当前位置:文档之家› 过滤器设计流程

过滤器设计流程

过滤器设计流程
过滤器设计流程

过滤器的选型计算原则

1. 过滤器(英文filter)介绍

1.1 根据过滤器的使用位置以及用途,可以分为两类:粗过滤器(英文strainer)和精细过滤器

粗过滤器主要应用于泵、流量计、阀门前,以保护设备不受大的金属颗粒磨碎,其精度基本是几百微米以上。精细过滤主要是净化流体,保护工艺安全。其精度范围基本在1微米到30微米之间。

1.2 按照制造设计要求可以分:压力容器和非压力容器

按照压力容器设计和制造的过滤器壳体执行GB150或者ASME标准。非压力容器执行SH/T3411或HGT 21637标准执行。

1.3 根据使用介质可分为:气体过滤器和液体过滤器

气体过滤器适用于气-固分离流域,可用于气体净化、分成回收等。液体过滤器适用于液-固分离领域,如润滑油过滤、石油化工行业过滤以及污水处理等。

2. 精细过滤器过滤面积:

粗过滤器国内有三部行业标准,因此,只要按照标准选型既可满足要求。

精细过滤器的过滤面积计算基本上不用公式计算,选型时主要依据的是实验数据,因此,过滤器的选择建议还是让生产厂家来选。

过滤三大曲线:

流量压差曲线(ΔP-Q),粒径与过滤比曲线(μ-β),时间与压降曲线(T-ΔP)

因此,计算过滤面积时要依据这三个曲线,其中最主要的的是流量压差曲线,这个曲线由有实力的过滤器制造厂进行试验测得。

目前最权威的测试方法是多次通过试验:ISO 4572 多次通过试验标准。此试验台价格昂贵,目前国内仅有2-3台。目前国内的小厂家过滤器公司滤芯检测是单次通过实验。

过滤面积计算步骤:

1. 确定过滤精度为25微米的过滤比,如200(过滤效率),确定何时滤材

2. 根据给定压降0.05MPa,对滤材进行流量压差测试。得出合适流量(L/min)

3. 根据所得流量,除以试验滤材的面积,计算流速(L/min.m2)。

4. 根据流速,和实际应用的流量,确定过滤面积,流量/流速=过滤面积

5. 根据所选用的过滤面积和滤材确定滤芯结构形式,折叠式或圆筒卷绕式*—*—*—*—*—*—*—*—*—*—*—

过滤器选型指南

过滤器, 指南, 选型

-

一.流体性质

流体名称流量密度粘度浓度

杂质名称杂质类型杂质含量杂质粒径分布杂质是否回收二.工艺要求

过滤精度允许压损清洗周期进出口要求

公称通径密封面形式连接面标准进出口方位

三.过滤器

过滤器形式拟定材质最高工作压力设计压力设计标准

工作温度设计温度密封材料连续/批次生产特殊要求

保温/蒸汽杀菌

四.环境条件

室内室外

环境温度环境湿度环境温度环境湿度最大风力酸雨天气

液压过滤器选型设计

液压过滤器选型设计指南 1 范围 本指南规定了液压过滤器的设计原则、注意事项、液压过滤器各项参数的选择,以及例举了液压过滤器选型设计的案例。 2 规范性引用文件 下列文件的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 20079 液压过滤器技术条件 Q/SY 012 015 液压过滤器选用规范 3 术语、符号及定义 GB/T 20079确定的术语、符号和定义适用于本文件。 3.1 过滤精度 指油液通过过滤器时,能够穿过滤芯的球形污染物的最大直径,以微米(μm)表示。 过滤器最大流量 由制造商所推荐的在规定运动粘度下通过被试过滤器的最大流量,以单位L/min表示。 纳污容量 指过滤器的压力降达到极限值时,滤芯所容纳的污染物重量,以单位kg表示。 过滤比 过滤器上游大于等于某一给定尺寸χ的颗粒污染物数量与下游大于等于同一给定尺寸的颗粒污染物数量之比,用βχ表示。

洁净过滤器总成压降△P总 被试元件为装有洁净滤芯的洁净过滤器,其测得的入口与出口压力之差。 壳体压降△P壳体 过滤器不装滤芯时的压降。 洁净滤芯压降△P滤芯 洁净滤芯所产生的压降,其值等于洁净过滤器总成压降减少壳体压降。 4 工作原理与结构型式 4.1 过滤器的工作原理与结构 过滤器的典型结构见图1。 图1 液压过滤器典型结构 油液从进油口进入过滤器,沿滤芯的径向由外向内通过滤芯,油液中颗粒被滤芯中的过滤层滤除,进入滤芯内部的油液即为洁净的油液。过滤后的油液从过滤器的出油口排出。 4.2 过滤器的分类 过滤器按其用途及安装部位,可分为如图2所示的5种不同类型。

过滤器设计的指导说明

过滤器设计的指导说明 1、DN直径的选取:按照不同滤料的滤速进行核 桃壳、活性炭过滤器一般为10-20m/h,纤维 球过滤器一般为20-30m/h; 2、过滤器进出水口直径dn的选取:一定记住按 照反冲洗水量进行核算,反冲洗水量一般要 为进水量的3-4倍,最低要按照3倍核算; 3、进水口要加弧形布水板,进出水口罐体内加 布水板防止集中水流对滤料的冲击(滤水出 口有时可不加); 4、过滤器总高一般不会小于2.8m,总高应按照下述的原则确定: H1:一般取450-600mm; H2:按照封头的规范核定; H3:为布水层高度,布水有两种方式,一是大阻力配水,高度为400mm,滤料粒径为16-32mm,厚度为100mm;8-16mm,厚100mm;4-8mm,厚100mm;2-4mm,厚100mm;若采用滤水帽配水,则按滤水帽高度填充2-4mm的滤料,高度一般不小于100mm; H4:滤料层按照不同的滤料要求选定,一般砂滤为600-700mm,多层滤料每层400mm,一般不多于三层;活性炭滤料滤层高度为1200-2000mm; H5:滤料反洗膨胀层高度一般为滤料层的1/2。 进出水口外伸高度一般为100-150mm。

