当前位置:文档之家› 硅酸盐水泥中氧化铝含量测定的研究分析解析

硅酸盐水泥中氧化铝含量测定的研究分析解析

硅酸盐水泥中氧化铝含量测定的研究分析解析
硅酸盐水泥中氧化铝含量测定的研究分析解析

毕业设计(论文)题目:硅酸盐水泥中氧化铝含量测定的研究

姓名:王丹

专业:应用化学专业

学院:继续教育学院

学习形式:自考专升本

助学单位:辽宁石化职业技术学院

指导教师:温泉

2013年8月

毕业设计(论文)

说明书

题目硅酸盐水泥中氧化铝含量测定的研究

院别:辽宁石油化工大学

专业:应用化学

班级:应化111班

设计人:王丹

指导教师:温泉

毕业设计(论文)任务书

一、题目:硅酸盐水泥中氧化铝含量测定的研究

二、基础数据

1.盐酸:1:5

2. 氨水:1:1

3. EDTA标准滴定溶液:0.02mol/L

4.硫酸铜标准滴定溶液:0.02mol/L

5.乙酸乙酸钠缓冲溶液(PH=4.3)

6.氨—氯化铵缓冲溶液(PH=10)

7.PAN 指示剂(2g/L)

8. 铬黑T 指示剂(5g/L)

9.氢氧化钾

10.盐酸

11.硝酸

三、内容要求

(1)说明部分

在PH =1.8~2.0的酸性介质中,60~70摄氏度的条件下,以磺基水杨酸钠为指示剂 ,用EDTA 标准滴定溶液直接滴定溶液中的铁(Fe 3+),溶液颜色由紫红色变为亮黄色为终点,根据EDTA 标准滴定溶液的浓度和化学计量点时其所消耗的体积计算式样中的全铁含量。在滴定铁后的溶液中,加入对铝、钛过量的EDTA 标准滴定溶液,在PH=3.8~4.0的溶液中,以PAN 为指示剂,用硫酸铜标准滴定溶液回滴过量的EDTA 。滴定至亮紫色即为终点。

2. 计算部分:

Al 3++H 2Y 2-(过量)=AlY -+2H +

Cu 2++H 2Y 2-(剩余)=CuY 2-+2H +

%

100)0(w 210

310)44(32?=

?-?-m

VCuSO CCuSO CED TAVED TA M Al

四、发给日期:2013 年05 月20 日

五、要求完成日期:2013 年08 月20 日

指导教师:温泉

系主任:赵连俊

2013年8 月26 日

硅酸盐水泥中氧化铝含量测定的研究

摘要

凡以硅酸钙为主的硅酸盐水泥熟料,5%以下的石灰石或粒化高炉矿渣,适量石膏磨细制成的水硬性胶凝材料,统称为硅酸盐水泥。硅酸盐水泥的主要矿物组成是:硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙。硅酸盐水泥主要含CaO、SiO2、Al2O3、Fe2O3等原料,按适当比例磨成细粉烧至部分熔融所得以硅酸钙为主要矿物成分的水硬性胶凝物质。其中硅酸钙矿物不小于66%,氧化钙和氧化硅质量比不小于2.0。

采用置换滴定法测定水泥中的氧化铝。主要方法是在酸性介质中以PAN为指示剂,用硫酸铜标准滴定溶液回滴过量的EDTA。滴定至亮紫色即为终点。

关键词:置换滴定法,硅酸盐水泥,氧化铝含量测。

Study on determination of aluminum oxide content of

Portland cement

Abstract

Where calcium silicate-oriented Portland cement clinker, limestone or granulated blast furnace slag under 5% of age, amount of plaster made of finely ground hydraulic cementitious material, collectively known as Portland cement。Main mineral composition of Portland cement are: calcium, dicalcium silicate, aluminum silicate four calcium aluminum acid, calcium, and iron.Portland cement containing principally CaO, SiO2, Al2O3, Fe2O3 and other materials, due proportion into fine powder burns to partial melting of calcium silicate as the main mineral component of hydraulic cementitious material.Calcium silicate mineral of which not less than 66%, calcium oxide and silicon dioxide mass ratio of not less than 2.

Titrimetric method for the determination of alumina cement used replacement.Main method is to PAN for the indicator in acidic media, excessive drops with copper sulfate standard volumetric solution of EDTA.Light purple is the end point titration to.

Key words:Replacement titration ; Portland cement; Determination of aluminum oxide content

目录

摘要 ..................................................................................................................................... I Abstract ............................................................................................................................... I I 1 文献综述 (1)

1.1 硅酸盐水泥的基本介绍 (1)

1.2 硅酸盐水泥的用途及氧化铝含量测定方法 (2)

1.2.1 硅酸盐水泥的用途 (2)

1.2.2 硅酸盐中氧化铝含量的测定方法 (2)

1.3 硅酸盐中氧化铝研究的目的 (3)

2 实验方法 (5)

2.1 仪器与试剂,及所需溶液的制备 (5)

2.2 待测溶液的制备 (6)

2.3 实验方法 (6)

3 结果与讨论 (7)

3.1 硅酸盐水泥试样分解的研究 (7)

3.2 硅酸盐水泥试样氧化铝含量的测定研究 (8)

3.2.1酸度的研究 (8)

3.2.2 温度研究 (10)

4 标准数据分析 (13)

结论 (15)

参考文献 (16)

谢辞 (17)

1 文献综述

硅酸盐水泥,以硅酸盐水泥熟料和适量的石膏、及规定的混合材料制成的水硬性胶凝材料。其熟料由主要含CaO、SiO2、Al2O3、Fe2O3的原料,按适当比例磨成细粉烧至部分熔融所得以硅酸钙为主要矿物成分的水硬性胶凝物质。本实验采用置换法测定水泥中的氧化铝,其操作简捷、快速、准确的分析方法是分析工作者迫切希望的。此方法操作简单、稳定性强、准确率高; 从而及时、准确地为生产、科研提供第一手分析结果。

1.1 硅酸盐水泥的基本介绍

(1)通用硅酸盐水泥是以硅酸盐水泥熟料和适量的石膏,以及规定的混合材料制成的水硬性胶凝材料。通用水泥是指大量土木工程一般用途的水泥,硅酸盐水泥包括六大品种:硅酸盐水泥(P·Ⅰ或P·Ⅱ)普通硅酸盐水泥(P·О)矿渣硅酸盐水泥(P·S)即火山灰硅酸盐水泥(P·P)粉煤灰硅酸盐水泥(P·F)复合水泥(P·C).硅酸盐水泥熟料矿物组成,在水泥熟料中,氧化钙、二氧化硅、氧化铝和氧化铁等都不是以单独的氧化物形式存在,而是经过高温煅烧后,两种或两种以上的氧化物反应生成的多种矿物集合体,其结晶细小,通常为30~60μm。因此,水泥熟料实际上是一种多矿物组成的结晶细小的人造岩石。硅酸盐水泥熟料主要由以下四种矿物组成:硅酸三钙3CaOSiO2,可简写为C3S;硅酸二钙2CaOSi2,可简写为C2S;铝酸三钙3CaOA12O3,可简写为C3A;铁相固熔体通常以铁铝酸四钙4CaOA12O3Fe203作为其代表式,可简写为C4AF。这四种熟料矿物决定着硅酸盐水泥的主要性能,一般硅酸盐水泥熟料中,这四种矿物组成占95以上,其中硅酸盐矿物C3S和C2S约占75左右,熔剂性矿物C3A和C4AF约占22左右。

(2)强度等级每种水泥都有不同的等级 叫水泥的强度等级。这个等级主要是按28天抗压强度值来划分的。硅酸盐水泥有6个强度等级:42.5 42.5R 52.5 52.5R 62.5 62.5R;普通硅酸盐水泥的强度等级分为4个:42.5 42.5R 52.5 52.5R 。矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥的强度等级分为6个:32.5 32.5R 42.5 42.5R 52.5 52.5R 。各个等级的水泥,不但28天的抗压强度不低于相应的数值,而且3天的强度(包括抗压强度和抗折强度)、28天的抗折强度也应满足相应要求 以水泥国家标准为准。

