当前位置:文档之家› 利用改进遗传算法进行复杂网络社团发现

利用改进遗传算法进行复杂网络社团发现

利用改进遗传算法进行复杂网络社团发现
利用改进遗传算法进行复杂网络社团发现

matlab遗传算法优化神经网络权值教程

matlab遗传算法优化神经网络权值教程第4章nnToolKit神经网络工具包 4.1 nnToolKit简介 神经网络工具包是基于MATLAB神经网络工具箱自行开发的一组神经网络算法函数库 可在MATLAB环境下均独立运行,也可打包成DLL组件,直接被VB、VC、 C++ 、C#、JAVA或其他支持COM的语言所调用 本工具包中增加了一些MATLAB中没有的神经网络算法,如模糊神经网络、小波神经网络、遗传神经网络算法等 4.2nnToolKit函数库 4.2nnToolKit 函数库 4.2nnToolKit函数库 例4-1 对ch4\nnToolKit工具箱\lmnet文件夹中文件(input_para1.txt和output_para1.txt)提供的专家样本数据进行网络训练。%此为BP网络训练程序

function retstr = LmTrain(ModelNo,NetPara,TrainPara,InputFun,OutputFun,DataDir)NNTWARN OFF retstr=-1; ModelNo=‘1’;NetPara(1)=7;Ne tPara(2)=1; NetPara(3)=6;NetPara(4)=10; 4.2nnToolKit函数库 4.2nnToolKit函数库 例4-2 输入一组测试样本数据,对例4-1训练的网络模型进行仿真 %此为一仿真程序%首先读入权域值参数 function retdouble = LmSimu(ModelNo,NetPara,SimulatePara,InputFun,OutputFun,DataDir)NNTWA RN OFF %%%% 输入参数赋值开始 %%%%%%%%%%%%%%%%%%%%%%%% 这 部分代码主要是方便用户调试用ModelNo=‘1’; NetPara(1)=7; 4.2nnToolKit函数库

遗传算法在BP神经网络优化中的应用.

遗传算法在 BP 神经网络优化中的应用 2O世纪80年代后期,多机器人协作成为一种新的机器人应用形式日益引起国内外学术界的兴趣与关注。一方面,由于任务的复杂性,在单机器人难以完成任务时,人们希望通过多机器人之间的协调与合作来完成。另一方面,人们也希望通过多机器人间的协调与合作,来提高机器人系统在作业过程中的效率。1943年,Maeullocu和 Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展、停滞、再发展的过程,时至今日正走向成熟,在广泛领域里得到了应用,其中将人工神经网络技术应用到多机器人协作成为新的研究领域。本文研究通过人工神经网络控制多机器人完成协作搬运的任务-3 J,并应用遗传算法来对神经网络进行优化。仿真结果表明,经过遗传算法优化后的搬运工作效率显著提高,误差降低。 1 人工神经网络 ANN)的基本原理和结构 人工神经网络(Artiifcial Neural Network,ANN)) 是抽象、简化与模拟大脑神经结构的计算模型,又称并行分布处理模型 J。ANN 由大量功能简单且具有自适应能力的信息处理单元——人工神经元按照大规模并行的方式通过一定的拓扑结构连接而成。ANN拓扑结构很多,其中采用反向传播(Back-Propa- gation,BP)算法的前馈型神经网络(如下图1所示),即BP人工神经网络,是人工神经网络中最常用、最成熟的神经网络之一。 BP网络模型处理信息的基本原理是:输入信号x;通过中间节点(隐层点 )作用于出节点,经过非线形变换,产生输出信Yk,网络训练的每个样本包括输入向量 x和期望输出量 T,网络输出值Y与期望输出值T之间的偏差,通过调整输入节点与隐层节点的联接强度取值w;;和隐层节点与输出节点之间的联接强度Y以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数 (权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转) 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]'; YY=[1:4]; XX=premnmx(XX); YY=premnmx(YY); YY %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数

遗传算法优化的BP神经网络建模[精选.]