5、滤料承重板的设计要求:一般应按照滤料重量负荷进行强度计算,承重 板厚度一般要求达到12-16mm,为节约材料,在直径偏大时,在承重板底部做“井字形”加强筋,并用四个立柱支撑; 6、人孔设置:一般应按照过滤器直径大小进行选取,直径小于1000mm的, 人孔直径一般不大于500mm,常规多用600mm,设置于滤料层的上部。 滤料承重板上部设直径150mm的滤料卸料孔; 7、过滤器进出水管一般都应通过管线连接,设置于过滤器的正面,并且增 加相应的管道支架将操作阀门固定在便于操作的高度上,一般高度取600-1600mm范围内;一般一个过滤器正常工作至少需要5-6个阀门,要求高的需要7-8个阀门,分别是:进水口的进水阀和反冲出水阀,出水口的出水阀和反冲进水阀,顶部的排气阀,底部的排空阀,要求高的时候在反洗后正式过滤前,5分钟内的过滤水需外排,故增加一个排水阀; 8、过滤器的进出水口的官道上要装压力表和取样阀。

活性炭过滤器操作维护手册

活性炭过滤器操作维护 手册 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

活性碳过滤器操作维护手册 1、工作原理 活性炭过滤器是利用颗粒活性炭进一步去除机械过滤器出水中的残存的余氯、有机物、悬浮物的杂质,为后续的反渗透处理提供良好条件。 活性炭过滤器主要利用含碳量高、分子量大、比表面积大的活性炭有机絮凝体对水中杂质进行物理吸附,达到水质要求,当水流通过活性炭的孔隙时,各种悬浮颗粒、有机物等在范德华力的作用下被吸附在活性炭孔隙中;同时,吸附于活性炭表面的氯(次氯酸)在炭表面发生化学反应,被还原成氯离子,从而有效地去除了氯,确保出水余氯量小于,满足RO膜的运行条件。随时间推移活性炭的孔隙内和颗粒之间的截留物逐渐增加,使滤器的前后压差随之升高,直至失效。在通常情况下,根据过滤器的前后压差,利用逆向水流反洗滤料,使大部分吸附于活性炭孔隙中的截留物剥离并被水流带走,恢复吸附功能;当活性炭达到饱和吸附容量彻底失效时,应对活性炭再生或更换活性炭,以满足工程要求。 当活性碳过滤器因截留过量的机械杂质而影响其正常工作,则可用反冲洗的方法来进行清洗。利用逆向进水,使过滤器内砂滤层松动,可使粘附于滤料表面的截留物剥离并被反冲水流带走,有利于排除滤层中的沉渣、悬浮物等,并防止滤料板结,使其充分恢复截污、除氯能力,从而达到清洗的目的。反洗以进出口压差参数设置来控制反冲洗周期,一般为三至四天,具体须视原水浊度而定。 活性碳过滤器采用不锈钢操作阀组,过滤器的启运、正洗、反洗、停机等工序均有手动控制操作。 当活性碳过滤器运行至进出口压差为~时,必须进行反洗。活性碳更换期为半年至一年。 2、结构特点 设备本体是带上下椭圆封头的圆柱形钢结构,过滤器材质为Q235―A或304不锈钢,内衬硫化橡胶防腐,内部在进水口设有布水器,下部设有集水装置,集水装置上填装1200mm的活性碳和200mm的石英砂。成套设备的本体外部装置有各种控制阀门和流量计、压力表。

中效空气过滤器的全方位介绍 )

中效空气过滤器的全方位介绍 生活中常常会听到中效空气过滤器,那么什么是中效空气过滤器呢?顾名思义,中效空气过滤器也是空气过滤器的一种,山东武城欣琪净化设备有限公司在这里让您全方位了解这个产品。山东武城欣琪净化设备有限公司是主要生产销售:过滤器,深圳过滤器,空气过滤器,空气过滤网,初效过滤器,初效尼龙网过滤器,初效空气过滤器,中效过滤器,中效空气过滤器,高效过滤器,高效空气过滤器,铝网过滤器,初效活性碳过滤器,耐高温初效过滤器,袋式过滤器,箱式过滤器,FFU空气过滤单元,空气净化设备等的专业厂家。 中效过滤器,由人造纤维及镀锌铁所组合而成。有各种效率可供选择,包括 40-45% , 60-65% , 80-85% , 90-95% 。法兰由 26 gauge 镀锌铁组成。此系列产品可应用于工、商业、医院、学校、大楼和其它各种工厂空调设备,也可以安装于燃气轮机入风口设备或电脑室,以延长设备使用寿命。 一、产品选用要点 1.中效空气过滤器产品选用的主要控制参数额定风量、额定风量下的过滤效率、额定风量下的初阻力、容尘量及外形尺寸等。 2. 按JG/T22-1999《一般通风用空气过滤器性能试验方法》规定的方法检验,对粒径≥1.0μm微粒的大气尘计数效率≥20%而<70%的过滤器为中效空气过滤器。 3. 中效空气过滤器常用滤料有玻璃纤维、无纺布等。 4. 厂家应提供过滤器容尘量。 5. 中效空气过滤器初阻力应≤80Pa。设计时,可按初阻力的二倍为终阻力,作为过滤器的计算阻力。 6. 过滤器初阻力不得超过产品样本阻力的10%。可再生或可清洗的滤料再生清洗以后,效率应不低于原指标的85%,阻力不高于原指标的115%。 7. 空气过滤器应符合防火要求,空气过滤器的涂料闪点应不低于163℃。 8. 中效空气过滤器不宜独立使用,宜与粗效空气过滤器组合使用。 二、施工、安装要点 空气过滤器避免直接安装在淋水室、加湿器的下风侧,确实无法避开时应采取有效措施。 三、相关标准图集 07K505《洁净手术部和医用气体设计与安装》 四、执行标准 产品标准 GB/T14295-93《空气过滤器》 JG/T22-1999《一般通风用空气过滤器性能试验方法》 工程标准 GB50073-2001《洁净厂房设计规范》 GB50333-2002《医院洁净手术部建筑技术规范》 信息来源:空气过滤器

