检修维护人员要在第一时间与设备的操作人员进行沟通。检修人员要通过沟通了解设备在出现故障前后的运行情况 和故障引起的后果。这些都会减少寻找故障排除的时间,提高检修效率及时的恢 复生产。 2.3在充分了解了故障发生的情况之后,根据设备的电气图纸和施工图纸对设备的故障点进行初步的研究和分析。尽力寻找故障发生的范围和可能的故障点。 2.4在机电设备的故障点确定后,针对不同的故障点采取不同的维修方法。如出现外观问题,则需对故障点的外观进行重新的修复。在外观检测没有出现问题

电气电路故障排除方法

电气电路故障排除方法 电气故障的排除是维修电工的一项重要工作,要彻底排除故障,必须清楚故障发生的原因,更重要的是能从理论上分析、解决故障发生,要具有一定的专业理论知识,要掌握排除故障的方法。 电气电路的故障分析顺序一般是这样的: 1)首先是分析供电电源部分:测量电源看有没有电或缺相,如果电源不正常,看一下供电电源的断路器是否跳闸,二次控制电路的熔断器或熔丝是否烧断,电源开关的触点是否良好。在实际工作中,很多人往往忽略了这一步。如果设备的供电部分正常,这一步可以跳过。 2)检查设备的输入部分:在闭环的自动控制系统中,如果没有输入信号或输入信号不正常,则系统时无法正常工作的。检查输入传感器是否故障或断线,在电气控制中,如果功能输入按钮触点不正常或是继电器的自保触点接触不良,电控系统也不能正常工作。如果所有的输入信号显示正常或功能控制按钮及自保触点正常则此步跳过。 3)检查设备的输出部分:如果控制器的输出信号有,但执行器(如变频器)不动作,说明是执行部分有问题或到执行器的连线有问题。在电气控制中,检查输出到电动机等

用电设备去的电源是否正常,有无缺相问题,如果正常,说明是用电设备(或电动机)自身有问题。如果控制器的输出信号正常,则跳过此步。 4)检查中间电路及主控制器:由电源开始按从上向下的顺序检查中间电路,看到底是哪个部件出现的断电或缺相,然后解决之。对于主控制器(如plc),先单点检查输出口的动作和输出信号是否正常,如果正常再重点检查程序看是哪里有问题。 电气故障现象是多种多样的,同一类故障可能有不同的故障现象,不同类故障可能是同种故障现象的同一性和多样性,会给查找故障带来复杂性。但是,故障现象是查找电气故障的基本依据,是查找电气故障的起点,因此要对故障现象仔细观察分析,找出故障现象中最主要的、最典型的方面,搞清故障发生的时间、地点、环境等。很多电气故障的排除,必须依靠专业理论知识才能真正弄懂弄通。电气维修人员与其他工种维修人员比较而言,理论性更强,有时候没有理论的指导很多工作根本无法进行,因此要具有一定的专业理论知识。维修人员为了更好地提高自己在实际工作中有效解决实际问题的能力和维修水平,应不断加强自身专业理论知识的学习和提高操作技能水平,当发生电气故障时,能够准确地查找其故障所在,从而排除故障使电气设备能够正常稳定地运行。维修电工电气故障常见排除法如下:

电气控制线路故障的检查和分析方法(正式)

编订:__________________ 审核:__________________ 单位:__________________ 电气控制线路故障的检查和分析方法(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8754-55 电气控制线路故障的检查和分析方 法(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一个控制线路,它可以简单,也可以复杂。但是,任何复杂的控制线路总是由一些较简单的环节有机地组合起来的。每一个环节又是由若干电器元件组成,每个电器元件又由若干零部件组成。然而,故障往往只是由于某个或某几个电器元件、部件或接线有问题而产生的。 电气控制线路形式多样,复杂程度不一,其故障常常和机械、液压系统交错在一起,难以分辨。常用的电气控制线路故障的检查和分析方法有:调查研究法、试验法、逻辑分析法和测量法。一般情况下,调查研究法能帮助我们找出故障现象;而试验法不仅能找出故障现象,而且还能找到故障部位或故障回路;逻辑分析法石缩小故障范围的有效方法;测量法是找