1.2 硅酸盐水泥的用途及氧化铝含量测定方法

硅酸盐水泥在各个方面广泛应用,如混凝土工程,道路与路面工程等等。采用置换滴定法测定水泥中的氧化铝。采用了EDTA标准溶液和铜盐标准溶液回滴的方法。

1.2.1 硅酸盐水泥的用途

1.早期及后期强度均高:适用于预制和现浇的混凝土工程、冬季施工的混凝土工程、预应力混凝土工程等。水硬性.就是遇水变硬,用于建房等。

2.抗冻性好:适用于严寒地区和抗冻性要求高的混凝土工程。

3.耐腐蚀性差:不宜用于受流动软水和压力水作用的工程,也不宜用于受海水和其它腐蚀性介质作用的工程。

4.水化热高:不宜用于大体积混凝土工程。

5.抗炭化性好:适合用于二氧化碳浓度较高的环境,如翻砂、铸造车间等。

6.耐热性差:不得用于耐热混凝土工程。

7.干缩小:可用于干燥环境。

8.耐磨性好:可用于道路与地面工程。

1.2.2 硅酸盐中氧化铝含量的测定方法

试样处理

准确称取约0.5g试样,精确至0.0001g,置于银坩埚中,加入6~7g氢氧化钾,在650~700℃的高温下熔融20min,取出冷却,将坩埚放入已盛有100mL近沸腾水的烧杯中,盖上表面皿,于电热板上加热,待到熔块完全浸出后,取出坩埚,用水清洗坩埚和盖,在搅拌下一次加入25~30ml盐酸,再加入1ml硝酸,用1:5的热盐酸清洗坩埚和盖,将溶液加热至沸,冷却,移入250ml容量瓶中,用水稀释至刻线,摇匀。此溶液用于测定氧化铝。

测定

准确移取溶液25.00ml于250ml锥形瓶中,加水稀释至100ml,用1:1氨水调节溶液PH=1.8~2.0(用紧精密PH试纸),将溶液加热至70℃,加10滴磺基水杨酸钠指示剂,用0.02mol/LEDTA标准滴定溶液缓慢滴定至溶液颜色由紫红色变为亮黄色为终点。向滴定完铁的溶液中加入0.02mol/LEDTA标准滴定溶液至过量10~15ml,用水稀释至150~200ml,将溶液加热至70~80℃后,加数滴1:1氨水使溶液PH=3.0~3.5之间,加15mlPH=4.3的乙酸—乙酸钠缓冲溶液,煮沸1~2min,取下稍冷,加4~5滴PAN指示剂,用0.02mol/L硫酸铜标准溶液滴定至亮紫色为终

点,记录消耗硫酸铜溶液的体积。

1.3 硅酸盐中氧化铝研究的目的

硅酸盐水泥熟料主要由氧化钙(CaO,简写为C)、二氧化硅(SiO2简写为S)、氧化铝(Al2O3简写A)和氧化铁(Fe2O3简写为F)四种氧化物组成。通常这四种氧化物总量在熟料中占95%以上。每种氧化物含量虽然不是固定不变,但其含量变化范围很小,水泥熟料中除了上述四种主要氧化物以外,还有含量不到5%的其他少量氧化物,如氧化镁、氧化钛、三氧化硫等。

氧化钙是熟料中最主要的成分,它与熟料中其他氧化物如Si02、A1203、Fe203等发生化学反应,生成熟料矿物如硅酸三钙、硅酸二钙、铝酸三钙和铁铝酸四钙等。一般情况下,随着熟料中CaO含量的增加,熟料中矿物成分C3S含量增大,从而可以提高水泥的强度。但是CaO的含量不是越多越好,而是有一个最佳含量,即与SiO2、A1203、Fe203等氧化物化合后没有剩余的CaO存在的量。假如CaO含量超过其他氧化物与之化合所需的量,则多余的CaO会以游离状态存在于熟料中,从而影响水泥的体积安定性。

二氧化硅也是硅酸盐水泥熟料中最主要化学成分之一。它在高温下与CaO发生反应,生成硅酸盐矿物硅酸三钙和硅酸二钙。假如熟料中SiO2含量低,生成的硅酸盐矿物量就减少,从而影响水泥的强度。另外SiO2含量对熟料煅烧也会产生很大影响。

熟料中氧化铝可以与CaO、Si02、Fe203发生反应,生成铝酸三钙和铁铝酸四钙。当A1203含量增加时,水泥的凝聚、硬化速度加快,但是水泥后期强度增长缓慢,并且降低了水泥的抗硫酸盐性能。A1203含量高的水泥,在水化时放热快,而且水泥的水化热较大。

氧化铁也是熟料中重要的化学成分之一,可以与CaO、A1203反应生成铁铝酸四钙。增加熟料中的Fe203含量,可以降低水泥熟料的熔融温度,但会导致水泥水化和硬化速度变慢。其他少量氧化物的存在,也会不同程度地影响着硅酸盐水泥熟料的煅烧过程和水泥性能。同时在水泥熟料中,氧化钙、二氧化硅、氧化铝和氧化铁等都不是以单独的氧化物形式存在,而是经过高温煅烧后,两种或两种以上的氧化物反应生成的多种矿物集合体,其结晶细小,通常为30~60μm。因此,水泥熟料实际上是一种多矿物组成的结晶细小的人造岩石。硅酸盐水泥熟料主要由以下四

种矿物组成:硅酸三钙3CaOSi02,可简写为C3S;硅酸二钙2CaOSi2,可简写为C2S;铝酸三钙3CaOA12O3,可简写为C3A;铁相固熔体通常以铁铝酸四钙4CaOA12O3Fe203作为其代表式,可简写为C4AF。

这四种熟料矿物决定着硅酸盐水泥的主要性能,一般硅酸盐水泥熟料中,这四种矿物组成占95以上,其中硅酸盐矿物C3S和C2S约占75左右,熔剂性矿物C3A 和C4AF约占22左右。在硅酸盐水泥熟料中,假如生料配料不当,生料过烧或煅烧不良时,熟料中就会出现没有被吸收的以游离状态存在的氧化钙,常称为游离氧化钙。另外熟料在煅烧时,其中氧化镁有一部分可以和熟料矿物结合成固熔体以及熔于液相中。在硅酸盐水泥熟料中,氧化镁的固熔体量可达2%,多余的氧化镁印结晶出来呈游离状态的方镁石存在,对水泥的体积安定性产生不良影响。其中A1203含量高的水泥,在水化时放热快,而且水泥的水化热较大。硅酸盐水泥的水化是一个放热反应过程。通过氧化铝含量的测定,目的更好的利用材料,更加准确的为工业材料提炼做准备。

2 实验方法

铜盐回滴法 基本原理:

采用置换法测定硅酸盐水泥中氧化铝,在滴定铁后的溶液中,加入对铝钛过量的EDTA 标准滴定溶液,在PH=3.8~4.0的溶液中,以PAN 为指示剂,用硫酸铜标准溶液滴定溶液回滴过量的EDTA 。滴定至亮紫色即为终点。反应方程式如下: Al 3++H 2Y 2-(过量)=AlY -+2H + Cu 2++H 2Y 2-(剩余)=CuY 2-+2H + 计算公式:

%100)0(w 210

310)44(32?=

?-?-m

VCuSO CCuSO CED T AVED T A M Al

2.1 仪器与试剂,及所需溶液的制备

(1)电子分析天平 (2)银坩埚 (3)研钵 (4)托盘天平

(5)滴定分析装置,酸式滴定管(50.00ml ) (6)氢氧化钾 (7)盐酸 (8)盐酸(1:1) (9)硝酸 (10)氨水(1:1)

(11)EDTA 标准滴定溶液(0.02mol/l )

称取7.5gEDTA 于烧杯中,加约200ml 水,加热溶解,过滤,用水稀释至1ml 。 EDTA 标准溶液的标定,称取0.65g 于(800℃)的高温炉中灼烧至恒重的基准试剂氧化锌,用少量水稀释,加3ml20%的盐酸溶解,移入250ml 容量瓶中,稀释至刻线,定容,摇匀。移取25.00ml 于250ml 锥形瓶中,加70ml 水,用氨水(1:1)调节溶液PH=7~8,加10ml 氨-氯化铵缓冲溶液,5滴EBT ,用EDTA 溶液滴定至溶液由紫色变为纯蓝色。同事做空白溶液。

(10)硫酸铜标准滴定溶液(0.02mol/L )

称取5.0g五水硫酸铜溶于水中,加4~5滴1:1硫酸,加水稀释至1L,摇匀。

硫酸铜标准滴定溶液的标定:准确移取25.00ml0.02mol/LEDTA标准滴定溶液于250ml锥形瓶中,用水稀释至150ml,加15mlPH=4.3的缓冲溶液,加热煮沸。取下稍冷,加5~6滴PAN指示剂,用硫酸铜标准滴定溶液滴定至亮紫色(11)乙酸乙酸钠缓冲溶液(PH=4.3)

(12)氨氯化铵缓冲溶液(PH=10)

(13)PAN指示剂(2g/l)

(14)EBT指示剂(5g/l)