遗传算法优化的BP神经网络建模 十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。 遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。 目标: 对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。 步骤: 未经遗传算法优化的BP神经网络建模 1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。 2、数据预处理:归一化处理。 3、构建BP神经网络的隐层数,次数,步长,目标。 4、使用训练数据input_train训练BP神经网络net。 5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。 6、分析预测数据与期望数据之间的误差。 遗传算法优化的BP神经网络建模 1、读取前面步骤中保存的数据data; 2、对数据进行归一化处理; 3、设置隐层数目; 4、初始化进化次数,种群规模,交叉概率,变异概率 5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数; 6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值; 7、将得到最佳初始权值和阈值来构建BP神经网络; 8、使用训练数据input_train训练BP神经网络net; 9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理; 10、分析预测数据与期望数据之间的误差。 算法流程图如下:

遗传算法优化BP神经网络的实现代码-共6页

%读取数据 data=xlsread('data.xls'); %训练预测数据 data_train=data(1:113,:); data_test=data(118:123,:); input_train=data_train(:,1:9)'; output_train=data_train(:,10)'; input_test=data_test(:,1:9)'; output_test=data_test(:,10)'; %数据归一化 [inputn,mininput,maxinput,outputn,minoutput,maxoutput]=premnmx(input_tr ain,output_train); %对p和t进行字标准化预处理 net=newff(minmax(inputn),[10,1],{'tansig','purelin'},'trainlm'); net.trainParam.epochs=100; net.trainParam.lr=0.1; net.trainParam.goal=0.00001; %net.trainParam.show=NaN %网络训练 net=train(net,inputn,outputn); %数据归一化 inputn_test = tramnmx(input_test,mininput,maxinput); an=sim(net,inputn); test_simu=postmnmx(an,minoutput,maxoutput); error=test_simu-output_train; plot(error) k=error./output_train

基于遗传算法的BP神经网络优化算法

案例3:基于遗传算法的BP神经网络优化算法 ******************************************************************************* **** 论坛申明: 1 案例为原创案例,论坛拥有帖子的版权,转载请注明出处(MATLABSKY论坛,《MATLAB 智能算法30个案例分析》 2 案例内容为书籍原创内容,内容为案例的提纲和主要内容。 3 作者长期驻扎在板块,对读者和会员问题有问必答。 4 案例配套有教学视频和完整的MATLAB程序,MATLAB程序在购买书籍后可以自由下载,教学视频需要另外购买。 MATLAB书籍预定方法和优惠服务:https://www.doczj.com/doc/cb7731080.html,/thread-9258-1-1.html 点击这里,预览该案例程序:https://www.doczj.com/doc/cb7731080.html,/znsf/view/s3/GABPMain.html 已经预定的朋友点此下载程序源代码:https://www.doczj.com/doc/cb7731080.html,/thread-11921-1-1.html * ******************************************************************************* ** 1、案例背景 BP网络是一类多层的前馈神经网络。它的名字源于在网络训练的过程中,调整网络的权值的算法是误差的反向传播的学习算法,即为BP学习算法。BP算法是Rumelhart等人在1986年提出来的。由于它的结构简单,可调整的参数多,训练算法也多,而且可操作性好,BP 神经网络获得了非常广泛的应用。据统计,有80%~90%的神经网络模型都是采用了BP网络或者是它的变形。BP网络是前向网络的核心部分,是神经网络中最精华、最完美的部分。BP神经网络虽然是人工神经网络中应用最广泛的算法,但是也存在着一些缺陷,例如: ①、学习收敛速度太慢; ②、不能保证收敛到全局最小点; ③、网络结构不易确定。 另外,网络结构、初始连接权值和阈值的选择对网络训练的影响很大,但是又无法准确获得,针对这些特点可以采用遗传算法对神经网络进行优化。 本节以某型号拖拉机的齿轮箱为工程背景,介绍使用基于遗传算法的BP神经网络进行齿轮箱故障的诊断。