电气线路常见故障参考文本

电气线路常见故障参考文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电气线路常见故障参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 电气线路故障可能导致触电、火灾、停电等多种事 故。下面对电气线路的常见故障作—简要分析。一、 架空线路故障 架空线路敞露在户外,会受到气候和环境条件的影 响。雷击、大雾、大风、雨雪、高温、严寒、洪水、烟尘 和灰尘、纤维等都会从不同的方面对架空线路造成威胁。 当风力超过线路杆塔的稳定度或机械强度时,就会使 杆塔歪倒或损坏。这种事故一般是在出现了超出设计所考 虑的风速条件时才会发生。如果杆塔因锈蚀或腐朽而使机 械强度降低,即使在正常风力下也可能发生这种事故。大 风还可能导致混线及接地事故,也可能发生倒杆事故。此 外,风力还可能引起导线、避雷线的混线事故。

雨水对架空线路的重要影响是造成停电事故和倒杆。毛毛细雨能使脏污的绝缘子发生闪络,从而引起停电事故;倾盆大雨又可能造成山洪爆发而冲倒线路杆塔。 雷电击中线路时,有可能使绝缘子发生闪络或击穿。 导线、避雷线覆冰时,不仅加重了导线和杆塔的机械负载,而且使导线弧垂增大,造成对地安全距离不足。当覆冰脱落时,又会使导线、避雷线发生跳动,引起混线。 高温季节,导线会因气温升高,弧垂加大而发生对地放电;严冬季节,导线又因气温下降收缩而使弧垂减小,承担不了过大的张力而拉断。 周围环境对架空线路安全运行的影响,视环境的不同而不同。例如,化工厂或沿海区域的线路容易发生污闪,河道附近的线路易遭受冲刷,路边和采石厂附近的线路易受外力的破坏等。 季节和环境是密切相关的。例如,化工区的线路常在

三相异步电动机的绕组常见故障分析与处理方法(精)

班级:07自动化 学号:0709111016 姓名:高顺 三相异步电动机的绕组常见故障分析与处理方法 关键词:断路电流不平衡短路绝缘损坏磁场不均绕组接地绕组接错 一、绕组开路 由于焊接不良或使用腐蚀性焊剂,焊接后又未清除干净,就可能造成壶焊或松脱;受机械应力或碰撞时线圈短路、短路与接地故障也可使导线烧毁,在并烧的几根导线中有一根或几根导线短路时,另几根导线由于电流的增加而温度上升,引起绕组发热而断路。一般分为一相绕组端部断线、匝间短路、并联支路处断路、多根导线并烧中一根断路、转子断笼。 1. 故障现象 电动机不能启动,三相电流不平衡,有异常噪声或振动大,温升超过允许值或冒烟。 2. 产生原因 (1)在检修和维护保养时碰断或制造质量问题。 (2)绕组各元件、极(相)组和绕组与引接线等接线头焊接不良,长期运行过热脱焊。 (3)受机械力和电磁场力使绕组损伤或拉断。 (4)匝间或相间短路及接地造成绕组严重烧焦或熔断等。 3. 检查方法 (1)观察法。断点大多数发生在绕组端部,看有无碰折、接头出有无脱焊。(2)万用表法。利用电阻档,对“Y”型接法的将一根表棒接在“Y”形的中心点上,另一根依次接在三相绕组的首端,无穷大的一相为断点;“△”型接法的短开连接后,分别测每组绕组,无穷大的则为断路点。 (3)试灯法。方法同前,等不亮的一相为断路。 (4)兆欧表法。阻值趋向无穷大(即不为零值)的一相为断路点。 (5)电流表法。电机在运行时,用电流表测三相电流,若三相电流不平衡、又无短路现象,则电流较小的一相绕组有部分短断路故障。 (6)电桥法。当电机某一相电阻比其他两相电阻大时,说明该相绕组有部分断路故障; (7)电流平衡法。对于“Y”型接法的,可将三相绕组并联后,通入低电压大电流的交流电,如果三相绕组中的电流相差大于10%时,电流小的一端为断路;对于“△”型接法的,先将定子绕组的一个接点拆开,再逐相通入低压大电流,其中电流小的一相为断路。