2.2 待测溶液的制备

准确称取约0.5g试样,精确至0.0001g,置于银坩埚中,加入6~7g氢氧化钾,在650~700℃的高温下熔融20min,取出冷却,将坩埚放入已盛有100mL近沸腾水的烧杯中,盖上表面皿,于电热板上加热,待到熔块完全浸出后,取出坩埚,用水清洗坩埚和盖,在搅拌下一次加入25~30ml盐酸,再加入1ml硝酸,用1:5的热盐酸清洗坩埚和盖,将溶液加热至沸,冷却,移入250ml容量瓶中,用水稀释至刻线,摇匀。此溶液用于测定氧化铝。

2.3 实验方法

采用置换法测定水泥中的氧化铝。

准确移取溶液25.00ml于250ml锥形瓶中,加水稀释至100ml,用1:1氨水调节溶液PH=1.8~2.0(用紧精密PH试纸),将溶液加热至70℃,加10滴磺基水杨酸钠指示剂,用0.02mol/LEDTA标准滴定溶液缓慢滴定至溶液颜色由紫红色变为亮黄色为终点。向滴定完铁的溶液中加入0.02mol/LEDTA标准滴定溶液至过量10~15ml,用水稀释至150~200ml,将溶液加热至70~80℃后,加数滴1:1氨水使溶液PH=3.0~3.5之间,加15mlPH=4.3的乙酸—乙酸钠缓冲溶液,煮沸1~2min,取下稍冷,加4~5滴PAN指示剂,用0.02mol/L硫酸铜标准溶液滴定至亮紫色为终点,记录消耗硫酸铜溶液的体积。

3 结果与讨论

3.1 硅酸盐水泥试样分解的研究

一:熔融分解法

(1)熔融分解法

用酸或其他溶剂不能分解完全的试样,可用熔融的方法分解。此法是将熔剂和试样混合后,于高温下,使试样转变为易溶于水或酸的化合物。熔融方法需要高温设备,且引进大量熔剂的阳离子和坩埚物质,这对有些测定是不利的。

①熔剂分类

a.碱性熔剂:如碱金属碳酸盐及其混合物、硼酸盐、氢氧化物等。

b.酸性熔剂:包括酸式硫酸盐、焦硫酸盐、氟氢化物、硼酐等。

c.氧化性熔剂:如过氧化钠、碱金属碳酸盐及氧化剂混合物等。

d.还原性熔剂:如氧化铅和含碳物质的混合物、碱金属和硫的混合物、碱金属硫化物和硫的混合物等。

②选择熔剂的基本原则

一般说来,酸性试样采用碱性熔剂,碱性试样采用酸性熔剂,氧化性试样采用还原性熔剂,还原性试样采用氧化性熔剂,但也有例外。

③常用熔剂简介

a. 碳酸盐。通常用Na2CO3或KNaCO3作熔剂来分解矿石试样,如分解钠长石、重晶石、铌钽矿、铁矿、锰矿等。熔融温度一般在900~1 000℃,时间在10~30min,熔剂和试样的比例因不同的试样而有较大区别,如对铁矿或锰矿为1∶1,对硅酸盐约为5∶1,对一些难熔的物质如硅酸锆、釉和耐火材料等则要10∶1~20∶1,通常用铂坩埚。碳酸盐熔融法的缺点是一些元素会挥发失去,汞和铊全部挥发,硒、砷、碘在很大程度上失去,氟、氯、溴损失较小。

b.过氧化钠。过氧化钠常被用来熔解极难溶的金属和合金、铬矿以及其他难以分解的矿物,例如,钛铁矿、铌钽矿、绿柱石、锆石和电气石等。

此法的缺点是:过氧化钠不纯且不能进一步提纯,一些坩埚材料常混入试样溶液中。为克服此缺点,可加Na2CO3或NaOH。500℃以下,可用铂坩埚,100%℃以下可用锆或镍坩埚。可能采用的材料还有铁、银和刚玉。

c.氢氧化钠(钾)。碱金属氢氧化物熔点较低(328℃),熔融时可在比碳酸盐熔

点低得多的温度下进行。对硅酸盐(如高岭土、耐火土、灰分、矿渣、玻璃等),特别是对铝硅酸盐熔融十分有效。此外,还可用来分解铅钒,Nb,Ta及硼矿物和许多磷酸盐以及氟化物。

对氢氧化物熔融,镍坩埚(100%℃)和银坩埚(700℃)优于其他坩埚。熔剂用量与试样量比为8∶1~10∶1。此法的缺点是熔剂易吸潮,因此熔化时易发生喷溅现象。优点是速度快,而且固化的熔融物容易溶解,F-,Cl-,Br-,As,B等也不会损失。

d.焦硫酸钾(钠)。焦硫酸钾可用K2S2O7产品,也可用KHSO4脱水而得。熔融时温度不应太高,持续的时间也不应太长。假如试样很难分解,最好不时冷却熔融物,并加数滴浓硫酸,尽管这样做不十分方便。

对BeO,FeO,Cr2O3,Mo2O3,Tb2O3,TiO2,ZrO2,Nb2O5,Ta2O5和稀土氧化物以及这些元素的非硅酸盐矿物,例如钛铁矿,磁铁矿,铬铁矿,铌铁矿,钽铁矿等,焦硫酸盐熔融特别有效。铂和熔凝石英是进行这类熔融常用的坩埚材料,前者略被腐蚀,后者较好。熔剂与试样量之比为15:1。

二:氢氟酸分解法

氢氟酸是分解硅酸盐试样唯一最有效的溶剂,氟离子可与硅酸盐中的主要成分硅铝铁等形成稳定的易溶于水的配离子,用氢氟酸分解式样,用于测定二氧化硅;

3.2 硅酸盐水泥试样氧化铝含量的测定研究

3.2.1酸度的研究

表3-1 硅酸盐水泥中氧化铝含定(PH=0.5)

表3-2 硅酸盐水泥中氧化铝测定(PH=0.7)

表-3 硅酸盐水泥中氧化铝测定(PH=0.9)

表3-4 硅酸盐水泥中氧化铝含量测定(PH=1.2)

表3-5 硅酸盐水泥中氧化铝含量测定(PH=1.7)

表3-6 硅酸盐水泥中氧化铝含量测定(PH=2.1)

解析:

在PH=0.5 PH=0.7 PH=0.9 PH=1.2 PH=1.7 PH=2.1 的情况下,根据研究实验数据所得,硅酸盐水泥氧化铝含量测定的结果偏低。因为在酸度PH<1情况下,二价铁离子不能与EDTA定量定位,EDTA也不能够与三价铁离子定量配位,同时,磺基水杨酸钠与三价铁离子生成的配合物也是很不稳定的,致使终点提前,使滴定结果偏低;同时PH>2.5,则三价铁离子易水解,使三价铁离子与EDTA的配位能力减弱甚至完全消失,氧化铝含量测定结果偏低,影响精确度.

所以在测定总铁或氧化铝含量时,控制溶液的PH=1.8~2.0是关键。因此,要控制好溶液的酸度1.8~2.0

3.2.2 温度研究

研究二:

表3-7 硅酸盐水泥中氧化铝含量测定(温度=50℃)

表3-8 硅酸盐水泥中氧化铝含量的测定(温度=70)

表3-9 硅酸盐水泥中氧化铝含量测定(温度=60℃)

解析:

根据实验数据研究可以得出,当温度为50℃60℃80℃时, 溶液中的铝离子会与EDTA配位,使本次测定结果偏高. 而且在PH=1.8~2.0时,三价铁离子与EDTA的

配位反应速率较慢,所以温度不能够过高,要控制溶液的温度70℃为宜。同时,在滴定结束时,溶液的温度不宜低于60℃。注意在滴定过程中测量溶液的温度,如低于60℃,可暂停滴定,将溶液加热后继续滴定。