过滤器选型计算

精心整理篮式粗过滤器选型计算 粗过滤器工艺计算 1.总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T3411-1999《石油化 工泵用过滤器选用、检验及验收》、HG-T21637-1991《化工管道过滤器》。本计算仅适用 于过滤器内过滤面积及起始压降计算,过滤器壳体执行GB150标准,不在本计算内。 2.过滤面积计算 依据SH/T3411-1999标准,其规定的有效过滤面积定义为:过滤器内支撑结构开孔总面积 减去开孔处滤网占据面积的净面积。因此计算有效过滤面积时考虑支撑结构的有效面积以及 滤网的有效面积。根据标准要求,永久性过滤器的有效过滤面积与管道截面积之比不小于1.5。 本项目的过滤器按照临时过滤器要求,有效过滤面积与管道截面积之比取不小于3.0。 2.1管道截面积计算S1: 本项目过滤器进出口管道工程直径DN200,S1=(0.2/2)2×3.14=0.0314m2 2.2过滤器有效过滤面积计算S2: 按照标准要求面积比取3,即S2/S1=3,即S2=S1×3=0.0314×3=0.0942m2 2.3过滤器过滤网面积计算 按照项目要求,过滤网要求0.8mm,表面积0.45m2。 本过滤器选择蓝式滤芯的表面积为0.56m2,滤篮支撑结构开孔率取50%,滤网选24目(可 拦截0.785mm以上颗粒),其有效开孔率为56%。因此本项目所选过滤器滤篮的有效过滤 面积为S=0.56×0.5×0.56=0.157m2,有效过滤面大于2.2计算结果0.0942m2,因此 在过滤面积上满足要求。 3.起始压降计算 压降计算按照标准所提供的参考公式计算,其中涉及到的物理量有雷诺数、当量长度、流体 密度、黏度等。 计算公式: 符号说明:

多介质过滤器操作维护手册

多介质过滤器操作维护手册 1、工作原理 多介质过滤器,用于原水的除浊处理。将原水送入装有各级匹配的石英砂的多介质过滤器,利用石英砂的截污能力,可有效地去除水中的较大颗粒悬浮物和胶体等,使出水的浊度小于1mg/l,以保证后续处理的正常运行。 原水在管道内加入絮凝剂,絮凝剂在水中发生离子水解和聚合过程,水中胶体粒子对水解及聚集的各种产物进行强烈的吸附,使粒子表面电荷和扩散厚度同时降低,因而粒子间相互排斥能降低,相互接近而凝聚,水解产生的聚合物被两个以上的胶体吸附后,在粒子间产生架桥联接,逐步形成较大的絮凝体,经过多介质过滤器时,为砂滤料载留。 多介质过滤器的吸附是一种物理吸附,按滤料的填装方式大体可分为松散区(粗砂)、紧密区(细砂),悬浮物质在松散区主工通过流动接触产生接触凝聚作用,所以该区域截留较大颗粒的悬浮物质,在紧密区主要是惯性碰撞及悬浮颗粒间的吸附作用,所以该区域是截留较小颗粒的悬浮物质。 当多介质过滤器因截留过量的机械杂质而影响其正常工作,则可用反冲洗的方法来进行清洗。利用逆向进水,同时通入压缩空气,进行气水混合擦洗,使过滤器内砂滤层松动,可使粘附于石英砂表面的截留物剥离并被反冲水流带走,有利于排除滤层中的沉渣、悬浮物等,并防止滤料板结,使其充分恢复截污能力,从而达到清洗的目的。反洗以进出口压差参数设置来控制反冲洗周期,经验得知一般为一天,具体须视原水浊度而定。 多介质过滤器采用不锈钢操作阀组,过滤器的启运、正洗、反洗、停机等工序均是手动控制操作。 当多介质过滤器运行至进出口压差为0.07MPa时,必须进行反洗。 2、结构特点 设备本体是带上下椭圆封头的圆柱形钢结构,过滤器材质为Q235―A或304不锈钢,内衬硫化橡胶防腐,内部在进水口设有布水器,下部设有集水装置,集水装置上填装1400 mm的石英砂。成套设备的本体外部装置有各种控制阀门和流量计、压力表。多介质过滤器所填填料包括精制石英砂。填高如下: 石英砂 0.4-0.6mm 700mm

空气过滤系统设计参考

上海一鸣过滤技术有限公司产品选用说明 整个空气净化系统可分为两部分,如图1所示,其中总空过滤器之前是空气预处理系统,总空过滤器之后(包括总空过滤器)是超纯净化系统部分。 图1 空气净化系统示意图 1、预处理系统 空压机出口气体中含有大量的粉尘、水汽、油雾等,所以必须进行降湿除油处理,并滤除较大的尘埃粒子。常见的预处理工艺流程如图2所示: 空气吸风塔前置过滤器空压机贮气罐 一级冷却器旋风分离器二级冷却器旋风分离器丝网除沫器除油过滤器加热器总过滤器 图2 空气预处理系统工艺流程 1.1前置过滤器 在空气流量较大时可在空压机前装前置过滤器,该过滤器价格低廉,却可有效的去除空气中的大颗粒。本公司生产的滤袋式过滤器,各有关技术参数见表1。 表1 袋式过滤器技术参数一览表 空气流量较小时滤袋形状可作相应的变化,如做成套筒式。也可直接在过滤器内填装玻璃纤维复合毡。 1.2常用析水除油设备 常见的析水除油设备一般有两类,一是利用离心力进行沉降的旋风分离器,一是利用惯性拦截的介质分离器。旋风分离器是一种结构简单,阻力较小,分离效果较高的气-固或气-

液分离设备。它可以除去空气中绝大多数的20微米以上的液滴和少量更为微小的液滴。对于空气中夹带的雾状液滴,则应用分离效果较高的丝网除沫器去除。丝网除沫器具有比表面积大,自由体积大,重量轻,使用方便等优点,尤其是它具有除沫效率高、压降小的特点。一般对分离大于5微米的液滴效率可达99%,对于10微米的液滴效率达99.5%,并且也能去除2~5微米直径的雾滴。 1.3除油过滤器 本公司在总结客户空气预处理经验的基础上,开发出新一代析水除油设备,该设备集旋风分离、丝网除沫等功用于一身,再加上专用的除油滤芯(滤芯材质为特种玻璃纤维,不锈钢支撑,外罩海绵),可有效去除空气中的水分与油雾,实践表明,压缩空气经除油过滤器处理后,含油量≦0.01ppm。 2、超纯净化系统 超纯净化系统一般可分为初过滤(总过滤)、预过滤、精过滤三部分,对于需要严格无菌的空气处理系统来说还需要蒸汽过滤系统。粗过滤的作用是滤除较大的颗粒杂质,保护后道过滤器。预过滤的作用是进一步滤除细小的颗粒杂质,保护除菌过滤器。合适的粗过滤和预过滤最好能滤除尘埃、细菌、噬菌体等杂质,使精过滤器达到最长的使用寿命,降低系统的运行费用。 一个优良的空气净化系统必须在达到绝对过滤要求的同时,使系统的操作费用最低,以实现可靠性与经济性的有机统一。因此各过滤单元选用的基本准则是粗过滤价格要便宜,预过滤精度要合适,精过滤必须可靠。系统滤器的配置如表2所示。 表2系统滤器匹配 2.1初过滤(总过滤,DGF) 本公司生产的总过滤器(因其过滤面积与处理量都很大,所以被称为大面积过滤器),内装DGF滤芯(形状如图3a所示),过滤精度为0.5μm,过滤效率≥95%,选用价格相对便宜的玻璃纤维复合毡,这是一种深层过滤材料。对于有油空压机最好在过滤器底部填装棉花活性炭。 2.2预过滤(JPF-YUD,JPF-G、H、I) JPF-YUD滤芯(外形如图3c所示)是专用的预过滤芯。该滤芯采用特种超细玻璃纤维滤纸,过滤精度为0.3μm,过滤效率≧99%,压缩空气经预过滤器处理后,去除大于0.3μ的杂质,为后一级精过滤提供保障。该滤芯初始压降小于0.005MPa,正常情况下使用寿命不小于一年半。当压降≧0.025MPa时,应考虑更换。