电气控制线路图

1.单按钮控制电动机起停线路 常规电动机起动、停止需用两个按钮,在多点控制中,则需按钮引线较多。利用一个按钮多点远程控制电动机的起停,则可简化控制线路又节省导线。如图所示,其工作原理是:起动时.按下按钮AN,继电器1J线圈得电吸合,1J常开触点闭合,交流接触器C线圈通电,C吸合并自锁.电动机起动。C的常开辅助触头闭合,常闭辅助肋头断开.这时,继电器2J的线圈因1J的常闭触点已断开而不能通电,所以2J不能吸合。松开按钮AN,因C已自锁,所以交流接触器C仍吸合,电动机继续运转。但这时1J因AN放松而断电释放,其常闭触点复位,为接通2J作好准备。在第二次按下按钮AN,这时继电器1J线圈通路被C常闭触头切断,所以U不会吸合,而2J线圈通电吸合。2J吸合后,其常闭触点断开,切断C 线圈电源,C断电释放,电动机停转。 2.接触器控制电机线路 具有自锁功能的电机控制线路,如图所示,当起动电动机时合上电源开关HK,按下起动按钮酗,接触器C线圈获电,C主触点闭合使电动机M运转;松开QA,由于接触器C常开辅助触点闭合自锁,控制电路仍保持接通,电动机M继续运转。停止时,按TA接触器C 线圈断电.C主触点断开,电动机M停转,同时自保持辅助触点分断。具有自锁的正转控制线路的重要特点是它具有欠压与失压(零压)保护作用。 有很多生产机械因负载过大、操作频繁等原因,使电动机定子绕组中长时间流过较大的电流,有时熔断器在这种情况下尚未及时熔断,以致引起定子绕组过热,影响电动机的使用寿命.严重的甚至烧坏电动机。因此,对电动机还必须实行过载保护。本线路具有热继电保护功能,当电动机过载时.主回路热继电器RJ所通过的电流超过额定电流值,使RJ内部

C6140车床电气线路常见故障分析与检修讲课教案

C6140车床电气线路常见故障分析与检修

课题:车床电气线路常见故障分析与检修(说课稿) 一、内容分析 1.本课题内容的实用性很强,是维修电工职业岗位所必须掌握的基本职业技能,它对学生综合运用知识的能力要求很高,即具备阅读电原理图的能力,又需电气线路基本检测方法,是对“车床电气控制”学习效果的综合检查,又为以后较复杂机床电气线路的故障分析与检测做铺垫。 2.教学目标 知识目标:了解机床电气设备故障的诊断步骤和诊断方法;掌握C6140车床电气线路常见故障分析与检修方法 能力目标:训练综合表达能力(文字、口头);提高分析与解决问提的能力;培养学生的维修电工职业岗位意识和团队协作意识。 3.教学重点 车床电气线路常见故障分析 4.教学难点 车床电气线路常见故障检测 二、教学方法与手段 本课题内容要围绕车床电气控制线路图来讲解,适合采用多媒体教学和现场教学,用课件演示车床的控制线路图。结合实训,通过对机床的操作和故障检测,加深对课题内容的理解。在授课的过程中,注意深入浅出,从实用性的角度,调动起学生学习的积极性。 根据我校学生和教学设备的实际情况,以及课题的特点,主要采用以下教学模式: 1.学生讲、教师评,“教”与“学”模拟换位--一种另类互动模式