水泥生产中硅酸盐水泥熟料成份说明

水泥生产中硅酸盐水泥熟料成份说明 硅酸盐水泥熟料是以适当成分的生料烧到部分熔融,所得以硅酸钙为主要成分的烧结块。碳酸盐水泥生产主要使用水泥成套设备完成最重要的设备是回转窑设备。因此,在硅酸盐水泥熟料中CaO,SiO2,A1203,Fe2O3 不是以单独的氧化物存在,而是以两种或两种以上的氧化物经高温化学反应而生成的多种矿物的集合体。其结晶细小,一般为30^-60Icm 。因此可见,水泥熟料是一种多矿物组成的结晶细小的人工岩石。它主要有以下四种矿物:硅酸三钙一~3Ca0 .'3i02 ,可简写为C3S ; 硅酸二钙2Ca0 ?Si02 ,可简写为C2S ; 铝酸三钙3Ca0 ?A1203 ,可简写为C 3 A ; 铁相固溶体通常以铁铝酸四钙4Ca0 . A1203 . Fe203 作为代表式,可简写成 C 4 AF, 此外,还有少量游离氧化钙(.f-Ca0 ) 、方镁石(结晶氧化镁)、含碱矿物及玻璃体。通常熟料中C3S 和C2S 含量约占75 %左右,称为硅酸盐矿物。C3-ft 和C,AF 的理论含量约占22 %左右。在水泥熟料锻烧过程中,C 3 A 和C,AF 以及氧化镁、碱等在1250 ^ - 12800C 会逐渐熔融形成液相,促进硅酸三钙的形成,故称熔剂矿物。 一、硅酸三钙 C3S 是硅酸盐水泥熟料的主要矿物。其含量通常为50 %左右,有时甚至高达60 %以上。纯C3S 只有在2065^ 12500C 温度范围内才稳定。在2065℃以上不一致熔融为Ca0 和液相;在1250℃以下分解为CZS 和Ca0 ,但反应很慢,故纯C,S 在室温可呈介稳状态存在。C,S 有三种晶系七种变型: 1070 0 C 1060 0 C 990 0 C 960 0 C 920 0 C 520 0 C R ←――→M Ⅲ←――→M Ⅱ←――→M Ⅰ←――→~T Ⅲ←――→T Ⅱ←――→T Ⅰ R 型为三方晶系,M 型为单斜晶系,T 型为三斜晶系,这些变型的晶体结构相近。但有人认为,R 型和M ,型的强度比T 型的高。 在硅酸盐水泥熟料中, C3S 并不以纯的形式存在,总含有少量氧化镁、氧化铝、氧化铁等形成固溶液,称为阿利特(Alite )或A 矿。 纯C3S 在常温下,通常只能为三斜晶系(T 型),如含有少量Mg0, A1203 , Fe2O3 ,

水泥的三个率值

硅酸盐水泥熟料中各氧化物之间的比例关系的系数称作率值。硅酸盐水泥熟料中各氧化物并不是以单独状态存在,而是由各种氧化物化合成的多矿物集合体。因此在水泥生产中不仅控制各氧化物含量,还应控制各氧化物之间的比例即率值。在一定工艺条件下,率值是质量控制的基本要素。因此,国内外水泥厂都把率值作为控制生产的主要指标,我国主要采用石灰饱和系数(KH)、硅率(n)、铝率(p)三个率值。 2.5.1 硅酸率 硅酸率表示水泥熟料中SiO2与Al2O3、Fe2O3之和的比值,也表示熟料中硅酸盐矿物与熔剂矿物的比例。常用n或SM表示。 硅酸率高,硅酸盐矿物含量多,熟料质量高,但烧成困难;硅酸率低,液相量多,易烧性好,但熔剂矿物高,硅酸盐矿物减少,会降低熟料强度,n过低时易结大块。硅酸盐水泥熟料的n波动在1.7~2.7的范围内。 2.5.2 铝氧率 又称铝率或铁率,表示熟料中氧化铝和氧化铁之比,也表示熟料熔剂矿物中C3A 与C4AF的比例。用p或IM表示。 p值的大小,一方面关系到熟料水化速度的快慢,同时又关系到熟料液相的粘度,从而影响以熟料煅烧的难易。p高,C3A高,C4AF降低,水泥趋于早凝早强,但液相粘度大,不利于C3S形成;p低,C3A低,C4AF提高,水泥趋于缓凝,早强低,煅烧时液相粘度小,有利于C3S形成,但过低时易结大块。 硅酸盐水泥熟料的p值波动在0.9~1.7范围内。AM=1.5-1.7 2.5.3 石灰饱和系数(KH) 石灰饱和系数表示熟料中全部氧化硅生成硅酸钙的需的氧化钙含量与氧化硅生成硅酸三钙所需氧化钙最大含量的比值,也即表示熟料中氧化硅被氧化钙饱和形成硅酸三钙的程度。p新标准KH=0.89-0.91 当熟料p大于0.64时,熟料中的矿物为C3S、C2S 、C3A、C4AF;当p小于0.64时熟料中的矿物为C3S、C2S 、C4AF、C2F。 当p<0.64时,石灰饱和系数的表达式为: 实际生产的熟料中还可能有f-CaO和f-SiO2,则石灰饱和系数表示为:一般工厂熟料的f-SiO2和SO3含量很少,略去f-CaO时,石灰饱和系数表达式可简化为: KH=1时,熟料中硅酸盐矿物全部为C3S,KH=2/3=0.667时,硅酸盐矿物全部为C2S,故KH值介于0.667~1之间。KH高,C3S含量多,有利于提高水泥质量,但煅烧困难,热耗高,易产生f-CaO。KH低则C2S高,易烧性好,水化热低,但水泥凝结硬化慢,早期强度低。为保证熟料质量,同时不出现过量f -CaO,通常KH值控制在0.82~0.96之间。 石灰饱和率(LSF) 在国外,尤其是欧美国家大多采用石灰饱和率LSF来控制生产,用于限定水泥中的最大石灰含量,其表达式为: LSF的含义是熟料中CaO的含量与全部酸性组分需要结合的CaO含量之比,一般LSF高,水泥强度也高。 硅酸盐水泥熟料的LSF波动在0.66~1.02,一般在0.85~0.95。

硅酸盐水泥、普通硅酸盐水泥(GB175-92)

硅酸盐水泥、普通硅酸盐水泥(GB175-92) 来源:发布日期:2006-01-10 标准名称:硅酸盐水泥、普通硅酸盐水泥 标准类型:中华人民共和国国家标准 标准号:GB175-92 标准发布单位:国家技术监督局发布 标准正文: 1 主题内容与适用范围 本标准规定了硅酸盐水泥和普通硅酸盐水泥的定义、组分材料、技术要求、试验方法、检验规则等。 本标准适用于硅酸盐水泥和普通硅酸盐水泥的的生产和检验。 2 引用标准 GB 176 水泥化学分析方法 GB 177 水泥胶砂强度检验方法 GB 203 用于水泥中的粒化高炉矿渣 GB 750 水泥压蒸安定性试验方法 GB 1345 水泥细度检验方法(80μm筛筛析法) GB 1346 水泥标准稠度用水量、凝结时间、安定性检验方法 GB 1596 用于水泥和混凝土中的粉煤灰 GB 2847 用于水泥中的火山灰质混合材料 GB 5483 用于水泥中的石膏和硬石膏 GB 8074 水泥比表面积测定方法(勃氏法) GB 9774 水泥包装用袋 GB 12573 水泥取样方法 ZB Q12 001 掺入水泥中的回转窑窑灰 3 定义与代号

3.1 硅酸盐水泥 凡由硅酸盐水泥熟料、0 ̄5%石灰石或粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝材料,称为硅酸盐水泥(即国外通称的波特兰水泥)。硅酸盐水泥分两种类型,不掺加混合材料的称Ⅰ型硅酸盐水泥,代号P·Ⅰ。在硅酸盐水泥熟料粉磨时掺加不超过水泥重量5%石灰石或粒化高炉矿渣混合材料的称Ⅱ型硅酸盐水泥,代号P·Ⅱ。 3.2 普通硅酸盐水泥 凡由硅酸盐水泥熟料、6%--15%混合材料、适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥(简称普通水泥),代号P·0。 掺活性混合材料时,最大掺量不得超过15%,其中允许用不超过水泥重量5%的窑灰或不超过水泥重量10%的非活性混合材料来代替。 掺非活性混合材料时最大掺量不得超过水泥重量10%。 4 材料要求 4.1 石膏 天然石膏:应符合GB5483的规定。 工业副产石膏:工业生产中以硫酸钙为主要成分的副产品。采用工业副产石膏时,应经过试验,证明对水泥性能无害。 4.2 活性混合材料 符合GB1596的粉煤灰,符合GB2847的火山灰质混合材料和符合GB203的粒化高炉矿渣。 4.3 非活性混合材料 活性指标低于GB1596、GB2847和GB203标准要求的粉煤灰,火山灰质混合材料和粒化高炉矿渣以及石灰石和砂岩。石灰石中的三氧化二铝含量不得超过2.5%。 4.4 窑灰 应符合ZBQ12001的规定。

硅酸盐水泥熟料的煅烧:什么是硅酸盐水泥

硅酸盐水泥熟料的煅烧 §5-1 生料在煅烧过程中的物理化学变化 §5-2 熟料形成的热化学 §5-3 矿化剂、晶种对熟料煅烧和质量的影响 §5-4 挥发性组分及其他微量元素的作用 §5-5 水泥熟料的煅烧方法及设备 【掌握内容】 1、硅酸盐水泥熟料的形成过程名称、反应特点、影响反应速度的因素; 2、熟料的形成热、热耗的定义、一般数值、影响因素 3、挥发性组分对新型干法水泥生产的影响 4、悬浮预热器窑及预分解窑的组成、工作过程