遗传算法优化BP神经网络权值和阈值(完整版)

https://www.doczj.com/doc/cb7731080.html,/viewthread.php?tid= 50653&extra=&highlight=%E9%81%97%E4%BC%A0%E7% AE%97%E6%B3%95&page=1 Matlab遗传算法优化神经网络的例子(已调试成功)最近论坛里问到用遗传算法优化神经网络问题的人很多,而且论坛里有很多这方面的代码。但可惜的是所有代码都或多或少有些错误!最郁闷的莫过于只有发帖寻求问题答案的探索者,却很少有对问题进行解答的victor。本人在论坛里看到不少会员对能运行成功的遗传算法优化神经网络例子的需求是多么急切,我也深有感触!现把调试成功的一个例子贴出来,供大家参考!(本例子是基于一篇硕士论文里的代码为蓝本改 编的,此处就不再注明作者了。)遗传算法优化bp.rar (3.34 KB) 注:该代码是由会员“书童”耗费了一整天的时间调试成功的,在此再次对我们的“书童”同学乐于助人的高尚品德致敬,并对其深表感谢!PS:参考会员“ilovexyq”意见,先对其做以补充。该网络为遗传算法 优化bp的一个典型例子,输入为7,输出为7,隐层为25。该网络输入输出数据就是为了说明问题而随便加的,没有实际意义。如用于自己的实际问题,把数据替换并根据需要改一下网络结构就行了。

PS:如有问题,请先阅读此贴: https://www.doczj.com/doc/cb7731080.html,/thread-52587-1-1.html### [本帖最后由 yuthreestone 于 2009-10-15 10:52 编辑] 搜索更多相关主题的帖子: 调试例子算法Matlab神经网络 https://www.doczj.com/doc/cb7731080.html,/thread-52587-1-1.html 遗传算法优化BP神经网络权值和阈值(完整版) 会员renjia前一段时间分享的程序,地址如下: https://www.doczj.com/doc/cb7731080.html,/viewthread.php?tid=50653&extra=&highlight=% E9%81%97%E4%BC%A0%E7%AE%97%E6%B3%95&page=1: (1)renjia提供的程序存在一些小错误,主要是设计的bp网络是两个隐含层,但编码的时候只有一个隐含层。修改后的程序将bp改成了单隐层以确保一致;(2)很多会员不知道该如何运行程序,各个m文件之间的关系弄不清楚。修改后的程序共包含三个m文件: 其中,主程序为ga_bp.m,适应度函数为gabpEval.m,编解码子函数为gadecod.m 注意:使用前需安装gaot工具箱(见附件),上述三个文件需放在同一文件夹中且将该文件夹设置为当前工作路径。 运行程序时只需运行主程序ga_bp.m即可。 (3)此程序仅为示例,针对其他的问题,只需将数据修改即可,但需注意变量名保持一致,尤其是全局变量修改时(在gadecod.m和gabpEval.m中也要修改)(4)gaot工具箱如何安装? 点击file选择set path,在弹出的对话框中选择add folder,将gaot文件夹添加进去,然后点击save保存即可。

用遗传算法优化BP神经网络的Matlab编程实例

用遗传算法优化BP神经网络的 Matlab编程实例 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP 算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=premnmx(XX); YY=premnmx(YY); %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},' trainlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutatio n',[2 gen 3]); %绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-'); hold on plot(trace(:,1),1./trace(:,2),'b-'); xlabel('Generation'); ylabel('Sum-Squared Error'); figure(2) plot(trace(:,1),trace(:,3),'r-'); hold on plot(trace(:,1),trace(:,2),'b-'); xlabel('Generation'); ylabel('Fittness'); %下面将初步得到的权值矩阵赋给尚未开始训练的BP网络 [W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x); net.LW{2,1}=W1; net.LW{3,2}=W2; net.b{2,1}=B1; net.b{3,1}=B2; XX=P; YY=T; %设置训练参数 net.trainParam.show=1; net.trainParam.lr=1; net.trainParam.epochs=50; net.trainParam.goal=0.001; %训练网络 net=train(net,XX,YY); 程序二:适应值函数 function [sol, val] = gabpEval(sol,options) % val - the fittness of this individual % sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation] load data2 nntwarn off XX=premnmx(XX); YY=premnmx(YY); P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 for i=1:S, x(i)=sol(i); end; [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);

遗传算法与神经网络的结合.