2.学生扮演维修电工角色,进行岗位体验—情境体验模式 3.现场教,现场学,现场实践——现场教学法 具体教法:先采用多媒体模拟机床控制线路和机床排故是的模拟机床,举一个具体案例,从维修电工的角度介绍故障的检修步聚。然后提出几个常见故障问题,让学生扮演维修电工角色自己来完成。如断开电路中的熔断器,断开自锁触头,断开接触器线圈的电源等,首先让学生根据电原理图进行分析,说出可能会导致的故障现象,再结合动手实际操作,根据要求断开电路,把真实看到的故障现象与刚才分析进行对比是否相吻合。这种“纸上谈兵”的方法,在这里起着很重要的作用,大大地加强了学生的分析能力,培养了学生的逻辑推理能力、思维能力,若分析故障的思路正确的话,其实际的故障也就很快排除。有了以上的知识作为铺垫,学生对故障分析有了感性的认识,根本不需费很大的劲,学生更不用去“死记”,让学生轻松地学会了故障分析,无形之中提升了维修技能。 三、学法 由于本课题是在掌握常用控制电器及电气控制基本环节的基础上,对车床电气控制系统进行的故障分析,要求学生在课前要对上模块的内容进行复习,课堂上要紧跟老师的思路走,对电气原理图认真进行分析,根据故障现象缩小范围;再结合动手实际操作,加深理解;课后到校内机加工车间进行现场观摩、参加一定的生产实际操作,增强感性认识。 四、教学过程(教学设计)