5、影响窑产、质量及消耗的因素 【理解内容】 1、C3S的形成机理,形成条件; 2、影响熟料形成热的因素,形成热与实际热耗的区别,降低热耗的措施; 3、回转窑的结构、组成、及工作过程; 4、回转窑内“带”的划分方法,预分解窑内“带”的划分。 【了解内容】 1、水泥熟料的煅烧方法及设备类型; 2、矿化剂、晶种定义、类型、作用、使用; 3、湿法窑的组成,工作过程 合格生料在水泥窑内经过连续加热,高温煅烧至部分熔融,经过一系列的物理化学反应,得以硅酸钙为主要成分的硅酸盐水泥熟料的工艺过程叫硅酸盐水泥

熟料的煅烧,简称煅烧。结合目前生产现状及学生的就业去向,主要介绍与回转窑尤其是新型干法回转窑有关的知识,立窑有关知识留给学生自学。 第一节生料在煅烧过程中的物理化学变化 生料在加热过程中,依次进行如下物理化学变化 一、干燥与脱水 (一)干燥 入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。而干法生产中生料的含水率一般不超过0%。 (二)脱水 当入窑物料的温度升高到450℃,粘土中的主要组成高岭土 (Al2O3·2SiO2·2H2O)发 生脱水反应,脱去其中的化学结合水。此过程是吸热过程。 Al2O3·2SiO2·2H2 Al2O3 + 2SiO2 + 2H2 (无定形)(无定形)

几种常见硅酸盐水泥的特性

几种常见硅酸盐水泥的特性 一、组成部分 1)硅酸盐水泥(又称波特兰水泥) 由硅酸盐水泥熟料、0%-5%石灰石或粒化高炉炉渣、适量石膏磨细制成。 硅酸盐水泥熟料的主要成分为硅酸三钙3CaO·SiO2,硅酸二钙2CaO·SiO2,铝酸三钙3CaO·Al2O3和铁铝酸四钙4CaO·Al2O3·Fe2O3。 2)矿渣硅酸盐水泥(简称故渣水泥) 由硅酸盐水泥熟料和粒化高炉矿渣、适量石膏磨细制成 水泥中粒化高炉矿渣掺加量按重量计为20~70%;允许用不超过混合材料总掺量1/3的火山灰质混合材料(包括粉煤灰)、石灰石、窑灰来代替部分粒化高炉矿渣,这些材料的代替数量分别不得超过15%、10%、8%;允许用火山灰质混合材料与石灰石,或与窑灰共同来代替矿渣,但代替的总量不得超过15%,其中石灰石不得超过10%、窑灰不得超过8%;替代后水泥中的粒化高炉矿渣不得少于20%。 3) 火山灰质硅酸盐水泥(简称火山灰水泥) 由硅酸盐水泥熟料和火山灰质混合材料、适量石膏磨细制成。 水泥中火山灰质混合材料掺加量按重量计为20~50%;允许掺加不超过混合材料总掺量1/3的粒化高炉矿渣,代替部分火山灰质混合材料,代替后水泥中的火山灰质混合材料不得少于20%。 4)粉煤灰硅酸盐水泥(简称粉煤灰水泥) 由硅酸盐水泥熟料和粉煤灰、适量石膏磨细制成 水泥中粉煤灰掺加量按重量计为20~40%;允许掺加不超过混合材料总掺量1/3的粒化高炉矿渣,此时混合材料总掺量可达50%,但粉煤灰掺量仍不得少于20%或大于40%。 5)复合硅酸盐水泥(简称复合水泥) 由硅酸盐水泥熟料和粉煤灰混合材料、适量石膏磨细制成 水泥中混合材料总掺加量按质量百分比应大于15%,不超过50%。水泥中允许用不超过8%的窑灰代替部分混合材料;掺矿渣时混合材料掺量不得与矿渣硅酸盐水泥

通用硅酸盐水泥的标准

前言 本标准第、、条为强制性条款,其余为推荐性条款。 本标准参照欧洲水泥试行标准ENV 197-1:2000《通用波特兰水泥》修订。 本标准代替GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水泥》三个标准。与GB175-1999、GB1344-1999、GB12958-1999相比,主要变化如下: ——全文强制改为条文强制(本版前言); ——增加通用硅酸盐水泥的定义(本版第条); ——将各品种水泥的定义取消(原版GB175-1999、GB1344-1999、GB12958-1999第3章);——将组成与材料合并为一章,材料中增加了硅酸盐水泥熟料(原版GB175-1999、GB1344-1999、GB12958-1999第4章,本版第4章); ——普通硅酸盐水泥中“掺活性混合材料时,最大掺量不超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活性混合材料来代替”改为“活性混合材料掺加量为>5%,≤20%,其中允许用不超过水泥质量5%符合本标准第条的窑灰或不超过水泥质量8%符合本标准第条的非活性混合材料代替”。(原版GB175-1999中第条,本版第条); ——将矿渣硅酸盐水泥中矿渣掺加量由“20%~70%”改为“>20%,≤70%”(原版GB1344-1999中第条,本版第条、条); ——将火山灰质硅酸盐水泥中火山灰质混合材料掺量由“20%~50%”改为“>20%,≤40%”(原版GB1344-1999中第条,本版第条); ——将粉煤灰硅酸盐水泥中粉煤灰掺量由“20%~40%”改为“>20%,≤40%”(原版GB1344-1999中第条,本版第条); ——将复合硅酸盐水泥中混合材料总掺加量由“应大于15%,但不超过50%”改为“>20%,≤50%”(原版GB12958-1999中第3章,本版第条); ——材料中增加了粒化高炉矿渣粉(本版第、条); ——取消了粒化精铬铁渣、粒化增钙液态渣、粒化碳素铬铁渣、粒化高炉钛矿渣等混合材料以及符合附录A新开辟的混合材料,并将附录A取消(原版GB12958-1999中第条、第条和附录A) ——增加了M类混合石膏(原版GB175-1999、GB1344-1999和GB12958-1999中第3章,本版第条); ——助磨剂允许掺量由“不超过水泥质量的1%”改为“不超过水泥质量的%”(原版GB175-1999、GB1344-1999和GB12958-1999中第条,本版第条); ——普通水泥强度等级中取消和(原版GB175-1999中第5章,本版第5章); ——增加了氯离子含量的要求,即水泥中氯离子含量不大于%(本版第条); ——取消了细度指标要求,但要求在试验报告中给出结果(原版GB175-1999第条、GB1344-1999、GB12958-1999中第条,本版条); ——将复合硅酸盐水泥的强度等级改为和矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥一致(原版GB12958-1999中第条,本版第条) ——增加了水泥组分的试验方法(本版第条); ——强度试验方法中增加了“掺火山灰混合材料的普通硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥在进行胶砂强度检验时,其用水量按水灰比和胶砂流动度不小于180mm来确定。当流动度小于180mm时,须以的整倍数递增的方法将水灰比调整至胶砂流动度不小于180mm”(原版GB1344-1999第条,本版第条); ——将“水泥出厂编号按水泥厂年生产能力规定”改为“水泥出厂编号按单线年生产能力规定”(原版GB175-1999、GB1344-1999、GB12958-1999中第条,本版第条);

白色硅酸盐水泥标准

白色硅酸盐水泥标准 1 主题内容与适用范围 本标准规定了白色硅酸盐水泥的组成、技术要求、试验方法、检验规则、包装与标志、贮存与运输等。 本标准适用于白色和彩色灰浆、砂浆及混凝土用白色硅酸盐水泥。 2 引用标准 GB 176 水泥化学分析方法 GB 177 水泥胶砂强度检验方法 GB 1345 水泥细度检验方法(80μm筛筛析法) GB 1346 水泥标准稠度用水量、凝结时间、安定性检验方法 GB 5483 用于水泥中的石膏和硬石膏 GB 5950 建筑材料与非金属矿产品白度试验方法通则 GB 9774 水泥包装用袋 GSBA 67001 氯化镁粉末状物质白度实物标准 ZB Q12 001 掺入水泥中的回转窑窑灰 3 定义 由白色硅酸盐水泥熟料加入适量石膏,磨细制成的水硬性胶凝材料称为白色硅酸盐水泥(简称白水泥)。 磨制水泥时,允许加入不超过水泥重量5%的石灰石或窑灰作为外加物。 水泥粉磨时允许加入不损害水泥性能的助磨剂,加入量不得超过水泥重量的1%。 4 组分材料 4.1 白色硅酸盐水泥熟料 以适当成分的生料烧至部分熔融,所得以硅酸钙为主要成分,氧化铁含量少的熟料。 4.2 石膏 天然二水石膏应符合GB5483的规定。 4.3 石灰石 作为外加物的石灰石中的三氧化二铝含量不得超过2.5%。 4.4 窑灰 窑灰应符合ZBQ12001的规定,且白度不得低于70%。 5 技术要求 5.1 氧化镁熟料中氧化镁的含量不得超过4.5%。 5.2 三氧化硫水泥中三氧化硫的含量不得超过3.5%。 5.3 细度0.080mm方孔筛筛余不得超过10%。 5.4 凝结时间初凝不得早于45min,终凝不得迟于12h。 5.5 安定性用沸煮法检验必须合格。 5.6 强度各标号各龄期强度不得低于表1的数值。