多介质过滤器的设计原理

多介质过滤器的设计原理 多介质过滤器是利用一种或几种过滤介质,在一定的压力下把浊度较高的水通过一定厚度的粒状或非粒材料,从而有效的除去悬浮杂质使水澄清的过程,常用的滤料有石英砂,无烟煤,锰砂等,主要用于水处理除浊,软化水,纯水的前级预处理等,出水浊度可达3度以下。过滤的含义,在水处理过程中,过滤一般是指以石英砂、无烟煤等滤料层截留水中悬浮杂质,从而使水获得澄清的工艺过程。用于过滤的多孔材料称为滤料,石英砂是最常见的滤料。滤料有粒状,粉状和纤维状多种。常用滤料有石英砂、无烟煤、活性炭、磁铁矿、拓榴石、瓷、塑料球等。多介质过滤器(滤床),既采用两种以上的介质作为滤层的介质过滤器,在工业循环水处理系统中,用以去除污水中杂质、吸附油等,使水质符合循环使用的要求。过滤的作用,主要是去除水中的悬浮或胶态杂质,特别是能有效地去除沉淀技术不能去除的微小粒子和细菌等,BODs和COD等也有某种程度的去除效果。性能参数如下表所示:过滤器构成 多介质过滤器主要由过滤器体、配套管线和阀门构成。其中过滤器体主要包括以下组件:简体;布水组件;支撑组件;反洗气管;滤料;排气阀(外置)等。 滤料的选择依据 (1)必须有足够的机械强度,以免在反冲洗过程中很快地磨损和

破碎;(2)化学稳定性要好;(3)不含有对人体健康有害及有毒物质,不含有对生产有害、影响生产的物质;(4)滤料的选择,应尽量采用吸附能力、截污能力大、产水量高、出水水质好的滤料。在滤料中,卵石主要是起支撑作用,在过滤工艺过程中,因其强度高,相互之间的间距缝隙稳定,孔隙大,便于正洗工序中,滤后水顺利通过;同样,反洗工序中,反洗水和反洗空气等能顺利通过。常规配置中,卵石分为四种规格,铺垫方式为自下而上先大后小。滤料的粒径和装填高度之间的关系 滤床的高度和滤料的平均粒径的比值为800~1 000(设计规)。滤料的粒径的大小和过滤精度相关。下表所示为各部件的功用和结构形式。多介质过滤器 在水处理上使用的多介质过滤器,常见的有:无烟煤-石英砂-磁铁矿过滤器,活性炭-石英砂-磁铁矿过滤器,活性炭-石英砂过滤器,石英砂-瓷过滤器等。多介质过滤器的滤层设计,主要考虑的因素为:1、不同滤料具有较大的密度差,保证反洗扰动后不会发生混层现象。2、根据产水用途选择滤料。3、粒径要求下层滤料粒径小于上层滤料粒径,以保证下层滤料的有效性和充分利用。事实上,以三层滤床为例,上层滤料粒径最大,有密度小的轻质滤料组成,如无烟煤、活性炭;中层滤料粒径居中,密度居中,一般为石英砂组成;下层滤料由粒径最小,密度最大的重质滤料组成,如磁铁矿。由于密度差的限制,三层介质过滤器的滤料选择基本上是固定的。上层滤料

空气过滤器的设计技巧.

多袋式过滤器 一滤芯消毒方法 1消毒柜内消毒,把滤芯从塑料袋中取出,置于消毒柜内在121oC下消毒30分钟. 2在线消毒请,滤芯按正确的方法安装在滤器内(固定板与滤芯间隔0.5mm.通蒸汽30分钟 二进出流向识别 滤芯外面进中间出,正反冲可按不同方向进行. 三孔径识别多袋式过滤器https://www.doczj.com/doc/cb4956104.html,/ 滤芯壳体有热熔字体,标明滤芯材质及孔径。

四滤芯安装方法 1将O型圈湿润,慢慢将滤芯垂直插入,必须全部插到不锈钢第圆槽内。 2将滤芯部翅片用不锈钢孔板压好,压板不需太紧,以防高温消毒时滤芯变型。 3避免直接用手接触滤芯。 4使用前尽可能冲洗滤芯。 5开机或关机时,请慢慢转动阀门,不要一下子打开或关闭,以防在高温消毒时滤被吸瘪。 五滤芯维护方法 滤芯使用至不能满足设计流量时(流量明显下降前后压力表差在0.1MPa请停机后打开滤器从滤器,从中取出滤芯,用清水冲洗表面 赃物,然后先在的4%的盐酸中浸泡24小时,再在4%的氢氧化钠中浸泡24小时,后用清水冲洗(浸泡时取下二根O型圈,以防膨胀。 六储存法袋式过滤器https://www.doczj.com/doc/cb4956104.html,/ 1将滤芯浸泡在消毒剂中,将滤器不锈钢外壳灌满消毒剂。 2滤芯取出烘干,(50oC36小时 3将滤芯取出晾干,在气候干燥地区。 4未干燥的滤芯请不要用塑料袋包装以防发霉。 聚丙烯滤芯:(PP 材质:聚丙烯滤芯介质为聚丙烯膜。 ?60?郑州轻工业学院学报f自然科学版2008年

介绍,本文不再涉及. 1空气过滤器的工作原理 空气过滤器的结构如图l所示. 1.空气过滤器本体 2.导沉板 3.滤芯 4.锁紧螺栓 5.伞形挡水板 6.保护罩 7.水杯 8.排水阀 图1空气过滤器结构图’从进口流入的压缩空气,被引进导流板2,导流板上有均匀分布的类似风扇扇叶的斜齿,迫使高速流动的压缩空气沿齿的切线方向产生强烈的旋转,混杂在空气中的液态水油和较大的杂质在强大的离心力作用下分离出来,甩到水杯7的内壁上,流到水杯的底部.除去液态水油和较大杂质的压缩空气,再通过滤芯3的进一步过滤,清除微小的固态颗粒,然后从出口输出清洁的压缩空气.伞形挡水板5将水杯分隔成上下2部分,下部保持压力静区,可以防止高速旋转的气流吸起杯底的水油.聚集在杯底的水油从排水阀8放掉.【2o空气过滤器必须竖直水杯向下安装. 2空气过滤器的主要性能指标

几种过滤方案的对比(设计师版).