系统工程理论与实践 Systems Engineering——Theory & Practice 1999年第2期第19卷 vol.19 No.2 1999 遗传算法与神经网络的结合 李敏强徐博艺寇纪淞 摘要阐明了遗传算法和神经网络结合的必要性和可行性,提出用多层前馈神经网络作为遗传搜索的问题表示方式的思想。用遗传算法和神经网络结合的方法求解了短期地震预报问题,设计了用遗传算法训练神经网络权重的新方法,实验结果显示了遗传算法快速学习网络权重的能力,并且能够摆脱局部极点的困扰。 关键词遗传算法进化计算神经网络 On the Combination of Genetic Algorithms and Neural Networks Li Minqiang Xu Boyi Kou Jisong (Institute of Systems Engineering, Tianjin University, Tianjin 300072 Abstract In this paper, we demonstrate the necessity and possibility of combining neural network (NN with GAs. The notion of using multilayered feed forward NN as the representation method of genetic and the searching technique is introduced. We combine GA and NN for solving short term earthquake forecasting problem, design a novel method of using GAs to train connection weights of NN.The empirical test indicates the capability of the new method in fast learning of NN and escaping local optima. Keywords genetic algorithms; evolutionary computation; neural networks

基于信号传递与层次聚类的社团发现算法

ComputerEngineeringandApplications计算机工程与应用2010,46(9)51 基于信号传递与层次聚类的社团发现算法 黄浩英,马英红 HUANGHao-ying,MAYing-hong 山东师范大学管理与经济学院,济南250014 SchoolofManagement&Economy,ShandongNormalUllive玛ity,Jinan250014,China E—mail:huanghaoyin92000@126.com HUANGHao-ying。MAYing-hong.DetectingcommunityalgorttlunbasedOnagualprocessandhierarchicalclustering.ComputerEngineertngandApplications.2010。46(9):51-54. Abstract:Communityisoneofimportantcharactersinsocialnetworksandcommunitydetectingisalsoafashionablestatementrecently.Inthispaper,basedonsignalingprocessoncomplexnetworks,influencevectorsofeachnodeategot,topologicalStltllC--tureofeachnodeistranslatedintogeometricalrelationshipsofvector8inalgebraspaces.andbytheaidofhierarchicalch吼e卜ingmodularityhietlIod,communitiesaredetectedeffectively.WithdatasimulationsontheZacharyKarateClubnetwork,CoHegeFootballnetworkandDolphinsocialnetwork,itshowsthatthepropo窨edalgorithminthistopicismoleaccuratethanNewman’8.Keywords:communitystructure;signalprocess;hierarchicalclustering;modularity 摘要:社团是社会网络的一个重要特征,社团发现是近年来研究的热点问题之一。通过在复杂网络上传递信号,获得各节点对网络的影响向量,从而把网络中节点的拓扑性质转化为代数空间上向量的几何关系,然后用结合模块度的层次聚类挖掘社会网络中的社团结构。该算法优点是不需要预先知道社团的数量或社团内节点的数量,用Zachary空手道俱乐部网络、大学足球赛网络以及海豚关系网络的数据进行验证,该算法划分的社团准确性超过了Newman的结论。 关键词:社团结构;信号传递;层次聚类;模块度 I)OI:10.3778/j.issn.1002-8331.2010.09.016文章编号:l002_833l(20lO)09-005l—04文献标识码:A中图分类号:N94;TP393 1引言 复杂网络是复杂系统的抽象,网络中的节点代表复杂系统中的个体,节点之间的边则代表系统中个体之问某一种关系。现实世界中复杂网络无处不在,如人际关系网、科学家合作网络、万维网、食物链网络等等。大量的研究表明,许多实际网络都呈现具有社团的性质,即整个网络是由若干个社团构成,在每个社团内部节点之间的连接相对紧密,而在各个社团之间却相对稀疏111。例如,在以人为主体的社交网络模型中,网络中的连线是根据兴趣或某种关系而形成的,—个人连接线越多,则表示他拥有的关系越多、影响也越大,并且可以控制的资源也越多,此时他与所连接的人就构成了—个社团。在科学引文网络中的社团代表针对同一主题的相关论文,而生物化学网络中的社团则代表具有相近功能的单元嘲,发现网络中的社团有助于更加有效地理解网络结构以及网络特性。 社团的研究中—个重要的课题是网络社团的划分,与此相关的理论包括图论以及模式识别等。社团的发现最早起源于社会学研究工作,较早的算法是在社会学研究中的分级聚类算法,它与计算机科学中的图形分割研究有着密切的关系嗍,其中分级聚类中最著名的是GN算i去fu,Kemighart—Lin算法哪谱平分嗣法是图形分割在处理社团划分中最具代表性的方法。此外,还有许多有效的算法如Radicchi算法、极值优化算法、Newman快速算法等M。在所有的社团的搜索算法中时间复杂度和查找的准确性是最为关键的两个问题。 基于上述问题,用在复杂网络传递信号的方法,得到网络中每个节点对网络的影响向量,通过每个节点的影响向量把网络的拓扑关系转换到n维代数空问上,将GN算法中提出的模块度函数与层次聚类方法结合进行社团结构的探测,用Zachary空手道俱乐部网络、大学足球赛网络以及海豚关系网络的数据进行验证,该算法划分的社团准确性超过了Newman的结论研。该算法优点是不需要预先知道社团的数量或社团内节点的数量,算法较好地改善了运行时间,提高了社团搜索的准确率。 2算法准备 HuYanqing等人提出了在复杂网络中传递信号的方j去I嘲,是将—个具有n个节点的网络视为—个系统,系统中的每个节点被认为具有发送、接受和记录信号的功能。信号传递基本思 基金项目:国家自然科学基金(theNationalNaturalScienceFoundationofChinaunderGrantNo.60673047);山东省自然科学基金(theNaturalScienceFoundationofShandongProvinceofChina);山东省教育厅科技项目(NoJ07YJ02)。 作者筒介:黄浩英(1983一)。女。研究生。主要研究方向:复杂网络与复杂系统;马英红(1971一),女,副教授,主要研究方向:复杂网络与复杂系统,图论,粗糙集应用等。 收稽日期:2009一lo-12修回日期:2010-01-08 万方数据