硅酸 盐 水泥 普 通 硅酸盐水泥GB 1751999

GB 175-1999(硅酸盐水泥、普通硅酸盐水泥) (2008-05-26 22:47:37) 转载▼ 分类:规范 标签: gb175-1999 硅酸盐水泥 强度等级 前言 本标准修订是为了使我国水泥强度检验方法与国际标准接轨。本标准参考ENV 197-1:1995欧洲 水泥试行标准。 本标准与原GB175-1992相比主要修改点有: 1.水泥强度检验方法由GB/T 17671-1999《水泥胶砂强度检验方法(ISO法)》代替GB/T 177一 1985《水泥胶砂强度检验方法》; 2.水泥标号改为强度等级. 本标准自1999年12月1日起实施,GB1 75-1992《硅酸盐水泥、普通硅酸盐水泥》自2000年12月 1日起废止,过渡期间以GB 175-1992为准. 本标准由国家建筑材料工业局提出. 本标准由全国水泥标准化技术委员会归口. 本标准起草单位:中国建筑材料科学研究院水泥科学与新型建筑材料研究所. 本标准主要起草人:白显明、颜碧兰、王文义、张大同、杨基典、王听、刘晨、肖忠明。本标准首次发布于1956年,1962年第一次修订,1977年第二次修订,1985年第三次修订,1992年 第四次修订。 中华人民共和国国家标准 硅酸盐水泥、普通硅酸盐水泥(GB 175-1999)代替(GB 175-1992) Portland cement and ordinary portland cement 1 范围 本标准规定了硅酸盐水泥、普通硅酸盐水泥的定义与代号、材料要求、强度等级、技术要求、试验方 法、检验规则、包装、标志、运输与贮存。

本标准适用于硅酸盐水泥和普通硅酸盐水泥。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均 为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。GB/T 176-1996 水泥化学分析方法(eqv ISO 680:1990) GB/T 203-1994 用于水泥中的粒化高炉矿渣(neq ГOCf3476:1974) GB/T 750-1992 水泥压蒸安定性试验方法 GB/T 1345-1991 水泥细度检验方法(80μm筛筛析法) GB/T 1346-1989 水泥标准稠度用水量、凝结时间、安定性检验方法(neqISO/DIS9 597) GB/T 1596-1991 用于水泥和混凝土中的粉煤灰 GB/T 2847-1996 用于水泥中的火山灰质混合材料(neqISO 863:1990) GB/T 54 83-1996 石膏和硬石膏(neqISO 1587:1975) GB/T 8074-1987 水泥比表面积测定方法勃氏法(neq ASTM C204:1981) GB 9774-1996 水泥包装袋 GB 12573-1990 水泥取样方法 GB/T 17671-1999 水泥胶砂强度检验方法(ISO法)(idtISO 679:1989) JC/T 667-1997 水泥粉磨用工艺外加剂 JC/T 742-19840996)掺入水泥中的回转窑窑灰 3 定义与代号 3.1 硅酸盐水泥 凡由硅酸盐水泥熟料、0-5%石灰石或粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝材料,称为 硅酸盐水泥(即国外通称的波特兰水泥)。硅酸盐水泥分两种类型,不掺加混合材料的称I 类硅酸盐水 泥,代号P·I。在硅酸盐水泥粉磨时掺加不超过水泥质量5%石灰石或粒化高炉矿渣混合材料的称II 型硅酸盐水泥,代号P·II。 3.2 普通硅酸盐水泥 凡由硅酸盐水泥熟料、6%-15%混合材料、适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐 水泥(简称普通水泥),代号P·Oo 掺活性混合材料时,最大掺量不得超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥 质量10%的非活性混合材料来代替。 掺非活性混合材料时,最大掺量不得超过水泥质量10% 4 材料要求 4.1 石膏 天然石膏:应符合GB/T 5483中规定的G类或A类二级(含)以上的石膏或硬石膏。 工业副产石膏:工业生产中以硫酸钙为主要成分的副产品.采用工业副产石膏时,必须经过试验,证 明对水泥性能无害。 4.2 活性混合材料 符合GB /T 203的粒化高炉矿渣,符合GB/T 1596的粉煤灰,符合GB/T 2847的火山灰质混

硅酸盐水泥的分析实验报告

硅酸盐水泥中的SiO2,Fe2O3,Al2O3,CaO 和MgO含量的测定 摘要 硅酸是一种很弱的无机酸,在水溶液中绝大部分以溶胶状态存在在用浓酸和加热蒸干等方法处理后,能使绝大部分硅酸水溶胶脱水成水凝胶析出,因此可以利用沉淀分离的方法把硅酸与水泥中的铁、铝、钙、镁等其他组分分开重量法测定SiO2 的含量,Fe2O3 、Al2O3 、CaO和MgO的含量以EDTA配位滴定法测定。 关键词:SiO2、Fe2O3 、Al2O3 、CaO和MgO、EDTA Abstract Silicate is a weak inorganic acid , it exists in aqueous solution in most in the form of the gel .When heated with concentrated acid and evvaporated ,dehydration can make most of the acid water sol gel precipition into water . Therefore,the method can be used to precipition of iron silicate and cement ,aluminum,calcium and other components separately from the content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the EDTA titrimetric method. Keywords: SiO2, Fe2O3, Al2O3, CaO and MgO, EDTA

硅酸盐水泥___论文

河南大学土木建筑学院课题:硅酸盐水泥

硅酸盐水泥 胶凝材料是指在物理、化学作用下,从具有可塑性的浆体逐渐变成坚固石状体的过程,能将其他物料胶结为整体并具有一定机械强度的物质。因其具有原料丰富、生产成本低、耐久性好、适应性强、耐火性好等众多优点而广泛应用于工业、民用建筑、水利工程等建设之中,成为在国民经济及人民生活中不可缺少的重要材料。 胶凝材料一般可分为有机和无机两类。有机胶凝材料是指各种树脂和沥青等;无机胶凝材料又可分为水硬性和非水硬性。水硬性胶凝材料在拌水后技能在空气中硬化一,又能在水中硬化并具有强度,通常称为水泥,如硅酸盐水泥、铝酸盐水泥、硫酸盐水泥等;非水硬性胶凝材料是指不能在水中硬化,但能在空气中或其他条件下硬化,如石灰、石膏、镁质胶凝材料等等。 在众多的胶凝材料中,水泥占有尤为突出的,它是基本建设的主要原料之一,广泛应用于工业、农业、国防、交通、城市建设、水利及海洋开发等工程建设。水泥工业的发展对保证国家建设和提高生活水平具有十分重要的意义。水泥按其主要矿物组成可分为硅酸盐水泥、铝酸盐水泥、铁铝酸盐水泥、氟铝酸盐水泥、少熟料或无熟料水泥。水泥的主要技术特征是:水硬性(分为快硬和特快硬两类);水化热(分为中热和低热两类);抗硫酸盐性(分中抗硫酸盐腐蚀和高抗硫酸盐腐蚀);膨胀性(分为膨胀和自应力);耐高温性(铝酸盐水泥的耐高温性以水泥中氧化铝含量分级)。 在水泥诸多品种中,硅酸盐水泥是应用最广泛和研究最多的。在此从硅酸盐水泥的分类、生产、技术要求、性能及应用等方面对硅酸盐水泥进行简单的研究分析。 所谓硅酸盐水泥是指从黏土和石灰石为原料,经高温煅烧得到以硅酸盐钙为主要成分的熟料,加入0—5%的混合材料和适量石膏磨细制成的水硬性胶凝材料,国际上统称为波特兰水泥。 硅酸盐水泥的分类 硅酸盐水泥包括纯熟料硅酸盐水泥和掺混合材料硅酸盐水泥两类,我国按其混合材料的掺加情况,共分为如下五类:纯熟料硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥粉煤灰硅酸盐水泥。 纯熟料硅酸盐水泥在硅酸盐水泥熟料中加入适量石膏,磨细而成的水泥,分425、525、625、725四个标号。其早期强度比其他几种硅酸盐水泥高5~10%,抗冻性和耐磨性较好,适用于配制高标号混凝土,用于较为重要的土木建筑工程。 普通硅酸盐水泥简称普通水泥。由硅酸盐水泥熟料掺加少量混合材料和适量石膏磨细而成。混合材料的加入量根据其具有的活性大小而定。普通水泥分为275、325、425、525、625和725六个标号,广泛用于制做各种砂浆和混凝土。 矿渣硅酸盐水泥简称矿渣水泥。由硅酸盐水泥熟料和粒化高炉矿渣,加