×××××扩建项目深度处理阶段工艺 项目概况 设计规模2.5万m3/d。变化系数1.42. 进水SS≤20 mg/L,出水SS≤10 mg/L. 深度处理工艺比较 目前用于深度处理的滤池种类较多,如普通快滤池(四阀滤池)、双阀滤池,虹吸滤池、V型滤池、转盘式微过滤器、连续砂过滤器等,其主要差别在于滤料级配及冲洗方式的不同,而二者之间又有着有机的联系。 普通快滤池从1840年问世以来,至今已有一百多年的历史,在国内城市水厂中应用较多,其滤料级配为传统的级配,截污能力不如均质滤料和双层滤料滤池,单独水反冲洗较气水反冲洗耗水量也大,由于污水处理厂沉淀出水中所含的SS粘性大、质轻且易碎,过滤过程中,污泥很快在滤料表面积聚,形成泥封,当加大水头时,污泥又很容易穿透滤层,因此普通快滤池不适合城镇污水处理的深度处理。 V型滤池的优点是截污能力强,采用气水反冲洗,反冲洗强度大,反冲洗彻底,清洗效果好;由于空气擦洗时粒间流速大,颗粒互相冲撞和摩擦作用强烈,清洗效率高,如果采用低速反冲洗,滤层不用流化,因而允许采用较粗粒径的滤料,此外由于反冲洗强度的大大降低,从而减少了反冲洗设备的容量,节约了大量的反冲洗水。 连续砂过滤器和转盘式过滤器作为新型的过滤工艺,它们有过滤水头损失小,占地面积小,运行费用低成本低、可连续运行、施工周期短等优点,因此在工程上引起了越来越多的用户的重视。

下面对V型滤池、连续砂过滤器、转盘式过滤器(这里选用转盘滤池)进行详细的介绍和比较。 1.V型滤池 V型滤池是快滤池的一种形式,因为其进水槽形状呈V字形而得名,也叫做均粒滤料滤池(其滤料采用均质滤料,即均粒径滤料),又叫六阀滤池因为在各种管路上有六个主要阀门,在底部采用带长柄滤头底板的排水系统,不用设砾石承托层。V型进水槽和排水槽分别设于滤池两侧,池子可沿着长的方向发展,布水均匀.反冲洗采用气水反冲洗.反冲洗效果好,大大节省了反冲洗的水量和电耗,整个滤料层在深度方向的粒径分布基本均匀,在反冲洗过程中滤料层不膨胀,不发生水力分级现象,保证深层截污,滤层含污能力高. V型滤池的工作过程 过滤过程:待滤水由进水总渠经进水和方孔后,溢过堰口再经恻孔进入被待滤水淹沿的V型槽,分别经槽底均布的配水孔和V型槽堰顶进入滤池。被均粒滤料层过滤的滤后水经长柄滤头流入底部空间,由方孔汇入气水分配管渠,再经管廊中的水封井,出水堰,清水渠流入清水池。 反冲洗过程:关闭进水阀,但有一部分进水仍从两恻常开的方孔流入滤池,由V型槽一侧流向排水渠一侧,形成表面扫洗。而后开启排水阀将池面水从排水槽中排出直至滤池水面与V型槽顶相平。反冲洗经常采用先气冲再气水同时反冲最后水冲三部;

液压过滤器选型设计

液压过滤器选型设计指南 1范围 本指南规定了液压过滤器的设计原则、注意事项、液压过滤器各项参数的选择,以及例举了液压过滤器选型设计的案例。 2规范性引用文件 下列文件的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 20079 液压过滤器技术条件 Q/SY 012 015 液压过滤器选用规范 3术语、符号及定义 GB/T 20079确定的术语、符号和定义适用于本文件。 3.1 过滤精度 指油液通过过滤器时,能够穿过滤芯的球形污染物的最大直径,以微米(μm)表示。 过滤器最大流量 由制造商所推荐的在规定运动粘度下通过被试过滤器的最大流量,以单位L/min表示。 纳污容量 指过滤器的压力降达到极限值时,滤芯所容纳的污染物重量,以单位kg表示。 过滤比 过滤器上游大于等于某一给定尺寸χ的颗粒污染物数量与下游大于等于同一给定尺寸的颗粒污染物数量之比,用βχ表示。 洁净过滤器总成压降△P总 被试元件为装有洁净滤芯的洁净过滤器,其测得的入口与出口压力之差。 壳体压降△P壳体 过滤器不装滤芯时的压降。 洁净滤芯压降△P滤芯 洁净滤芯所产生的压降,其值等于洁净过滤器总成压降减少壳体压降。

4工作原理与结构型式 4.1过滤器的工作原理与结构 过滤器的典型结构见图1。 图1液压过滤器典型结构 油液从进油口进入过滤器,沿滤芯的径向由外向内通过滤芯,油液中颗粒被滤芯中的过滤层滤除,进入滤芯内部的油液即为洁净的油液。过滤后的油液从过滤器的出油口排出。 4.2过滤器的分类 过滤器按其用途及安装部位,可分为如图2所示的5种不同类型。 图2过滤器安装位置示意图 设计系统时采用哪种或哪几种过滤方式的组合应根据系统液压元件类型,工况,成本和整机布置综合考虑,可参考表1所示优缺点设计最优的系统过滤方案,其中,吸油过滤容易导致液压泵吸空,建议尽量不采用高精度吸油过滤方案。 表1不同过滤方式的优缺点 优点缺点 压油过滤1)安装于泵出口,直接保护下游精密液压元件; 2)对压降相对来说不太敏感,因此过滤器体积可 做的比较小; 1)要求过滤耐高压,价格贵; 2)泵未受保护; 3)控制、执行元件磨损污染物直接回油箱; 回油过滤1)液压系统回油过滤后回油箱,油箱油液清洁; 2)压力等级低,价格偏移; 1)在精密液压元件上游须单独另加压油过滤器保护; 2)回油脉动大,影响过滤精度,并使滤芯容易损坏;