介绍遗传算法神经网络

课程设计作业——翻译 课题:介绍遗传算法神经网络 穆姣姣 0808490233 物流08-班

介绍遗传算法神经网络 理查德·坎普 1. 介绍 一旦一个神经网络模型被创造出来,它常常是可取的。利用这个模型的时候,识别套输入变量导致一个期望输出值。大量的变量和非线性性质的许多材料模型可以使找到一个最优组输入变量变得困难。 在这里,我们可以用遗传算法并试图解决这个问题。 遗传算法是什么?遗传算法是基于搜索algo-rithms力学的自然选择和遗传观察到生物的世界。他们使用两个方向(\适者生存”),在这种条件下,探索一个强劲的功能。重要的是,采用遗传算法,这不是必需要知道功能的形式,就其输出给定的输入(图1)。 健壮性我们这么说是什么意思呢?健壮性是效率和效能之间的平衡所使用的技术在许多不同的环境中。帮助解释这个问题,我们可以比其他搜索和优化技术,如calculus-based,列举,与随机的求索。 方法Calculus-based假设一个光滑,无约束函数和要么找到点在衍生为零(知易行难)或者接受一个方向梯度与当地日当地一所高中点(爬山)。研究了这些技术已经被重点研究、扩展、修改,但展现自己缺乏的鲁棒性是很简单的。 考虑如图2所示的功能。利用Calculus-based在这里发现极值是很容易的(假定派生的函数可以发现…!)。然而,一个更复杂的功能(图3)显示该方法是当地——如果搜索算法,在该地区的一个开始,它就会错过低高峰目标,最高的山峰。 图1 使用网络神经算法没必要知道它的每一项具体功能。 一旦一个局部极大时,进一步改进需要一个随机的重启或类似的东西。同时,假设一个函数光滑,可导,并明确知道很少尊重现实。许多真实世界充满了间断模型和设置在嘈杂的多通道搜索空间(图4)。 虽然calculus-based方法在某些环境中至非常有效的,但内在的假