硅酸盐和硫铝酸盐复合水泥性能的研究

硅酸盐和硫铝酸盐复合水泥性能的研究班级:材料1003班姓名:指导老师: 摘要 本论文从研究硫铝酸盐水泥熟料、硅酸盐水泥熟料、粉煤灰、二水石膏四种原料复合后的水泥体系的物理性能入手,运用xRD衍射和扫描电镜等方法测试复合水泥体系的水化产物,对该复合水泥体系的水化机理进行了详细的探讨,通过复合水泥矿物组成和水化产物的理论计算,初步探讨复合水泥矿物的匹配。 本文确定了性能较好的各组分的配合比。研究表明,在硅酸盐水泥熟料中掺入10%以下硫铝酸盐水泥熟料的情况下,当石膏掺量为10%,CSA熟料含量在5%左右时,复合系统各方面的性能指标比较理想。当硅酸盐水泥熟料中掺入少量硫铝酸盐水泥熟料后,并配以适量的石膏掺量,可以提高硅酸盐水泥的早朗强度,抗压强度平均提高5MPa,同龄期抗折强度也有所提高。两种熟料复合后,水泥体系的凝结时间会明显缩短。 关键词:硅酸盐水泥,铝酸盐水泥,复合,性能

目录 第1章绪论------------------------------------------------------------------------------------- 1 1.1引言------------------------------------------------------------------------------------- 1 1.1.1硅酸盐水泥的发展概况 ---------------------------------------------------- 1 1.1.2硫铝酸盐水泥的发展概况 ------------------------------------------------- 3 1.2硅酸盐和硫铝酸盐复合水泥体系的研究现状 --------------------------------- 4 1.3论文选题的目的及意义 ---------------------------------------------------------- 5 1.3.1研究目的 ---------------------------------------------------------------------- 5 1.3.2论文选题的意义 ------------------------------------------------------------- 6 1.4研究内容 ---------------------------------------------------------------------------- 7 第2章实验内容------------------------------------------------------------------------------- 8 2.1实验原料------------------------------------------------------------------------------- 8 2.2材料化学成分------------------------------------------------------------------------- 8 2.3.1复合水泥的制备 ----------------------------------------------------------- 11 2.4水泥物理性能测定----------------------------------------------------------------- 11 2.4.1水泥净浆标准稠度用水量和凝结时间 -------------------------------- 11 2.4.2水泥砂浆抗压强度和抗折强度 ----------------------------------------- 11 2.5水泥微观分析----------------------------------------------------------------------- 11 2.5.1水泥净浆水化产物的取得 ----------------------------------------------- 11 2.5.2 XRD分析水泥水化产物的组成 ---------------------------------------------- 12 2.5.3扫描电镜(SEM)分析法观察水泥净浆水化产物的形貌------------------ 12

普通硅酸盐水泥技术要求

普通硅酸盐水泥 凡由硅酸盐水泥熟料、6%~15%混合材料、适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥(简称普通水泥),代号P.O。 掺活性混合材料时,最大掺量不得超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活性混合材料来代替。 掺非活性混合材料时,最大掺量不得超过水泥质量10%。 P.C 42.5R水泥 P.C:复合硅酸盐水泥; 42.5:28天抗压强度≥42.5MPa; R :早强型,3天强度较同强度等级水泥高。 如果速凝剂是合格的,以掺加4%为宜,多掺会影响强度 II级粉煤灰,细度小于25%,烧失量小于8%,需水量比小于105% 高效减水剂 高效减水剂对水泥有强烈分散作用,能大大提高水泥拌合物流动性和混凝土坍落度,同时大幅度降低用水量,显著改善混凝土工作性。但有的高效减水剂会加速混凝土坍落度损失,掺量过大则泌水。高效减水剂基本不改变混凝土凝结时间,掺量大时(超剂量掺入)稍有缓凝作用,但并不延缓硬化混凝土早期强度的增长。 能大幅度降低用水量从而显著提高混凝土各龄期强度。在保持强度恒定时,则能节约水泥10%或更多。

氯离子含量微少,对钢筋不产生锈蚀作用。能增强混凝土的抗渗、抗冻融及耐腐蚀性,提高了混凝土的耐久性。 聚羧酸 1、掺量低、减水率高:减水率可高达35%,可用于配制高强以及高性能混凝土。 2、坍落度轻时损失小:预拌混凝土2h坍落度损失小于15%,对于商品混凝土的长距离运输及泵送施工极为有利。 3、混凝土工作性好:用PC聚羧酸系高性能减水剂配制的混凝土即使在高坍落度情况下,也不会有明显的离析、泌水现象,混凝土外观颜色均一。对于配制高流动性混凝土、自流平混凝土、自密实混凝土、清水饰面混凝土极为有利。用于配制高标号混凝土时,混凝土工作性好、粘聚性好,混凝土易于搅拌。 4、与不同品种水泥和掺合料相容性好:与不同品种水泥和掺合料具有很好的相容性,解决了采用其它类减水剂与胶凝材料相容性问题。 5、混凝土收缩小:可明显降低混凝土收缩,显著提高混凝土体积稳定性及耐久性。 6、碱含量极低:碱含量≤0.2%。 7、产品稳定性好:低温时无沉淀析出。 8、产品绿色环保:产品无毒无害,是绿色环保产品,有利于可持续发展。 9、经济效益好:工程综合造价低于使用其它类型产品

硅酸盐水泥的分析实验报告

硅酸盐水泥的分析实验 报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

硅酸盐水泥中的SiO2,Fe2O3,Al2O3,CaO 和M g O含量的测定 摘要 硅酸是一种很弱的无机酸,在水溶液中绝大部分以溶胶状态存在在用浓酸和加热蒸干等方法处理后,能使绝大部分硅酸水溶胶脱水成水凝胶析出,因此可以利用沉淀分离的方法把硅酸与水泥中的铁、铝、钙、镁等其他组分分开重量法测定 SiO2 的含量, Fe2O3 、Al2O3 、CaO和 MgO的含量以EDTA配位滴定法测定。 关键词:SiO2、 Fe2O3 、Al2O3 、CaO和 MgO、EDTA Abstract Silicate is a weak inorganic acid , it exists in aqueous solution in most in the form of the gel .When heated with concentrated acid and evvaporated ,dehydration can make most of the acid water sol gel precipition into water . Therefore,the method can be used to precipition of iron silicate and cement ,aluminum,calcium and other components separately from the content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the EDTA titrimetric method. Keywords: SiO2, Fe2O3, Al2O3, CaO and MgO, EDTA 目录