棉花活性炭空气过滤器设计

前言 生物加工工程很多情况都涉及需氧微生物的纯培养,无论是生长是合成代谢产物都需要消耗大量的氧气以满足微生物的生长繁殖以及代谢的需要。这些氧气通常有空气提供,但是空气中夹带有大量的各类微生物,这些微生物如果随空气一起进入培养系统,便会在合适的条件下大量繁殖,并与发酵生产中的生产菌竞争、抢夺营养物,产生各种副产物,从而干扰或破坏纯培养过程的正常进行,使生物产品的得率降低,产量下降,甚至是培养过程彻底失败导致倒罐,造成严重的经济损失。因此空气除菌是生物细胞培养过程中极其重要的一个环节。 用微生物细胞、动物细胞、植物细胞或酶进行生物反应来生产生物产品,或者保藏生物细胞和生物制品,均需要洁净的环境、合适的空气温度、湿度和空气压力。例如,利用生物工程技术生产药品时,要符合《药品生产和质量管理规范》(GMP)的要求。《规范》明确规定在药品生产过程中,厂房必须按生产工艺和产品的要求划分洁净级别,这时,需要对空气进行净化处理;用气流干燥操作加工产品,需要对空气的温度和湿度进行调节;进入固态发酵培养基或固态发酵室的空气温度和湿度也有严格的要求。因此,对空气进行净化和调节,使空气的温度、湿度和压力发生改变,符合工艺要求,已成为生物加工过程中的一个重要组成部分。 一.设计任务及要求 设计棉花-活性炭空气过滤器,要求通风量达到50m3/min. 二.空气除菌和灭菌方法 空气中经常可以检测到一些细菌及其芽孢、酵母、真菌和病毒。空气的含菌量随环境的不同而有很大的差异。一般干燥寒冷的北方空气中含菌量较少,而温暖潮湿的南方空气中含菌量较多,人口稠密的城市比人口较少的农村含菌量多。虽然各地空气中所悬浮的微生物种类以及比例各不相同,数量也随条件的变化而异,一般设计时可以以含量103~104个/m3为依据来进行计算。 生物加工过程中由于所用的菌种生产能力强弱、生长速度的快慢、发酵周期的长短、分泌物质的性质、培养基的营养成分和pH存在差异,对所用的空气质量有不同的要求。一般说来,生物加工过程中应用的“无菌空气”,是指通过除菌处理是空气中的含菌量降低到某一个水平,从而使污染的可能性降至极小。根据生物产品的不同,可以以染菌率10-3~10-6来表示无菌程度,10-3染菌率表示1000次培养所用的无菌空气只允许一次染菌。 常用空气除菌方法有介质过滤、辐射、化学药品、加热、静电吸附等。其中辐射杀菌、化学药品杀菌、干热杀菌等都是将有机体蛋白变性而破坏其活力,从

过滤器选型标准

过滤器选型标准 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

1. 过滤器(英文filter)介绍 根据过滤器的使用位置以及用途,可以分为两类:粗过滤器(英文strainer)和精细过滤器 粗过滤器主要应用于泵、流量计、阀门前,以保护设备不受大的金属颗粒磨碎,其精度基本是几百微米以上。精细过滤主要是净化流体,保护工艺安全。其精度范围基本在1微米到30微米之间。 按照制造设计要求可以分:压力容器和非压力容器 按照压力容器设计和制造的过滤器壳体执行GB150或者ASME标准。非压力容器执行 SH/T3411或HGT 21637标准执行。 根据使用介质可分为:气体过滤器和液体过滤器 气体过滤器适用于气-固分离流域,可用于气体净化、分成回收等。液体过滤器适用于液-固分离领域,如润滑油过滤、石油化工行业过滤以及污水处理等。 2. 精细过滤器过滤面积: 粗过滤器国内有三部行业标准,因此,只要按照标准选型既可满足要求。 精细过滤器的过滤面积计算基本上不用公式计算,选形时主要依据的是实验数据,因此,过滤器的选择建议还是让生产厂家来选。

过滤三大曲线: 流量压差曲线(ΔP-Q),粒径与过滤比曲线(μ-β),时间与压将曲线(T-ΔP) 因此,计算过滤面积时要依据这三个曲线,其中最主要的的是流量压差曲线,这个曲线由有实力的过滤器制造厂进行试验测得。 目前最权威的测试方法是多次通过试验:ISO 4572 多次通过试验标准。此试验台价格昂贵,目前国内仅有2-3台。目前国内的小厂家过滤器公司滤芯检测是单次通过实验。 过滤面积计算步骤: 1. 确定过滤精度为25微米的过滤比,如200(过滤效率),确定何时滤材 2. 根据给定压降,对滤材进行流量压差测试。得出合适流量(L/min) 3. 根据所得流量,除以试验滤材的面积,计算流速(L/)。 4. 根据流速,和实际应用的流量,确定过滤面积,流量/流速=过滤面积 5. 根据所选用的过滤面积和滤材确定滤芯结构形式,折叠式或圆筒卷绕式 篮式粗过滤器选型计算 粗过滤器工艺计算 1. 总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T 3411-1999《石油化工泵用过滤器选用、检验及验收》、HG-T 21637-1991 《化工管道过滤器》。本

空气过滤器

空气过滤器维护保养 ① 、粗滤过滤器 1、过滤器的核心部位是过滤器芯件,过滤芯由过滤器框 和不锈钢钢丝网组成,不锈钢钢丝网属宜损件,需特别保护; 2、当过滤器 工作一段时间后, 过滤器芯内沉淀了一定的杂质, 这时压力降增大, 流速会下降, 需及时清除过滤器芯内的杂质; 3、清洗杂质时,特别注意过滤芯上的不锈 钢钢丝网不能变形或损坏,否则,再装上去的过滤器,过滤后介质的纯度达不到 设计要求,压缩机、泵、仪表等设备会遭到破坏; 4、如发现不锈钢钢丝网 变形或损坏,需马上更换。 ② 、精密过滤器 1、精密过滤器的核心部位 是过滤滤芯,过滤芯由特殊的材料组成,属宜损件,需特别保护; 2、当精 密过滤器工作一段时间后,过滤器滤芯拦载了一定量的杂质,这时压力降增大, 流速会下降,需及时清除过滤器内的杂质,同时要清洗滤芯; 3、在清除杂 质时,特别注意精密滤芯,不得变形或损坏,否则,再装上去的滤芯,过滤后介 质的纯度达不到设计要求; 4、某些精密滤芯,不能多次反复使用,如袋式 滤芯、聚丙烯滤芯等; 5、如发现滤芯变形或损坏,需马上更换。 过滤器选型 TA TA TA TA TA TAF TAF TAF 型号 / TAF TAF TAF TAF TAF F- F- F- FF-10 -20 -30 规格 -10 -30 -40 -60 -80 1 3 6 8 20 0 0 0 额 定 处 理 1. 量 3 6 7 10 20 30 40 60 80 100 200 300 6 ( Nm3 /min) 进 出 口径 25 32 32 40 50 65 65 80 100 125 150 200 250 DN(mm ) 23 26 28 32 37 105 118 长L 320 430 550 600 675 750 5 0 0 0 0 0 0 21 24 24 28 34 宽W 300 375 415 465 515 615 830 950 0 5 5 0 0 53 61 78 67 11 113 116 117 119 164 200 218 高H 700 5 0 0 0 00 0 0 0 0 0 0 0