关于机电设备电气线路故障的问题分析与处理 王亚飞

关于机电设备电气线路故障的问题分析与处理王亚飞 发表时间:2019-07-09T12:01:03.837Z 来源:《电力设备》2019年第6期作者:王亚飞 [导读] 摘要:机电设备的种类、应用十分广泛,且随着科技的进步,设备的技术含量也在不断提高,结构更加复杂,在实际运行中,也更容易出现各种各样的问题,尤其是在电气线路方面,由于机电设备的电气线路功率较高,设备在运行时的电流通过量大,电压也大,因此对于这种机电设备的电路要求要比一般电气线路的要求高,而且设备基本常年处于运行状态,再加上外界环境的影响,随着使用年限的增加,电气线路会出现不同程度的老化现象,也会带来 (身份证号码:34260119870726XXXX 安徽省巢湖市 238000) 摘要:机电设备的种类、应用十分广泛,且随着科技的进步,设备的技术含量也在不断提高,结构更加复杂,在实际运行中,也更容易出现各种各样的问题,尤其是在电气线路方面,由于机电设备的电气线路功率较高,设备在运行时的电流通过量大,电压也大,因此对于这种机电设备的电路要求要比一般电气线路的要求高,而且设备基本常年处于运行状态,再加上外界环境的影响,随着使用年限的增加,电气线路会出现不同程度的老化现象,也会带来其他的故障问题,严重的甚至会直接对设备造成损害,产生不必要的经济损失。我们在机电设备的日常使用中,作为相关管理技术人员,必须要对设备的电气线路定期进行检修和维护,减少电气线路隐患,保证线路的稳定性和畅通性。 关键词:机电设备;电气线路故障;问题 1机电设备电气线路安全运行的意义 机电设备种类繁多,通常最常见的是变压器、工程生产机械设备。由于机电设备的工作频率、相同的概率和满载率相对较高,线路的传输功率也要求相对较高,在使用过程中线路会有较大的电流。因此,对此类机电设备的电路质量要求较高。机电线路安装形式复杂,长期使用会受到环境老化(温度老化、生物老化、阳光老化等)等多种因素的影响。在恶劣的环境下,机电设备线路会发生各种故障,严重影响人们的生产和生活。因此,在机电设备的日常运行中,有关技术人员必须定期进行检查,确保机电设备运行的稳定性和流畅性。同时,在施工过程中,为保证电气线路的可靠性,同时应加强焊接质量。目前,随着社会经济的发展,机电设备的普及和电器的增加,输电线路的功率不断增加。因此,必须保证机电设备的质量,减少设备故障引起的线路电流突然增大,使用高效节能的机电设备,管理人员必须做好电气线路的日常维护工作。 2机电设备的电气线路故障问题 2.1超负载 在电力控制过程中,最常见的问题是过载。在具体的控制过程中,如果运行电流超过电气系统和电路的耐久范围,电源系统可能会瘫痪。针对这些问题,相关人员应分析超出当前范围的故障,特别注意影响整个机电运行的危险操作,一旦发现,要严肃处理。 2.2电源缺相 供电缺相是一个常见的问题,但一旦出现缺相,就会影响设备的安全运行。造成电源相位差的主要原因是交流异步,这导致了在电力系统的具体操作和控制过程中使用的三相电源的一相出现问题,进而导致三相电源运行不平稳,最终导致电源故障。 2.3电路短路 在机电运行过程中,如果出现短路现象,处理起来会比较麻烦。这一问题的主要原因是线路设备的绝缘问题。线路会受到线路接触不良等多种因素的影响,引起发热,迅速破坏绝缘,造成短路事故,影响电力系统的运行。 2.4电流超限 功率超限的原因是线路或电气元件上的电流过大。在电路运行过程中,如果电流超过电器元件的承载能力或额定电流,容易引起电器元件的故障跳闸或损坏,对生产造成很大的负面影响。因此,相关人员应注意这个问题。 3机电设备电气线路故障的检测方法 3.1电压测量法 在对机电设备电路电压进行检测之前,一定要对设备进行断路处理,然后用万用表对机电设备电路中的两端电压进行检测,并着重检测与故障点相关的线路的电压,为了确保检测结果的可靠性、准确性,应当进行多次检测。电压测量法又分为分阶测量法和分段测量法两种。分阶测量法:分阶测量法是一种很常用的测量方法,因为对检测人员的技术水平要求不高,因此使用频率很高,而且这种测量方法也非常实用。 3.2短接法 短接法是在机电设备故障点的负载相对较小的情况下采用的一种有效的检测措施,是利用一根完整的、绝缘性能较好的导线,在设备电气线路中可能存在故障的线路两端进行短接,在检测过程中,如果电路接通,则说明被测点内的这段线路存在故障,然后继续采用同样的方法缩短两点之间的距离,直到最终确定故障点位置。短接法又可分为局部短接法和分段短接法两种。 3.3电阻测量法 分阶测量法:测量时首先将被测电路的电源断开,还要将被测电路与其他电路断开,以免造成万用表烧坏以及其他电路对检测数据结果产生影响,导致数值不正确,影响后续工作。分阶测量是以测量值与理论值的差异为评判标准,如果测量值与理论值一致或者接近,则视为线路中不存在故障;如果差异较大,则是线路中有接触不良的现象,如果测量值为负数,并且电阻为零,则表示有短路情况。分段测量法:电阻的分段测量也是一种非常实用的方法,是将线路中自然断开的点当做分段点,将线路分为数段,对每段线路的阻值分别进行测量,如果阻值无穷大,则表示该段线路内存在故障,需要进一步探查,以明确故障点。 4提高机电设备电气线路安全性的措施 4.1技术措施 为了保障机电设备的电气线路安全稳定,提高设备的使用效率和使用寿命,作为设备管理技术员可以根据机电设备的实际使用情况,对电气线路进行优化改进:电气线路根据工作原理以及接线情况的不同,可以分为动力线和信号线两种,在布线的时候尽量将两种线分开布置,降低它们之间的互相干扰,动力线发生故障的几率较高,因此在动力线的设计上要预留足够的电压、电流的余量;根据线路的使用外界环境和内部电流情况确定符合要求的绝缘保护;将线路尽量布置在通风较好的地方,如果不可避免在封闭环境内,则应当做好线路的

电动机常见故障分析与维修..