基于遗传算法的BP神经网络的应用

基于遗传算法的BP神经网络的应用 ----非线性函数拟合 摘要人工神经网络在诸多领域得到应用如信息工程、自动控制、电子技术、目标识别、数学建模、图像处理等领域,并且随着神经网络算啊发的不断改进以及其他新算法的结合,使其应用的领域越来越广。BP神经网络是目前神经网络领域研究最多应用最广的网络,但BP神经网络学习算法易陷入局部极小的缺陷,本文采用遗传算法来优化BP神经网络的性能。首先采用遗传算法来优化BP神经网络的权值和阈值,然后将这些优化值赋给网络得到优化的BP神经网络,最后用MATLAB仿真平台,对非线性函数的逼近拟合和极值寻优问题进行实验。数值仿真结果表明:经遗传算法优化的BP神经网络能有效地避免原始BP神经网络容易出现的局部极小的缺陷,且具有收敛速度快和精度高等优点。 关键词:BP神经网络遗传算法 MATLAB 结构优化 Abstract— In recent years, artificial neural network gradually attention has been paid into the hot area of research in many fields have been involved in electronic applications such as other fields have a wide range of applications, and also continued to expand its applications. To alleviate the shortcoming of easily sinking into the local minimum existing in the BP neural network, the paper exploits the genetic algorithm to optimize the BP neural network. First of all, the genetic algorithm is utilized to optimize the weight values as well as the threshold values of the BP neural network. Subsequently, by using the optimized weight values and threshold values, we are able to get the improved BP neural network. Furthermore, we employ the simulation data to measure the performance of the improved BP neural network. The numerical results indicate that the optimized BP neural network can effectively overcome the local minimum of the original BP neural network and outperform the original BP neural network in the aspects of convergence speed and

神经网络与遗传算法

5.4 神经网络与遗传算法简介 在本节中,我们将着重讲述一些在网络设计、优化、性能分析、通信路由优化、选择、神经网络控制优化中有重要应用的常用的算法,包括神经网络算法、遗传算法、模拟退火算法等方法。用这些算法可以较容易地解决一些很复杂的,常规算法很难解决的问题。这些算法都有着很深的理论背景,本节不准备详细地讨论这些算法的理论,只对算法的原理和方法作简要的讨论。 5.4.1 神经网络 1. 神经网络的简单原理 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。所以说, 人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作出状态相应而进行信息处理。它是根据人的认识过程而开发出的一种算法。假如我们现在只有一些输入和相应的输出,而对如何由输入得到输出的机理并不清楚,那么我们可以把输入与输出之间的未知过程看成是一个“网络”,通过不断地给这个网络输入和相应的输出来“训练”这个网络,网络根据输入和输出不断地调节自己的各节点之间的权值来满足输入和输出。这样,当训练结束后,我们给定一个输入,网络便会根据自己已调节好的权值计算出一个输出。这就是神经网络的简单原理。 2. 神经元和神经网络的结构 如上所述,神经网络的基本结构如图5.35所示: 隐层隐层2 1 图5.35 神经网络一般都有多层,分为输入层,输出层和隐含层,层数越多,计算结果越精确,但所需的时间也就越长,所以实际应用中要根据要求设计网络层数。神经网络中每一个节点叫做一个人工神经元,他对应于人脑中的神经元。人脑神经元由细胞体、树突和轴突三部分组成,是一种根须状蔓延物。神经元的中心有一闭点,称为细胞体,它能对接受到的信息进行处理,细胞体周围的纤维有两类,轴突是较长的神经纤维,是发出信息的。树突的神经纤维较短,而分支众多,是接收信息的。一个神经元的轴突末端与另一神经元的树突之间密