过滤器常用计算公式

过滤器常用计算公式 缠丝管过水面积计算公式: P:缠丝面孔隙率 d 1:垫筋宽度或直径(mm ) d 2:缠丝直径或宽度(mm ) m 1:垫筋中心距离(mm ) m 2:缠丝中心距离(mm ) 石英砂滤料水头损失: 2014m 11h H ))(γ γ(--= γ1:滤料的相对密度(石英砂为) γ:水的相对密度 m 0:滤料膨胀前的孔隙率(石英砂为) H 2:滤层膨胀前厚度(m ) 滤料高度为直筒高度的2/3;筒体高度=膨胀高度+填料高度 膨胀率:单层石英砂:45%;双层滤料:50%;三层滤料:55% 清洁滤层水头损失: V l d m m g h 02030200)1()1(180φν-= )1)(1(2211m d m d P --=

ν:运动粘滞系数(cm 2/S )() g :水的重力加速度(981cm/s 2) m 0:滤料孔隙率( ) d 0:与滤料体积相同的球体直径(cm ) l 0:滤层深度(cm ) v :滤速(cm/s ) φ:滤料球度系数() 过滤器反冲洗强度计算: 单位时间单位滤池面积通过的反冲洗水量称为反冲洗强度q ,通常用L/()表示,其值与滤料粒径水温孔隙率和要求的膨胀率有关,可用下式进行计算,也可以用试验方法确定。 )() ε()()ε(μs .m /11e e 100254.0077.1231054.0131L d q c +++= d c :滤料当量直径(cm) μ:水的动力粘度,g/ ε0:干净滤层的孔隙率 根据经验,过滤一般的悬浮物时,要求q 约为12-15L/()之间,如果过滤油质悬浮物,则要求q 增大至20L/()或更大。 反洗强度测定: )冲洗时间()滤池面积()冲洗水量(s m 2?=L w

流砂过滤器设计说明书

流砂过滤器设计说明书

目录 1流砂过滤器设计说明书 (1) 1.1滤料粒径 (3) 1.2滤层高度 (3) 1.3滤速 (3) 1.4砂循环速率 (4) 1.5压缩空气气压、气量对出水水质的影响 (4) 1.6 反冲洗水量确定[5] (4) 2.流砂过滤器设计计算书 (5) 2.1 流砂过滤器选择 (5) 2.2 内循环流砂过滤器主体尺寸计算 (5) 2.2.1 砂滤器直径和截面积计算 (5) 2.2.2 流砂过滤器高度计算 (5) 2.3 进、出水管线、反洗出水管线及环空流道设计及计算 (12) 2.3.1 进、出水管线及反洗出水管线设计 (12) 2.3.2 提砂管及环空流道设计 (12) 2.4 布水器设计计算 (13) 2.4.1 干管 (13) 2.4.2 支管 (14) 2.4.3 布水孔设计及计算 (14) 2.5 空压机及气管线设计计算 (17) 2.5.1 空压机选择 (17) 2.5.2 气管线设计 (17) 3 材料表 (17) 4 设备表 (18) 5 图纸 (19) 6参考文献 (19)

已知条件:来水流量Q=1m3/h,来水含油≤100mg/L,含悬浮物≤100mg/L,处理后出水含有≤20mg/L,含悬浮物≤ 20mg/L[1]。 1.1滤料粒径 滤料粒径对连续式砂滤器的处理效果有重要影响,连续式砂滤器一般采用单一粒径的石英砂滤料。根据相关文献[2],处理含油废水及含有易粘结物质的原水时,通常使用有效直径为1.2mm、均质系数为1.4的均质石英砂。 1.2滤层高度 砂层过低会导致一些微絮体及与滤料结合力较弱的物 质不能被砂层截留,随出水流出;砂层过高易形成沙锥,堵住洗沙器的出砂口,反应器内的砂冲洗不完全,后期出水SS 浓度偏高。为达到有效的过滤高度,滤床厚度可取0.8-1.4m。 [1]本设计选择0.8m。 1.3滤速 根据相关文献[2] [3],建议内循环连续式砂滤器的过滤速度小于12m/h。本设计选择滤速ν=8 m/h。

空气滤清器的设计

空气滤清器的结构及设计计算 一、概述: 空气滤清器(以下简称空滤器)是摩托车进气系统的一个重要组成部分, 随着发动机性能的不断强化,研究表明发动机的性能、磨损及寿命与空滤装置的性能和结构有很大的关系。 滤清装置需要处理的灰尘尺寸范围1~200um,大于200 um的灰尘在空气中很快沉降,小于1 um的灰尘对机械磨损不起影响。1~5 um的灰尘过于微小,普通惯性油浴式空滤器和旋流管很难清除;5~30 um的灰尘效率高的空气滤清器很容易清除;30~200 um的灰尘,一般的粗滤器可以清除。 1、空滤器的作用: 1)净化空气,使进入发动机的空气尽可能干净,减少空气的尘砂,延长发动机寿命。 2)降低进气噪声。 3)优化匹配,使发动机发挥出最佳是性能。 2、空滤器的结构特性及工作原理: 1)空滤器的整体构造 空滤器的结构大体上分为两个部分,一是空滤器的壳体,二是滤芯(包括过滤芯元件 与支承)。有的空滤器还带有进气消声结构。空滤器壳体和空滤器盖一般由具有一定强度的塑料注塑而成,还有少部分采用金属板冲压件焊接组成。空滤器的滤芯滤材主要有3种:纸质滤芯、泡沫塑料滤芯和金属丝网滤芯。在壳体内滤芯把空滤器分为两部分,一是前腔,二是后腔。空滤器前腔入口装有进气管,外界空气通过进气管,经过滤芯的过滤,进入空滤器后腔出口,用导管与化油器相接。 2)空滤器结构形式 空滤器有单级滤清和双级滤清两种型式,对多尘砂区使用的发动机或功 率较大的摩托车应装置双级滤清系统。 可根据吸入空气的容积流量和用途,参考表一选择空滤器的结构形式。