直流电动机常见故障分析与维修 1.引言 电动机在人们的工农业生产中发挥着巨大的作用,给人们的生活带来了极大的便利。直流电动机虽然结构较复杂,使用与维护较麻烦,价格较贵,但是由于其具有调速性能好,起动转矩大等优点, 本文分析了电动机的结构、工作原理以及在工作中的常见故障,并给出了一些日常维护的方法。 2.直流电动机的原理、结构与拆装 2.1直流电动机的工作原理 当把直流电动机的电刷A、B接到直流电源上时,从图2.1可以看出,电刷A是正电位,B是负电位,在N极范围内的导体ab中的电流是从a流向b,在S极范围内的导体cd中的电流是从c流向d。前面已经说过,载流导体在磁场中要受到电磁力的作用,因此,ab和cd两导体都要受到电磁力Fde的作用。根据磁场方向和导体中的电流方向,利用电动机左手定则判断,ab边受力的方向是向左,而cd边则是向右。由于磁场是均匀的,导体中流过的又是相同的电流,所以,ab边和cd边所受电磁力的大小相等。这样,线圈上就受到了电磁力的作用而按逆时针方向转动了。当线圈转到磁极的中性面上时,线圈中的电流等于零,电磁力等于零,但是由于惯性的作用,线圈继续转动。线圈转过半州之后,虽然ab与cd的位置调换了,ab边转到S极范围内,cd边转到N极范围内,但是,由于换向片和电刷的作用,转到N极下的cd边中电流方向也变了,是从d流向c,在S极下的ab边中的电流则是从b流向a。因此,电磁力Fdc的方向仍然不变,线圈仍然受力按逆时针方向转动。可见,分别处在N、S极范围内的导体中的电流方向总是不变的,因此,线圈两个边的受力方向也不变,这样,线圈就可以按照受力方向不停的旋转了,通过齿轮或皮带等机构的传动,便可以带动其它工 作机械。 图2.1 从以上的分析可以看到,要使线圈按照一定的方向旋转,关键问题是当导体从一个磁极范围内转到另一个异性磁极范围内时(也就是导体经过中性面后),导体中电流的方向也要同时改变。换向器和电刷就是完成这个任务的装置。在直流发电机中,换向器和电刷的任务是把线圈中的交流电变为直流电向外输出;而在直流电动机中,则用换向器和电刷把输入的直流电变为线圈中的交流电。可见,换向器和电刷是直流电机中不可缺少的关键性部件。 当然,在实际的直流电动机中,也不只有一个线圈,而是有许多个线圈牢固地嵌在转子铁芯槽中,当导

快速看懂电气控制电路图

针对电气新手,教你如何看懂控制电路图:看电气控制电路图一般方法是先看主电路,再看辅助电路,并用辅助电路的回路去研究主电路的控制程序。 1.看主电路的步骤 第一步:看清主电路中用电设备。用电设备指消耗电能的用电器具或电气设备,看图首先要看清楚有几个用电器,它们的类别、用途、接线方式及一些不同要求等。 第二步:要弄清楚用电设备是用什么电器元件控制的。控制电气设备的方法很多,有的直接用开关控制,有的用各种启动器控制,有的用接触器控制。 第三步:了解主电路中所用的控制电器及保护电器。前者是指除常规接触器以外的其他控制元件,如电源开关(转换开关及空气断路器)、万能转换开关。后者是指短路保护器件及过载保护器件,如空气断路器中电磁脱扣器及热过载脱扣器的规格、熔断器、热继电器及过电流继电器等元件的用途及规格。一般来说,对主电路作如上内容的分析以后,即可分析辅助电路。 第四步:看电源。要了解电源电压等级,是380V还是220V,是从母线汇流排供电还是配电屏供电,还是从发电机组接出来的。 2.看辅助电路的步骤 辅助电路包含控制电路、信号电路和照明电路。 分析控制电路。根据主电路中各电动机和执行电器的控制要求,逐一找出控制电路中的其他控制环节,将控制线路化整为零,按功能不同划分成若干个局部控制线路来进行分析。如果控制线路较复杂,则可先排除照明、显示等与控制关系不密切的电路,以便集中精力进行分析。 第一步:看电源。首先看清电源的种类。是交流还是直流。其次。要看清辅助电路的电源是从什么地方接来的,及其电压等级。电源一般是从主电路的两条相线上接来,其电压为380V.也有从主电路的一条相线和一零线上接来,电压为单相220V;此外,也可以从专用隔离电源变压器接来,电压有140、127、36、6.3V等。辅助电路为直流时,直流电源可从整流器、发电机组或放大器上接来,其电压一般为24、12、6、4.5、3V等。辅助电路中的一切电器元件的线圈额定电压必须与辅助电路电源电压一致。否则,电压低时电路元件不动作;电压高时,则会把电器元件线圈烧坏。 第二步:了解控制电路中所采用的各种继电器、接触器的用途,如采用了一些特殊结构的继电器,还应了解他们的动作原理。 第三步:根据辅助电路来研究主电路的动作情况。 分析了上面这些内容再结合主电路中的要求,就可以分析辅助电路的动作过程。