社团算法总结

社团发现的算法 1.非重叠社团发现算法 1.1基于模块度优化的社团发现算法 (1)Newman M E J. Fast Algorithm for Detecting Community Structure in Networks[J]. Phys Rev E, 2004, 69(6): 066133. (2)Clauset A. Finding Local Community Structure in Networks[J].Phys Rev E, 2005, 72(2): 026132 (3)SchuetzP,CaflischA.MultistepGreedyAlgorithmIdentifiesCommunity Structure in Real-world and Computer-generatedNetworks[J]. PhysRev E, 2008, 78(2): 026112. 1.2基于谱分析的社团发现算法 (1)Donetti L, Munoz M. Detecting Network Communities: A New Systematic and Efficient Algorithm[J]. Journal of Statistical Mechanics, 2004, P10012 (2)Capocci A, Servedio V D P, Caldarelli G, et al. Detecting Communities in Large Networks [J]. Physica A: Statistical Mechanics and Its Applications, 2005, 352(2-4): 669-676. 1.3 基于信息论的社团发现算法 (1)Rosvall M, Bergstrom C T. An Information-theoretic Framework for Resolving Community Structure in Complex Networks[J]. P Natl Acad Sci USA, 2007, 104(18): 7327-7331. 1.4 基于标号传播的社团发现算法 Raghavan UN, Albert R, Kumara S. NearLinearTime Algorithmto Detect CommunityStructures inLarge-scaleNetworks[J]. Phys RevE, 2007, 76(3): 036106. 1.5 迭代层次社团发现算法 一种新的复杂网络层次社团发现算法 2.重叠社团发现算法 2.1 基于团渗透改进的重叠社团发现算法 Palla G, Derenyi I, Farkas I, et al. Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society [J]. Nature, 2005, 435(7043): 814-818. 2.2 基于模糊聚类的重叠社团发现算法 Zhang S, Wang R, Zhang X. Identification of Overlapping Community Structure in Complex Networks Using Fuzzy C-means Clustering [ J]. Physica A: Statistical Mechanics and its Applications, 2007, 374(1): 483-490. 2.3 基于非负矩阵分解的重叠社团发现算法 Zhang S, Wang R S, Zhang X S. Uncovering Fuzzy Community Structure in Complex Networks[J]. Phys Rev E, 2007, 76(4):046103. 2.4 基于种子扩展思想的重叠社团发现算法 Lancichinetti A, Fortunato S, Kertesz J. Detecting the Overlapping andHierarchical Community Structure in Complex Networks[J]. New Journal of Physics, 2009, 11:033015. 2.5 基于混合概率模型的重叠社团发现 NewmanME, Leicht EA. MixtureModels and ExploratoryAnalysis in Networks[J]. Proc Natl Acad Sci USA, 2007, 104(23): 9564-9569. 2.6 基于边聚类的重叠社团发现 (1)EvansT,Lambiotte R.Line Graphs,LinkPartitions, and Overlapping Communities[J]. Physical Review E, 2009, 80(1): 16105. (2)Ahn Y Y, Bagrow J P, Lehmann S. Link Communities Reveal Multiscale Complexity in Networks[J]. Nature, 2010, 466: 761-764. CNM算法

遗传算法优化的BP神经网络建模讲课教案

遗传算法优化的B P 神经网络建模

遗传算法优化的BP神经网络建模 十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。 遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。 目标: 对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。 步骤: 未经遗传算法优化的BP神经网络建模 1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。 2、数据预处理:归一化处理。 3、构建BP神经网络的隐层数,次数,步长,目标。 4、使用训练数据input_train训练BP神经网络net。 5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。 6、分析预测数据与期望数据之间的误差。 遗传算法优化的BP神经网络建模 1、读取前面步骤中保存的数据data; 2、对数据进行归一化处理; 3、设置隐层数目; 4、初始化进化次数,种群规模,交叉概率,变异概率 5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数; 6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值; 7、将得到最佳初始权值和阈值来构建BP神经网络; 8、使用训练数据input_train训练BP神经网络net; 9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理; 10、分析预测数据与期望数据之间的误差。 算法流程图如下:

相关主题
文本预览
相关文档 最新文档