表一空气滤清器分类 3)空滤器的过滤机理 a) 离心分离 借助旋转气流,使灰尘粒子在离心力的作用下从空气中分离出来,达到滤清目的。离心分离是粗滤器设计的理论基础。 b) 机械过滤 气流通过多孔介质滤芯,超过一定尺寸的灰尘留在介质内,类似筛网原理。按介质厚度,分为表面过滤和深度过滤。表面过滤的介质薄,滤清仅发生在表面并在表面形成灰饼,性能降低很快。如:滤纸、无纺布、滤网。 深度过滤在整个介质体积内都起作用。滤芯阻力增长慢,储灰能力增加,寿命延长。 c) 粘性吸附 介质浸油后沥干,利用油的粘性吸附粒子。如金属丝网,发泡聚氨酯等。 d) 静电沉析 静电沉析的滤清效率很高,可以除去小于0.01um的灰尘,但空滤的体积过大,在车辆上不易使用。 4)空滤器的过滤方式 常见的空滤器过滤方式有以下3种型式: a)惯性式 是利用尘砂与空气质点的质量差,当空气作旋转运动或使气流急速转弯 时,尘砂因惯性力较大而被抛出。 b) 过滤式 使空气透过滤纸或金属网、丝织物等多孔性物质进行滤清,这种滤清方法能滤掉细小的尘砂。 c)油浴式

机械过滤器设计计算

机械过滤池的设计 设计参数 设计水量Qmax=3825 m 3/h =91800m 3/d 采用数据:滤速v=14m/h,冲洗强度q=15L/(s ?m 2),冲洗时间为6min 机械过滤池的设计计算 (1) 滤池面积及尺寸:滤池工作时间为24h ,冲洗周期为12h , 实际工作时间T=h 8.2312241.024=?- 滤池面积为,F=Q/vT=91800/14?23.8=275.5 m 2 采用4个池子,单行排列 f=F/N=275.5/4=68.9m 2 分成4个半径为5m1的圆柱形构筑物 校核强制滤速,v'=Nv/(N-1)=18.7m/h (2) 滤池高度: 支撑层高度: H1=0.45m 滤料层高度: H2=0.7m 砂面上水深: H3=1.7m 保护高度: H4=0.3m 总高度: H=3.15m (3)配水系统 1.配水干管流量: qg=fq=78.5×15=1178L/s 干管长度:10m 断面尺寸:850mm ×850mm 采用管径dg= 1000 mm,始端流速1.453m/s 2.支管: 支管中心距离:采用 ,m 25.0a j =5 支管长度: 每池支管数:根480.25 62a 2n j =?=?=L nj=D/a=2×8.5/0.25=68 m/s 6.1mm 75L/s 04.784/336n q q j g j ,流速,管径每根支管入口流量:==

每根支管入口流量:qj=qg/nj=805.76/68=11.85L/s,管径150mm,流速v=0.67m/s 3.孔眼布置: 支管孔眼总面积占滤池总面积的0.25% 孔眼总面积:2k m m 6000024%25.0Kf F =?== 孔眼总面积 Fk=Kf=0.25%×50.36=125900mm 2 采用孔眼直径m m 9d k = 每格孔眼面积:22 k mm 6.634d f ==π fk=πdk 2/4=63.6mm 2 孔眼总数9446 .6360000f F N k k k === Nk=Fk/fk=125900/63.6=1979 每根支管空眼数:个2048/944n n j k k ===N 支管孔眼布置成两排,与垂线成45度夹角向下交错排列, 每根支管长度:m 7.16.042 1d 21l g j =-=-=)()(B 每排孔眼中心数距:17.020 5.07.1n 21l a k j k =?=?= 4.孔眼水头损失: 支管壁厚采用:mm 5=δ 流量系数:68.0=μ 水头损失:h m 5.3K 101g 21h 2k ==)(μ 5.复算配水系统: 管长度与直径之比不大于 60,则6023075 .07.1d l j j <== lmax/dj=4250/150=28.3<60 孔眼总面积与支管总横面积之比小于0.5,则

旋风除尘过滤器设计方案

旋风除尘过滤器设计方案 用户:特瑞斯信力(常州)燃气设备有限公司 型号: XCF32B-37-7 任务书编号: SR10008 工作令: SWA10244 图号: SW03-009-00 编制:日期:

1、设计原则 本设计中旋风除尘过滤器属于中压容器,设计以国家标准GB1500《钢制压力容器》为依据,严格按照政府部门对压力容器安全监督的法规TSG R0004-2009《固定式压力容器安全技术监察规程》的规定进行设计、制造、检验。以安全为前提,综合考虑质量保证的各个环节,尽可能做到经济合理,可靠的密封性,足够的安全寿命。 2、设计步骤 其设计的主要步骤如下: ①根据介质特性,选择合适的壳体材料、接管、法兰等部件材料; ②设计参数的确定; ③根据用户提供的设计条件及参数,根据GB150公式,预设壳体壁厚; ④从连接的密封性、强度等出发,按标准选用法兰、垫片及紧固件; ⑤使用化工设备中心站开发的正版软件,SW6校核设备强度,确定壳体厚度及接管壁厚; ⑥焊接接头型式的选择; ⑦设备型式的选择及内件结构; ⑧根据以上的容器设计计算,画出设计总设备图及零件图。 3、材料的选择 ①筒体与封头的材料选择: 天然气最主要的成分是甲烷,经过处理的天然气具有无腐蚀性,因此可选用一般的钢材。由操作条件可知,该容器属于中压、常温范畴。在常温下材料的组织性和力学性能没有明显的变化。综合了材料的机械性能、焊接性能、腐蚀情况、强度条件、钢板的耗材量与质量以及价格的要求,筒体和封头的材料选择钢号为Q345R的钢板,使用状态为热轧(设计温度为-20~475℃,钢板标准GB 713-2008 锅炉和压力容器用钢板)。 ②接管的材料选择: 根据GB150《钢制压力容器》引用标准以及接管要求焊接性能较好且塑性好的要求,故选择20号GB8163《输送流体用无缝钢管》作各型号接管。因设备设

相关主题
文本预览
相关文档 最新文档