三相异步电动机常见故障分析与排除示范文本

三相异步电动机常见故障分析与排除示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

三相异步电动机常见故障分析与排除示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 三相异步电动机应用广泛,但通过长期运行后,会发 生各种故障,及时判断故障原因,进行相应处理,是防止 故障扩大,保证设备正常运行的一项重要的工作。 一、通电后电动机不能转动,但无异响,也无异味和 冒烟。 1.故障原因①电源未通(至少两相未通);②熔丝熔 断(至少两相熔断);③过流继电器调得过小;④控制设 备接线错误。 2.故障排除①检查电源回路开关,熔丝、接线盒处是 否有断点,修复;②检查熔丝型号、熔断原因,换新熔 丝;③调节继电器整定值与电动机配合;④改正接线。

二、通电后电动机不转,然后熔丝烧断 1.故障原因①缺一相电源,或定干线圈一相反接;②定子绕组相间短路;③定子绕组接地;④定子绕组接线错误;⑤熔丝截面过小;⑤电源线短路或接地。 2.故障排除①检查刀闸是否有一相未合好,可电源回路有一相断线;消除反接故障;②查出短路点,予以修复;③消除接地;④查出误接,予以更正;⑤更换熔丝; ③消除接地点。 三、通电后电动机不转有嗡嗡声 l.故障原因①定、转子绕组有断路(一相断线)或电源一相失电;②绕组引出线始末端接错或绕组内部接反; ③电源回路接点松动,接触电阻大;④电动机负载过大或转子卡住;⑤电源电压过低;⑥小型电动机装配太紧或轴承内油脂过硬;⑦轴承卡住。 2.故障排除①查明断点予以修复;②检查绕组极性;