硅酸盐水泥和普通水泥的区别

硅酸盐水泥和普通水泥的区别 硅酸盐水泥和普通硅酸盐水泥(简称普通水泥) 共同特点: 早期强度较高;凝结硬化速度快(前者比后者还要快) 2、水化热较大(前者比后者还要大得多) 3、耐冻性差 4、耐热性较差 5、耐腐蚀及耐水性较差 适用范围:前者适用于快硬早强的工程、高强度等级砼。不适用于大体积砼工程(发热量比普通水泥大得多,不用)、受化学侵蚀、压力水(软水)作用及海水侵蚀的工程。后者适用于地上、地下及水中的大部分砼结构工程。不适用于大体积砼(实际施工时一般视这个大体积到底有多大以及它的重要性,或者采取控温措施后还是经常用的,至少西南地区是这样)、受化学侵蚀、压力水(软水)作用及海水侵蚀的工程。 复合硅酸盐水泥主要特征:早期强度低,耐热性好,抗酸性差。采用粉煤灰和煤矸石做为混合材,系绿色建材产品,享受国家税收优惠,早期和后期强度稳定,水化热低,适用于一般工业与民用建筑,是一种经济型水泥。 普通硅酸盐水泥主要特征:早期强度高,水化热高,耐冻性好,耐热性差,耐腐蚀性差,干缩性较小。适用范围:制造地上、地下及水中的混凝土,钢筋混凝土及预应力混凝土结构,受循环冻融的结构及早期强度要求较高的工程,配制建筑砂浆。不适用于大体积混凝土工程和受化学及海水侵蚀的工程。 凡由硅酸盐水泥熟料、6%-15%的混合材料及适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥,简称普通水泥。国家标准对普通硅酸盐水泥的技术要求有:(1)细度筛孔尺寸为80μm的方孔筛的筛余不得超过10%,否则为不合格。(2)凝结时间初凝时间不得早于45分钟,终凝时间不得迟于10小时。(3)标号根据抗压和抗折强度,将硅酸盐水泥划分为325、425、525、625四个标号。 普通硅酸盐水泥由于混合材料掺量较少,其性质与硅酸盐水泥基本相同,略有差异,主要表现为:(1)早期强度略低(2)耐腐蚀性稍好(3)水化热略低(4)抗冻性和抗渗性好(5)抗炭化性略差(6)耐磨性略差 复合硅酸盐水泥凡由硅酸盐水泥熟料、两种或两种以上规定的混合材料、适量石膏磨细制成的水硬性胶凝材料,称为复合硅酸盐水泥(简称复合水泥)。水泥中混合材料总掺加量按质量百分比应大于15%,不超过50%。水泥中允许用不超过8%的窑灰代替部分混合材料;掺矿渣时混合材料掺量不得与矿渣硅酸盐水泥重复。 水泥一般分普通硅酸盐水泥、掺混合材料的硅酸盐水泥和特殊水泥。普通硅酸盐水泥:由石灰石、粘土、铁矿粉按比例磨细混合,这时候的混合物叫生料。然后进行煅烧,一般温度在1450度左右,煅烧后的产物叫熟料。然后将熟料和石膏一起磨细,按比例混合,才称之为水泥。 掺混合材料的硅酸盐水泥是在普通硅酸盐水泥里按比例和一定的加工程序加入其他物质以达到特殊效果,如矿渣水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥等等。这些水泥的原料就比原来的普通硅酸盐水泥要多一些活性混合材料或非活性混合材料。特殊水泥在材料阶段和制作工艺上有些不同,如高铝水泥(铝酸盐水泥)的材料是铝矾土、石灰石经过煅烧得到熟料,然后磨细成为铝酸盐水泥的。其他有一些特性水泥用途较小,如白色水泥,主要用于装饰工程,材料是纯高岭土、纯石英砂、纯石灰石,在合适的温度煅

硅酸盐水泥熟料的形成

第七章硅酸盐水泥的水化和硬化 第一节硅酸盐水泥熟料的形成 一、硅酸盐水泥熟料的形成 水泥熟料矿物为什么能与水发生反应?主要原因是: 1. 硅酸盐水泥熟料矿物结构的不稳定性,可以通过与水反应,形成水化产物而达到稳定性。造成熟料矿物结构不稳定的原因是:<1) 熟料烧成后的快速冷却,使其保留了介稳状态的高温型晶体结构;<2) 工业熟料中的矿物不是纯的C3S,C2S等,而是 A lite 和Belite 等有限固溶体;(3) 微量元素的掺杂使晶格排列的规律性受到某种程度的影响。 2. 熟料矿物中钙离子的氧离子配位不规则,晶体结构有“空洞”,因而易于起水化反 应。例如,C3S 的结构中钙离子的配位数为 6 ,但配位不规则,有 5 个氧离子集中在一侧而另一侧只有 1 个氧离子,在氧离子少的一侧形成“空洞”,使水容易进入与它反应。户C2S 中钙离子的配位数有一半是 6 ,一半是8 ,其中每个氧离子与钙离 子的距离不等,配位不规则,因而也不稳定,可以水化,但速度较慢。 C 3A的晶体结构中,铝的配位数为 4 与6, 而钙离子的配位数为 6 与9 ,配位数为9 的钙离子周围的氧离子排列极不规则,距离不等,结构有巨大的“空洞”,故水化很快。C4A F 中钙的配位数为10 与 6 ,结构也有“空洞”,故也易水化。有些矿物如Y-C2S和 CZ A S 几乎是惰性的,主要是钙离子的配位有规则的缘故.例如: Y-CZS 中钙离子的氧配位为 6 , 6 个氧离子等距离地排列在钙离子的周围,形成八面体,结构没有“空洞”,因此不易与水反应。这里要特别指出,水化作用快的矿物,其最终强度不一定高。例如,C3A水化快,但强度绝对值并不高,而户C2S 虽然水化慢,但最终强度却很高,因为水化速度只与矿物水化快慢有关,而强度则与浆体结构 形成有关。 二、熟料单矿物的水化 (一)硅酸三钙的水化 硅酸三钙在水泥熟料中的含量约占50 %,有时高达60 %,因此它的水化作 用、产物及其所形成的结构对硬化水泥浆体的性能有很重要的影响硅酸三钙在常温下

硅酸盐水泥的制备及性能测试实验报告

硅酸盐水泥的制备及性能测试 第1章实验目的 1.1 掌握硅酸盐水泥的制备工艺原理及工艺过程(包括原料的选择、生料的粉磨与成型、水泥熟料的烧结、水泥的粉磨)。 1.2提出具体的实验方案,确定合理的工艺条件(包括原料的配方、熟料的率值、烧成温度及水泥的组成和配合比),制备出合格的硅酸盐水泥样品。 1.3按国家标准对硅酸盐水泥样品进行相关的性能测定。 第2章实验原理 硅酸盐水泥的制备分为三个阶段:石灰质原料、粘土质原料与少量校正原料经破碎后,根据硅酸盐水泥熟料的率值进行配料、磨细成为成分合适、质量均匀的生料,称为生料制备;生料在窑炉内煅烧至部分熔融所得到的以硅酸钙为主要成分的硅酸盐水泥熟料,称为熟料煅烧;熟料加适量石膏共同磨细成为水泥,称为水泥粉磨。水泥加水拌成的浆体,起初具有可塑性和流动性,随着水泥与水发生一系列物理化学反应——水化反应的不断进行,浆体逐渐失去流动能力,转变成为具有一定强度及其它性能的固体。 第3章实验设备、材料及试剂 3.1 实验材料及试剂 化工原料(化学纯或分析纯):碳酸钙(CaCO3),石英砂(SiO2),氧化铝(Al2O3),氧化铁(Fe2O3),标准砂。 3.2 实验设备 水泥试验磨、高铝坩埚、硅碳棒高温炉、烘干箱、勃氏透气比表面积仪、电子天平、水泥净浆搅拌机、水泥净浆标准稠度及凝结时间测定仪、水泥混凝土恒温恒湿标准养护箱、水泥胶砂搅拌机、水泥胶砂振实台(或水泥胶砂振动台)、电动抗折试验机、数显式建材压力试验机、沸煮箱、水泥抗压夹具、水泥抗折试模。 3.2.1 实验设备图及介绍

A.水泥试验磨是由罩壳、磨机、 支座及电器控制箱等四大部分组成。 (1)罩壳:罩壳由二层玻璃钢板中间 夹吸音棉组成,分上下两罩,上罩壳 有罩门,下罩壳有取料斗,可盛放磨 好的物料,罩壳与磨机轴用带有毛毡 圈端盖7密封,所以罩壳起到隔音和 防尘的良好密封作用。(2)磨机:磨 机由筒体磨门盖、轴承及轴承、联轴 器和齿轮减速机等组成,是研磨物料 的主体部分,在卸料时将磨盖换上栅 孔卸料板,满足卸料的要求。(3)支 座:支座是由磨机及电动机组成的钢 结构,用以支承罩壳,磨机,电动减 速机及电器控制箱等,磨机座底部有4个Φ20底脚螺栓孔,用以固定全套设备。4、电器控制箱:由按钮、组合开关、热继电器、时间继电器、组合开关等组成,用它控制电机的启动和停止。 B.水泥净浆搅拌机主要有双速电 机、传动箱、主轴、偏心座、搅拌叶、 搅拌锅、底座、立柱、支座、外罩、 程控制器等组成。双速电动机通过联 轴器将动力传给传动箱内的蜗杆再经 蜗轮及一对齿轮和传给主轴并减速。 主轴带动偏心座同步旋转,使固定在 偏心座上的搅拌叶进行公转。同时搅 拌叶通过搅拌叶轴上端的行星齿轮围 绕固定的内齿轮完成自转运动。双速 电机经时间程控器控制自动完成一次 慢—停—快转的规定工作程序。搅拌 锅与滑板用偏心槽旋转锁紧。

相关主题
文本预览
相关文档 最新文档