浅谈如何处理电气线路短路故障

浅谈如何处理电气线路短路故障 摘要:如今我国各行业对电力有着越来越高的需求,当电力系统出现短路的时候,很多电气设备都无法正常使用,会给人类的生产活动带来严重的影响,因此,提高电气线路短路故障检测技术有着非常重要的现实意义。本文主要围绕电路短 路类型、电路短路危害进行分析,探讨提高电器电路短路故障检测技术的有效方式,从而为电力工作者提供一定的理论参考,促进我国电力行业的不断发展。 关键词:电气;短路;故障;检测 一、电路短路类型 (一)金属性电路短路和非金属性短路 其中金属性电路短路是指在电路不同电位,两个金属导体出现了短接。金属 性电路短路的电阻通常为零,因此通过的电流量很大,会在短时间之内提高电路 的热量,发生电气设备的损坏,影响整个电路的正常工作。非金属性短路是指由 于电路中不同定位不是直接连接的,因此通过一定的电阻相接,导致电路出现短路,非金属性电路短路,电阻不为0,短路时通过的电流量比金属性短路的电流 量要小,并且持续的时间很长,如果电力维修人员没有及时发现,会使得电路出 现热效应,对整个电力系统产生严重的危害。 (二)单向短路和多相短路 通常情况下,在三相交流电源中出现短路的原因主要是单相短路、二相短路 和三相短路三种方式。其中单相短路是指只有一对中性线发生故障;二相短路是 指二相线互相短接,造成了电路出现短路;三相短路是指电路中的三相线进行短接,进而引发的短路现象。单相短路、二相短路、三相短路尽管方式不同,但是 产生的危害都不容忽视,需要电力维修人员及时发现并有效解决,完善电路的排 线模式。 (三)匝间短路 电气线路中的匝间短路是指电机、电磁线圈和变压器等部件,由于部分绕组 出现短接引发的短路现象。匝间短路通常属于电气元件内部的故障,也可能是外 部因素对电气设备产生的影响,不严重的短路尽管不会产生严重的危害,但是随 着使用时间的推移,也会出现其他方面的问题,影响电气设备的正常使用。因此 需要电力人员提高重视程度,尽快解决,排除故障隐患。 二、电气线路短路的危害 (一)电流的动力效应 在电力系统运行过程中,如果出现电路的短路,会在短时间之内增加通过的 电流量,特别是冲击电流,会使得电气线路中不同设备时间产生强大的电动力, 这种动力可以使电路设备的母线弯曲变形,导致内部元件出现损坏,出现电气设 备的严重故障,影响电路的正常运行。 (二)短路电流的热效应 在电气线路中出现了短路,会在短时间内使得通过电流产生很强的热效应, 导致电路的温度急速上升,由于电路短路线路的保护装置反应灵敏,能够在第一 时间内切断短路电流,因此短路电流通过内部配件的时间通常不会很长。短路电 流热效应是电路中危害最严重的一种现象,一旦出现短路,导体的温度会急速升高,使得电气设备的性能下降,触头出现融化,并且内部的截面可能会熔断,在 高温下电路中的传导元件,例如开关、芯片等元件将会烧毁,或者被热量击穿。 (三)短路电流的电压降效应

电气线路常见故障(2020新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 电气线路常见故障(2020新版) Safety management is an important part of production management. Safety and production are in the implementation process

电气线路常见故障(2020新版) 电气线路故障可能导致触电、火灾、停电等多种事故。下面对电气线路的常见故障作—简要分析。一、架空线路故障 架空线路敞露在户外,会受到气候和环境条件的影响。雷击、大雾、大风、雨雪、高温、严寒、洪水、烟尘和灰尘、纤维等都会从不同的方面对架空线路造成威胁。 当风力超过线路杆塔的稳定度或机械强度时,就会使杆塔歪倒或损坏。这种事故一般是在出现了超出设计所考虑的风速条件时才会发生。如果杆塔因锈蚀或腐朽而使机械强度降低,即使在正常风力下也可能发生这种事故。大风还可能导致混线及接地事故,也可能发生倒杆事故。此外,风力还可能引起导线、避雷线的混线事故。 雨水对架空线路的重要影响是造成停电事故和倒杆。毛毛细雨能使脏污的绝缘子发生闪络,从而引起停电事故;倾盆大雨又可能造成山洪爆发而冲倒线路杆塔。

雷电击中线路时,有可能使绝缘子发生闪络或击穿。 导线、避雷线覆冰时,不仅加重了导线和杆塔的机械负载,而且使导线弧垂增大,造成对地安全距离不足。当覆冰脱落时,又会使导线、避雷线发生跳动,引起混线。 高温季节,导线会因气温升高,弧垂加大而发生对地放电;严冬季节,导线又因气温下降收缩而使弧垂减小,承担不了过大的张力而拉断。 周围环境对架空线路安全运行的影响,视环境的不同而不同。例如,化工厂或沿海区域的线路容易发生污闪,河道附近的线路易遭受冲刷,路边和采石厂附近的线路易受外力的破坏等。 季节和环境是密切相关的。例如,化工区的线路常在大雾季节或雨雪季节发生故障,河道附近的线路也只在雨汛季节才会受到洪水的损害。 生产排出来的烟尘和其他有害气体会使厂矿架空线路绝缘子的绝缘水平显著降低,以致在空气湿度较大的天气里发生闪络事故;在木杆线路上,因绝缘子表面污秽,泄漏电流增大,会引起木杆、

相关主题
文本预览
相关文档 最新文档